Does Digital Transformation Promote Green and Low-Carbon Synergistic Development in Enterprises? A Dynamic Analysis Based on the Perspective of Chinese Listed Enterprises in the Heavy Pollution Industry
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypothesis
2.1. Direct Impact of Digital Transformation on the Pollution Abatement and Carbon Abatement Efficiency of Enterprises
2.2. The Transmission Mechanism of Digital Transformation on the Pollution Abatement and Carbon Abatement Efficiency of Enterprises
2.2.1. Green Technological Innovation Mechanism of Digital Transformation
2.2.2. Factor Allocation Optimization Mechanism of Digital Transformation
2.3. The Heterogeneous Influences of the Internal and External Environment of the Enterprise
2.3.1. The Heterogeneous Influences of the Intensity of Environmental Regulation
2.3.2. The Heterogeneous Influences of Product Competitiveness
3. Study Design
3.1. Sample Selection and Processing
3.2. Choice of Method for Measuring Pollution Abatement and Carbon Abatement Efficiency
4. Model Setting and Empirical Results
4.1. Model Setting
4.2. Variable Settings
4.2.1. Explained Variables
4.2.2. Explanatory Variables
4.2.3. Control Variables
4.2.4. Mediating Variables
4.2.5. Heterogeneous Grouping Variables
4.3. Empirical Results
4.3.1. Baseline Regression Results
4.3.2. Endogeneity Treatment and Robustness Tests
Instrumental Variables Method
Replacement of Differences-in-Differences Method
Replacement of City Sample Data
4.3.3. Analysis of Impact Mechanisms
4.3.4. Examination of the Heterogeneity of an Enterprise’s Internal and External Environment
5. Further Research
5.1. Measuring the Synergies between Pollution Abatement and Carbon Emission Abatement of Enterprises
5.2. The Impact of the Digital Transformation of Enterprises on the Synergies between Pollution Abatement and Carbon Emission Abatement Test
6. Conclusions and Policy Recommendations
7. Limitations and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, M.; Wu, Y. Combined role of green productivity growth, economic globalization, and eco-innovation in achieving ecological sustainability for OECD economies. J. Environ. Manag. 2022, 302, 113980. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Nie, L.; Sun, H.; Sun, W.; Taghizadeh-Hesary, F. Digital finance, green technological innovation and energy-environmental performance: Evidence from China’s regional economies. J. Clean. Prod. 2021, 327, 129458. [Google Scholar] [CrossRef]
- Peng, H.; Shen, N.; Ying, H.; Wang, Q. Can environmental regulation directly promote green innovation behavior?—based on situation of industrial agglomeration. J. Clean. Prod. 2021, 314, 128044. [Google Scholar] [CrossRef]
- Du, J.; Shen, Z.; Song, M.; Zhang, L. Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises. Energy Econ. 2023, 120, 106572. [Google Scholar] [CrossRef]
- Zhang, P.; Hao, D. Enterprise financial management and fossil fuel energy efficiency for green economic growth. Resour. Policy 2023, 84, 103763. [Google Scholar] [CrossRef]
- Gebresenbet, G.; Bosona, T.; Patterson, D.; Persson, H.; Fischer, B.; Mandaluniz, N.; Chirici, G.; Zacepins, A.; Komasilovs, V.; Pitulac, T.; et al. A concept for application of integrated digital technologies to enhance future smart agricultural systems. Smart Agric. Technol. 2023, 5, 100255. [Google Scholar] [CrossRef]
- Li, X.; Lepour, D.; Heymann, F.; Maréchal, F. Electrification and digitalization effects on sectoral energy demand and consumption: A prospective study towards 2050. Energy 2023, 279, 127992. [Google Scholar] [CrossRef]
- Rahnama, H.; Johansen, K.; Larsson, L.; Rönnbäck, A.Ö. Exploring digital innovation in the production process: A suggested framework for automation technology solution providers. Procedia CIRP 2021, 104, 803–808. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Zhao, Z.; Ren, J.; Chen, X. Research on carbon emission reduction effect of China’s regional digital trade under the “double carbon” target—Combination of the regulatory role of industrial agglomeration and carbon emissions trading mechanism. J. Clean. Prod. 2023, 405, 137049. [Google Scholar] [CrossRef]
- Xu, J.; Yu, Y.; Zhang, M.; Zhang, J. Impacts of digital transformation on eco-innovation and sustainable performance: Evidence from Chinese manufacturing companies. J. Clean. Prod. 2023, 393, 136278. [Google Scholar] [CrossRef]
- Yi, M.; Liu, Y.; Sheng, M.; Wen, L. Effects of digital economy on carbon emission reduction: New evidence from China. Energy Policy 2022, 171, 113271. [Google Scholar] [CrossRef]
- Sadorsky, P. Information communication technology and electricity consumption in emerging economies. Energy Policy 2012, 48, 130–136. [Google Scholar] [CrossRef]
- Lin, B.; Ma, R. How does digital finance influence green technology innovation in China? Evidence from the financing constraints perspective. J. Environ. Manag. 2022, 320, 115833. [Google Scholar] [CrossRef] [PubMed]
- Yin, W. Identifying the pathways through digital transformation to achieve supply chain resilience: An fsQCA approach. Environ. Sci. Pollut. Res. 2023, 30, 10867–10879. [Google Scholar] [CrossRef] [PubMed]
- Jiakui, C.; Abbas, J.; Najam, H.; Liu, J.; Abbas, J. Green technological innovation, green finance, and financial development and their role in green total factor productivity: Empirical insights from China. J. Clean. Prod. 2023, 382, 135131. [Google Scholar] [CrossRef]
- Li, P.; Rao, C.; Goh, M.; Yang, Z. Pricing strategies and profit coordination under a double-echelon green supply chain. J. Clean. Prod. 2021, 278, 123694. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, W.; Wu, Y.; Zhang, J. How does digital economy affect green total factor productivity? Evidence from China. Sci. Total Environ. 2023, 857, 159428. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y.; Wang, W.; Wu, H. How does digital transformation drive green total factor productivity? Evidence from Chinese listed enterprises. J. Clean. Prod. 2023, 406, 136954. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, X.; Chen, H. The Impact of New Energy Enterprises’ Digital Transformation on Their Total Factor Productivity: Empirical Evidence from China. Sustainability 2022, 14, 13928. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, X.; Li, Y. The effect of digital transformation on real economy enterprises’ total factor productivity. Int. Rev. Econ. Financ. 2023, 85, 488–501. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q. How Does Digital Transformation Facilitate Enterprise Total Factor Productivity? The Multiple Mediators of Supplier Concentration and Customer Concentration. Sustainability 2023, 15, 1896. [Google Scholar] [CrossRef]
- Anser, M.K.; Ahmad, M.; Khan, M.A.; Zaman, K.; Nassani, A.A.; Askar, S.E.; Abro, M.M.Q.; Kabbani, A. The role of information and communication technologies in mitigating carbon emissions: Evidence from panel quantile regression. Environ. Sci. Pollut. Res. 2021, 28, 21065–21084. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, Y.; Wu, T. Research on the impact of digital transformation on green development of manufacturing enterprises. Front. Energy Res. 2023, 10, 1045328. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y. Influence of digital finance and green technology innovation on China’s carbon emission efficiency: Empirical analysis based on spatial metrology. Sci. Total Environ. 2022, 838, 156463. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Raza, S.A.; Huo, Z.; Shahzad, U.; Zhao, X. Does enterprise digital transformation contribute to the carbon emission reduction? Micro-level evidence from China. Int. Rev. Econ. Financ. 2023, 86, 1–13. [Google Scholar] [CrossRef]
- Xiong, L.; Ning, J.; Dong, Y. Pollution reduction effect of the digital transformation of heavy metal enterprises under the agglomeration effect. J. Clean. Prod. 2022, 330, 129864. [Google Scholar] [CrossRef]
- Adebayo, T.; Ullah, S.; Kartal, M.; Ali, K.; Pata, U.; Aga, M. Endorsing sustainable development in BRICS: The role of technological innovation, renewable energy consumption, and natural resources in limiting carbon emission. Sci. Total Environ. 2023, 859, 160181. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-T.; Klenow, P.J. Misallocation and manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef]
- Jianmin, W.; Li, Y. Does factor endowment allocation improve technological innovation performance? An empirical study on the Yangtze River Delta region. Sci. Total Environ. 2020, 716, 137107. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, D.; Xu, M.; Yang, M.; Zou, W. Capital misallocation, technological innovation, and green development efficiency: Empirical analysis based on China provincial panel data. Environ. Sci. Pollut. Res. 2022, 29, 65535–65548. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, J.; Huang, S. CO2 emissions performance and reduction potential in China’s manufacturing industry: A multi-hierarchy meta-frontier approach. J. Clean. Prod. 2020, 255, 120226. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H. Factor market distortion, technological innovation, and environmental pollution. Environ. Sci. Pollut. Res. 2022, 29, 87692–87705. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhong, M.; Cao, M. Does digital investment affect carbon efficiency? Spatial effect and mechanism discussion. Sci. Total Environ. 2022, 827, 154321. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liang, D.; Liu, T.; Song, Y. The impact of production factor distortion on total factor energy productivity: Insight from China’s region level. Environ. Sci. Pollut. Res. 2020, 27, 40715–40731. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-X.; Ye, D.-J.; Zheng, H.-H.; Lv, C.-Y. The influence of market reform on the CO2 emission efficiency of China. J. Clean. Prod. 2019, 225, 236–247. [Google Scholar] [CrossRef]
- Hao, X.; Li, Y.; Ren, S.; Wu, H.; Hao, Y. The role of digitalization on green economic growth: Does industrial structure optimization and green innovation matter? J. Environ. Manag. 2023, 325, 116504. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Zhu, B.; Zhang, H.; Li, L.; Xie, M. Can direct environmental regulation promote green technology innovation in heavily polluting industries? Evidence from Chinese listed companies. Sci. Total Environ. 2020, 746, 140810. [Google Scholar] [CrossRef]
- Peng, J.; Xiao, J.; Wen, L.; Zhang, L. Energy industry investment influences total factor productivity of energy exploitation: A biased technical change analysis. J. Clean. Prod. 2019, 237, 117847. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, A.; Wu, Y. Environmental regulation and green innovation: Evidence from China’s new environmental protection law. J. Clean. Prod. 2021, 297, 126698. [Google Scholar] [CrossRef]
- You, D.; Zhang, Y.; Yuan, B. Environmental regulation and firm eco-innovation: Evidence of moderating effects of fiscal decentralization and political competition from listed Chinese industrial companies. J. Clean. Prod. 2019, 207, 1072–1083. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Liu, X.; Wang, X. Can environmental regulation promote urban green innovation Efficiency? An empirical study based on Chinese cities. J. Clean. Prod. 2021, 287, 125060. [Google Scholar] [CrossRef]
- Song, M.; Wang, S.; Zhang, H. Could environmental regulation and R&D tax incentives affect green product innovation? J. Clean. Prod. 2020, 258, 120849. [Google Scholar] [CrossRef]
- Pei, Y.; Zhu, Y.; Liu, S.; Wang, X.; Cao, J. Environmental regulation and carbon emission: The mediation effect of technical efficiency. J. Clean. Prod. 2019, 236, 117599. [Google Scholar] [CrossRef]
- Yu, C.; Wu, X.; Zhang, D.; Chen, S.; Zhao, J. Demand for green finance: Resolving financing constraints on green innovation in China. Energy Policy 2021, 153, 112255. [Google Scholar] [CrossRef]
- Ouyang, X.; Shao, Q.; Zhu, X.; He, Q.; Xiang, C.; Wei, G. Environmental regulation, economic growth and air pollution: Panel threshold analysis for OECD countries. Sci. Total Environ. 2019, 657, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wu, S.; Zhang, Y.; He, Y. Environmental regulation effect on green total factor productivity in the Yangtze River Economic Belt. J. Environ. Manag. 2023, 325, 116465. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Lei, Z. How environmental regulation affects corporate green investment: Evidence from China. J. Clean. Prod. 2021, 279, 123560. [Google Scholar] [CrossRef]
- Lee, C.-C.; Zeng, M.; Wang, C. Environmental regulation, innovation capability, and green total factor productivity: New evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 39384–39399. [Google Scholar] [CrossRef]
- Hermundsdottir, F.; Aspelund, A. Competitive sustainable manufacturing-Sustainability strategies, environmental and social innovations, and their effects on firm performance. J. Clean. Prod. 2022, 370, 133474. [Google Scholar] [CrossRef]
- Qu, C.; Shao, J.; Cheng, Z. Can embedding in global value chain drive green growth in China’s manufacturing industry? J. Clean. Prod. 2020, 268, 121962. [Google Scholar] [CrossRef]
- Kuang, H.; Xiong, Y. Could environmental regulations improve the quality of export products? Evidence from China’s implementation of pollutant discharge fee. Environ. Sci. Pollut. Res. 2022, 29, 81726–81739. [Google Scholar] [CrossRef] [PubMed]
- Xin, C.; Zheng, C.; Sun, M. Environmental innovation ambidexterity and customer relationship performance: Evidence from the manufacturing industry in China. Environ. Sci. Pollut. Res. 2022, 29, 60998–61011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, T.; Shen, C. Green investment choice in a duopoly market with quality competition. J. Clean. Prod. 2020, 276, 124032. [Google Scholar] [CrossRef]
- Zou, H.; Zhong, M.-R. Factor reallocation and cost pass-through under the carbon emission trading policy: Evidence from Chinese metal industrial chain. J. Environ. Manag. 2022, 313, 114924. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Agrawal, R.; Saha, C.R. Quality management for sustainable manufacturing: Moving from number to impact of defects. J. Clean. Prod. 2019, 241, 118348. [Google Scholar] [CrossRef]
- Wang, B.J.; Zhao, J.L.; Wei, Y.X. Carbon emission quota allocating on coal and electric power enterprises under carbon trading pilot in China: Mathematical formulation and solution technique. J. Clean. Prod. 2019, 239, 118104. [Google Scholar] [CrossRef]
- Dong, F.; Zhu, J.; Li, Y.; Chen, Y.; Gao, Y.; Hu, M.; Qin, C.; Sun, J. How green technology innovation affects carbon emission efficiency: Evidence from developed countries proposing carbon neutrality targets. Environ. Sci. Pollut. Res. 2022, 29, 35780–35799. [Google Scholar] [CrossRef]
- Liu, S.; Lei, P.; Li, X.; Li, Y. A nonseparable undesirable output modified three-stage data envelopment analysis application for evaluation of agricultural green total factor productivity in China. Sci. Total Environ. 2022, 838, 155947. [Google Scholar] [CrossRef]
- Zhou, M.; Ye, Y.; Huang, Y. Measurement of local government green governance efficiency based on total waste emissions and PM2.5 concentration: Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 7087–7105. [Google Scholar] [CrossRef]
- Huang, X.; Feng, C.; Qin, J.; Wang, X.; Zhang, T. Measuring China’s agricultural green total factor productivity and its drivers during 1998–2019. Sci. Total Environ. 2022, 829, 154477. [Google Scholar] [CrossRef] [PubMed]
- Ju, K.; Zhou, D.; Wang, Q.; Zhou, D.; Wei, X. What comes after picking pollution-intensive low-hanging fruits? Transfer direction of environmental regulation in China. J. Clean. Prod. 2020, 258, 120405. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, J.; Zhu, Z. Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model with non-point source pollution and CO2 emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]
- Hu, Y.; Che, D.; Wu, F.; Chang, X. Corporate maturity mismatch and enterprise digital transformation: Evidence from China. Financ. Res. Lett. 2023, 53, 103677. [Google Scholar] [CrossRef]
- Maroufkhani, P.; Tseng, M.; Iranmanesh, M.; Ismail, W.; Khalid, H. Big data analytics adoption: Determinants and performances among small to medium-sized enterprises. Int. J. Inf. Manag. 2020, 54, 102190. [Google Scholar] [CrossRef]
- Jiang, L.; Bai, Y. Strategic or substantive innovation?—The impact of institutional investors’ site visits on green innovation evidence from China. Technol. Soc. 2022, 68, 101904. [Google Scholar] [CrossRef]
- Li, J.; Du, Y. Spatial effect of environmental regulation on green innovation efficiency: Evidence from prefectural-level cities in China. J. Clean. Prod. 2021, 286, 125032. [Google Scholar] [CrossRef]
- Sang, B. Application of genetic algorithm and BP neural network in supply chain finance under information sharing. J. Comput. Appl. Math. 2021, 384, 113170. [Google Scholar] [CrossRef]
- Starfinger, M. Financing smallholder tree planting: Tree collateral & Thai ’Tree Banks’-Collateral 2.0? Land Use Policy 2021, 111, 105765. [Google Scholar] [CrossRef]
- Yu, X.; Wang, P. Economic effects analysis of environmental regulation policy in the process of industrial structure upgrading: Evidence from Chinese provincial panel data. Sci. Total Environ. 2021, 753, 142004. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, Q.; Zhang, X.; Li, C. Can Digital Transformation Promote Green Technology Innovation? Sustainability 2022, 14, 7497. [Google Scholar] [CrossRef]
- Zhang, N.; Kong, F.; Choi, Y.; Zhou, P. The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants. Energy Policy 2014, 70, 193–200. [Google Scholar] [CrossRef]
- Grullon, G.; Larkin, Y.; Michaely, R. Are US Industries Becoming More Concentrated? Rev. Financ. 2019, 23, 697–743. [Google Scholar] [CrossRef]
- Bai, C.; Liu, H.; Zhang, R.; Feng, C. Blessing or curse? Market-driven environmental regulation and enterprises’ total factor productivity: Evidence from China’s carbon market pilots. Energy Econ. 2023, 117, 106432. [Google Scholar] [CrossRef]
- Cui, S.; Wang, Y.; Zhu, Z.; Zhu, Z.; Yu, C. The impact of heterogeneous environmental regulation on the energy eco-efficiency of China’s energy-mineral cities. J. Clean. Prod. 2022, 350, 131553. [Google Scholar] [CrossRef]
- Hermundsdottir, F.; Aspelund, A. Sustainability innovations and firm competitiveness: A review. J. Clean. Prod. 2021, 280, 124715. [Google Scholar] [CrossRef]
- Lanoie, P.; Patry, M.; Lajeunesse, R. Environmental regulation and productivity: Testing the Porter hypothesis. J. Product. Anal. 2008, 30, 121–128. [Google Scholar] [CrossRef]
- Managi, S.; Opaluch, J.; Jin, D.; Grigalunas, T. Environmental regulations and technological change in the offshore oil and gas industry. Land Econ. 2005, 81, 303–319. [Google Scholar] [CrossRef]
- Wu, F.; Wang, S.Y.; Zhou, P. Marginal abatement cost of carbon dioxide emissions: The role of abatement options. Eur. J. Oper. Res. 2023, 310, 891–901. [Google Scholar] [CrossRef]
- Wen, H.; Lee, C.; Song, Z. Digitalization and environment: How does ICT affect enterprise environmental performance? Environ. Sci. Pollut. Res. 2021, 28, 54826–54841. [Google Scholar] [CrossRef]
- Su, J.; Wei, Y.; Wang, S.; Liu, Q. The impact of digital transformation on the total factor productivity of heavily polluting enterprises. Sci. Rep. 2023, 13, 6386. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Cheng, R.; Wang, H.; Yi, M.; Huang, Y. Industrial digitization and synergy between pollution and carbon emissions control: New empirical evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 36127–36142. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, L.; Chen, Y.; He, J. Digital economy, technological innovation, and green economic efficiency-Empirical evidence from 277 cities in China. Manag. Decis. Econ. 2022, 43, 616–629. [Google Scholar] [CrossRef]
- Fan, M.; Yang, P.; Li, Q. Impact of environmental regulation on green total factor productivity: A new perspective of green technological innovation. Environ. Sci. Pollut. Res. 2022, 29, 53785–53800. [Google Scholar] [CrossRef]
- Zeng, Q.-H.; He, L.-Y. Study on the synergistic effect of air pollution prevention and carbon emission reduction in the context of “dual carbon”: Evidence from China’s transport sector. Energy Policy 2023, 173, 113370. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, Y.; Choi, Y. Is it feasible for China to enhance its air quality in terms of the efficiency and the regulatory cost of air pollution? Sci. Total Environ. 2020, 709, 136149. [Google Scholar] [CrossRef]
Variable | Obs. | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
GTFP | 3045 | 0.036 | 0.048 | −0.381 | 0.539 |
CEE | 3045 | 0.003 | 0.069 | −0.615 | 0.621 |
UEAE | 3045 | 0.012 | 0.053 | −0.542 | 0.577 |
DI | 3045 | 5.477 | 14.738 | 0.000 | 151.452 |
Scale | 3045 | 22.288 | 1.298 | 19.541 | 26.465 |
Age | 3045 | 7.661 | 9.413 | 0.069 | 163.302 |
Profit | 3045 | 1.577 | 1.551 | 0.079 | 14.258 |
Flow | 3045 | 8.555 | 1.043 | 5.590 | 11.557 |
Debt | 3045 | 0.410 | 0.190 | 0.057 | 0.848 |
HI | 3045 | 0.123 | 0.109 | 0.014 | 1 |
Variables | (1) | (2) | (3) |
---|---|---|---|
GTFP | CEE | UEAE | |
DI | −0.007 *** | −0.021 *** | −0.011 *** |
(0.001) | (0.008) | (0.002) | |
DI_t-1 | 0.031 *** | 0.054 *** | 0.043 *** |
(0.009) | (0.023) | (0.016) | |
DI_t-2 | 0.003 | 0.021 | 0.010 |
(0.031) | (0.047) | (0.032) | |
DI_t-3 | 0.014 | 0.074 | 0.041 |
(0.025) | (0.082) | (0.060) | |
DI_t-4 | 0.015 *** | 0.063 *** | 0.036 *** |
(0.002) | (0.024) | (0.009) | |
DI_t-5 | 0.184 | 0.386 | 0.275 |
(0.325) | (0.525) | (0.487) | |
Control variables | Yes | Yes | Yes |
City–firm FE | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes |
Observations | 3045 | 3045 | 3045 |
R-squared | 0.623 | 0.698 | 0.786 |
Panel A: Endogeneity Treatment | ||||||
---|---|---|---|---|---|---|
Variables | 2SLS | |||||
(1) | (2) | (3) | (4) | |||
First Phase | Second Phase: GTFP | Second Phase: CEE | Second Phase: UEAE | |||
DI | 0.021 *** | −0.011 *** | −0.024 *** | −0.018 *** | ||
(0.000) | (0.002) | (0.010) | (0.008) | |||
DI_t-4 | 0.011 *** | 0.061 *** | 0.082 *** | 0.070 *** | ||
(0.002) | (0.014) | (0.032) | (0.022) | |||
Kleibergen-Paap rk LM | 24.62 ** | |||||
Cragg-Donald Wald F | 22.74 | |||||
Control variables | Yes | Yes | Yes | Yes | ||
City–firm FE | Yes | Yes | Yes | Yes | ||
Time FE | Yes | Yes | Yes | Yes | ||
Observations | 3045 | 3045 | 3045 | 3045 | ||
R-squared | 0.859 | 0.726 | 0.837 | 0.763 | ||
Panel B: DID Model Robustness Tests | ||||||
Variables | DID | |||||
Whether Digital Transformation | Degree of Digital Transformation | |||||
(1) | (2) | (3) | (4) | (5) | (6) | |
GTFP | CEE | UEAE | GTFP | CEE | UEAE | |
duit*dtit | 0.071 *** | 0.087 *** | 0.079 *** | |||
(0.021) | (0.034) | (0.029) | ||||
duit*dtit*DI | 0.008 *** | 0.016 *** | 0.013 *** | |||
(0.002) | (0.006) | (0.005) | ||||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
City–firm FE | Yes | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 3045 | 3045 | 3045 | 3045 | 3045 | 3045 |
R-squared | 0.704 | 0.846 | 0.726 | 0.757 | 0.637 | 0.598 |
Panel C: City Panel Robustness Tests | ||||||
City Panel Data 2013–2019 | ||||||
Variables | (1) | (2) | (3) | |||
GTFP | CEE | UEAE | ||||
DI | −0.010 *** | −0.024 *** | −0.015 *** | |||
(0.003) | (0.0013) | (0.006) | ||||
DI_t-4 | 0.020 *** | 0.074 *** | 0.043 *** | |||
(0.007) | (0.033) | (0.018) | ||||
Control variables | Yes | Yes | Yes | |||
City–firm FE | Yes | Yes | Yes | |||
Time FE | Yes | Yes | Yes | |||
Observations | 3045 | 3045 | 3045 | |||
R-squared | 0.547 | 0.747 | 0.811 |
Variables | (1) | (2) |
---|---|---|
Green Technology Innovation Mediating Role | Factor Allocation Optimization Mediating Role | |
GTI | FAO | |
DI | −0.013 *** | −0.011 *** |
(0.000) | (0.000) | |
DI_t-4 | 0.121 *** | 0.108 *** |
(0.050) | (0.047) | |
Control variables | Yes | Yes |
City–firm FE | Yes | Yes |
Time FE | Yes | Yes |
Observations | 3045 | 3045 |
R2 | 0.659 | 0.926 |
Heterogeneity of Urban Environmental Regulation | Heterogeneity of Enterprises’ Product Competitiveness | |||||
---|---|---|---|---|---|---|
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
GTFP | CEE | UEAE | GTFP | CEE | UEAE | |
DI | −0.002 *** | −0.012 *** | −0.012 *** | −0.008 *** | −0.022 *** | −0.012 *** |
(0.000) | (0.005) | (0.005) | (0.002) | (0.009) | (0.005) | |
DI_t-4 | 0.007 *** | 0.014 *** | 0.014 *** | 0.003 *** | 0.017 *** | 0.014 *** |
(0.000) | (0.005) | (0.005) | (0.001) | (0.006) | (0.005) | |
ER*DI | −0.071 *** | −0.089 *** | −0.078 *** | |||
(0.021) | (0.043) | (0.030) | ||||
ER*DI_t-4 | 0.047 *** | 0.063 *** | 0.051 *** | |||
(0.013) | (0.021) | (0.018) | ||||
PC*DI | −0.004 *** | −0.013 *** | −0.010 *** | |||
(0.001) | (0.005) | (0.003) | ||||
PC*DI_t-4 | 0.003 *** | 0.016 *** | 0.012 *** | |||
(0.001) | (0.007) | (0.005) | ||||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
City–firm FE | Yes | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 3045 | 3045 | 3045 | 3045 | 3045 | 3045 |
R2 | 0.704 | 0.867 | 0.741 | 0.757 | 0.639 | 0.836 |
Variables | (1) | (2) | (3) |
---|---|---|---|
SPACE | Pollution Abatement Effect | Carbon Abatement Effect | |
DI | −0.043 *** | −0.029 *** | −0.049 *** |
(0.020) | (0.012) | (0.017) | |
DI_t-4 | 0.047 *** | 0.034 *** | 0.060 *** |
(0.019) | (0.011) | (0.027) | |
Control variables | Yes | Yes | Yes |
City–firm FE | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes |
Observations | 3045 | 3045 | 3045 |
R-squared | 0.591 | 0.712 | 0.693 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Li, J. Does Digital Transformation Promote Green and Low-Carbon Synergistic Development in Enterprises? A Dynamic Analysis Based on the Perspective of Chinese Listed Enterprises in the Heavy Pollution Industry. Sustainability 2023, 15, 15600. https://doi.org/10.3390/su152115600
Wang S, Li J. Does Digital Transformation Promote Green and Low-Carbon Synergistic Development in Enterprises? A Dynamic Analysis Based on the Perspective of Chinese Listed Enterprises in the Heavy Pollution Industry. Sustainability. 2023; 15(21):15600. https://doi.org/10.3390/su152115600
Chicago/Turabian StyleWang, Sen, and Jinye Li. 2023. "Does Digital Transformation Promote Green and Low-Carbon Synergistic Development in Enterprises? A Dynamic Analysis Based on the Perspective of Chinese Listed Enterprises in the Heavy Pollution Industry" Sustainability 15, no. 21: 15600. https://doi.org/10.3390/su152115600
APA StyleWang, S., & Li, J. (2023). Does Digital Transformation Promote Green and Low-Carbon Synergistic Development in Enterprises? A Dynamic Analysis Based on the Perspective of Chinese Listed Enterprises in the Heavy Pollution Industry. Sustainability, 15(21), 15600. https://doi.org/10.3390/su152115600