The Influence of Winter Irrigation Amount on the Characteristics of Water and Salt Distribution and WUE in Different Saline-Alkali Farmlands in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Data Collection and Measurement
2.3.1. Soil Sample and Measurement
2.3.2. Sprouting Rate and Survival Rate
2.3.3. Yield and WUE
3. Results
3.1. Soil Moisture Distribution
3.2. Soil Salinity Distribution
3.3. Change Rate of Soil Salt (RSC)
3.4. Cotton Growth Indexes and Yield
3.5. Water Use Efficiency (WUE or iWUE and IWUE)
4. Discussion
5. Conclusions
- (1)
- In the winter irrigation period, soil moisture can move slowly, but soil salt is basically not transported, and the maximum moisture content layer in the soil becomes shallower with the increase in the winter irrigation amount and the salinity of the soil. The salt return process mainly occurs during the late thawing period.
- (2)
- Winter irrigation can effectively leach soil salt, but excessive winter irrigation has little effect on desalination in mild saline-alkali farmland. With the decrease in winter irrigation, the salt accumulation layer becomes shallower.
- (3)
- Compared with non-winter irrigation, the WUE under winter irrigation is increased, but it is first increased and then decreased with the increase in winter irrigation amount, and the excessive winter irrigation may have a negative effect on the sprouting rate next year.
- (4)
- For the mild saline-alkali farmland and moderate saline-alkali farmland of an arid area, from the perspective of soil salt leaching, soil moisture distribution, cotton growth, yield and WUE, the sustainable winter irrigation amount is 225 mm and 300 mm, respectively.
Author Contributions
Funding
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, F.; Zhang, G. Problems of agricultural water use in China and the strategies for saving water. Trans. Chin. Soc. Agric. Eng. 2005, 21, 6. [Google Scholar]
- Rao, S.S.; Tanwar, S.P.S.; Regar, P.L. Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment. Agric. Water Manag. 2016, 169, 14–25. [Google Scholar] [CrossRef]
- Yang, G.; Li, F.D.; Tian, L.J.; He, X.L.; Gao, Y.L.; Wang, Z.L.; Ren, F.T. Soil physicochemical properties and cotton (Gossypium hirsutum L.) yield under brackish water mulched drip irrigation. Soil Tillage Res. 2020, 199, 104592. [Google Scholar] [CrossRef]
- Li, X.; Jin, M.; Huang, J.; Yuan, J. The soil-water flow system beneath a cotton field in arid north-west China, serviced by mulched drip irrigation using brackish water. Hydrogeol. J. 2015, 23, 35–46. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.F.; Xiong, S.Y.; Zhang, R.X. The spatial variability of soil water content in the potato field before and after spray irrigation in arid northwestern China. Water Sci. Technol.-Water Supply 2020, 20, 860–870. [Google Scholar] [CrossRef]
- Li, B.; Shi, B.J.; Yao, Z.Z.; Shukla, M.K.; Du, T.S. Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems. Agric. Water Manag. 2020, 234, 106096. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, S.; Qin, S.J.; Guo, H.; Yang, D.N.; Lam, H.M. How can drip irrigation save water and reduce evapotranspiration compared to border irrigation in arid regions in northwest China. Agric. Water Manag. 2020, 239, 106256. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wu, Q.; Fan, B.H.; Zheng, X.R.; Zhang, J.Z.; Li, W.H.; Guo, L. Effects of mulching biodegradable films under drip irrigation on soil hydrothermal conditions and cotton (Gossypium hirsutum L.) yield. Agric. Water Manag. 2019, 213, 477–485. [Google Scholar] [CrossRef]
- Chen, W.; Hou, Z.; Wu, L.; Liang, Y.; Wei, C. Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. Agric. Water Manag. 2010, 97, 2001–2008. [Google Scholar] [CrossRef]
- He, W.S.; Liu, Y.C.; He, J.Y. Relationships between soluble salt content and electrical conductivity for different types of salt-affected soils in Ningxia. Agric. Res. Arid. Areas 2010, 28, 111–116. [Google Scholar]
- Zhang, Y.; Wang, L.H.; Sun, S.M.; Chen, X.L.; Liang, Y.J.; Hu, S.J. Indexes of salt tolerance of cotton in Akesu river irrigation district. Sci. Agric. Sin. 2011, 44, 2051–2059. [Google Scholar]
- Liu, M.X.; Yang, J.S.; Li, X.M.; Liu, G.M.; Yu, M.; Wang, J. Distribution and dynamics of soil water and salt under different drip irrigation regimes in northwest China. Irrig. Sci. 2013, 31, 675–688. [Google Scholar] [CrossRef]
- Dong, H.Z.; Li, W.J.; Tang, W.; Zhang, D.M. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crops Res. 2009, 111, 269–275. [Google Scholar] [CrossRef]
- Wang, Z.M.; Jin, M.G.; Simunek, J.; van Genuchten, M.T. Evaluation of mulched drip irrigation for cotton in arid Northwest China. Irrig. Sci. 2014, 32, 15–27. [Google Scholar] [CrossRef]
- Chen, X.P.; Qi, Z.M.; Gui, D.W.; Sima, M.W.; Zeng, F.J.; Li, L.H.; Li, X.Y.; Gu, Z. Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate. Agric. Water Manag. 2020, 234, 106139. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Khan, A.; Tan DK, Y.; Luo, H.H. Rational water and nitrogen management improves root growth, increases yield and maintains water use efficiency of cotton under mulch drip irrigation. Front. Plant Sci. 2017, 8, 912. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Liu, H.G.; He, X.L.; Gong, P.; Lin, E. Water-Nitrogen coupling and multi-objective optimization of cotton under mulched drip irrigation in arid Northwest China. Agronomy 2019, 9, 894. [Google Scholar] [CrossRef]
- Wang, H.D.; Wu, L.F.; Cheng, M.H.; Fan, J.L.; Zhang, F.C.; Zou, Y.F.; Chau, H.W.; Gao, Z.J.; Wang, X.K. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China. Field Crops Res. 2018, 219, 169–179. [Google Scholar] [CrossRef]
- Chen, Z.K.; Niu, Y.P.; Zhao, R.H.; Han, C.L.; Han, H.Y.; Luo, H.H. The combination of limited irrigation and high plant density optimizes canopy structure and improves the water use efficiency of cotton. Agric. Water Manag. 2019, 218, 139–148. [Google Scholar] [CrossRef]
- Yang, P.N.; Zia-Khan, S.; Wei, G.H.; Zhong, R.S.; Aguila, M. Winter irrigation effects in cotton fields in arid inland irrigated areas in the North of the Tarim Basin, China. Water 2016, 8, 47. [Google Scholar] [CrossRef]
- Li, X.W.; Jin, M.G.; Yuan, J.J.; Huang, J.O. Evaluation of soil salts leaching in cotton field after mulched drip irrigation with brackish water by freshwater flooding. J. Hydraul. Eng. 2014, 45, 1091–1098. [Google Scholar]
- Fan, W.; Zhou, J.L.; Zhou, Y.H.; Zeng, Y.Y.; Chen, Y.F.; Sun, Y. Water quality and health risk assessment of shallow groundwater in the southern margin of the Tarim Basin in Xinjiang, P.R. China. Hum. Ecol. Risk Assess. 2020, 5, 483–503. [Google Scholar]
- Liu, H.R.; Feng, J.P.; Liu, H.G. Effect of periodic winter irrigation on salinity and economic benefit of cotton field under mulched drip irrigation in Xinjiang. J. Arid. Land Resour. Environ. 2022, 36, 194–201. [Google Scholar]
- Liu, Z.P.; Jiao, X.Y.; Lu, S.H.; Zhu, C.L.; Zhai, Y.M.; Guo, W.H. Effects of winter irrigation on soil salinity and jujube growth in arid regions. PLoS ONE 2019, 14, e0218622. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Hudan, T.; Yang, P.N.; Li, H.; Zhu, D.Q.; Zhao, Y.C. Influence of different spring irrigation scheduling on moisture and salinity change rules in cotton field with different salinity. Water Sav. Irrig. 2014, 4, 7–10. [Google Scholar]
- Fu, Q.; Hou, R.; Li, T.; Ma, Z.; Peng, L. Soil moisture-heat transfer and its action mechanism of freezing and thawing soil. Trans. Chin. Soc. Agric. Mach. 2016, 47, 99–110. [Google Scholar]
- Jame, Y.W.; Norum, D.I. Heat and mass transfer in a freezing unsaturated porous medium. Water Resour. Res. 1980, 16, 811–819. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, S.J. Mechanism of freeze-thaw action in the process of soil salinization in northeast China. Environ. Geol. 2001, 41, 96–100. [Google Scholar] [CrossRef]
- Bing, H.; He, P.; Zhang, Y. Cyclic freeze–thaw as a mechanism for water and salt migration in soil. Environ. Earth Sci. 2015, 74, 675–681. [Google Scholar] [CrossRef]
- Padilla, F.; Villeneuve, J.P. Modeling and experimental studies of frost heave including solute effects. Cold Reg. Sci. Technol. 1992, 20, 183–194. [Google Scholar] [CrossRef]
- Jin, Z.F.; Hudan, T.; Mu, H.C.; Jiang, M.; Li, W.J. Soil water and salt migration in cotton field under soil freezing-thawing temperature. Arid. Zone Res. 2013, 30, 623–627. [Google Scholar]
- Perfect, E.; Williams, P.J. Thermally induced water migration in frozen soils. Cold Reg. Sci. Technol. 1980, 3, 101–109. [Google Scholar] [CrossRef]
- Zikalala, P.; Kisekka, I.; Grismer, M. Calibration and global sensitivity analysis for a salinity model used in evaluating fields irrigated with treated wastewater in the Salinas valley. Agriculture 2019, 9, 31. [Google Scholar] [CrossRef]
- Hanson, B.R.; Grattan, S.R.; Fulton, A. Agricultural Salinity and Drainage; University of California: Davis, CA, USA, 2006; Volume 3375. [Google Scholar]
- Ponnamperuma, F.N. Effects of Flooding on Soils; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Du, L.; Zheng, Z.C.; Li, T.X.; Li, W. Effects of water and salt transport in different level of secondary salinization of soil under greenhouse irrigation. J. Soil Water Conserv. 2014, 27, 183–189. [Google Scholar]
- Peng, Z.Y.; Huang, J.S.; Wu, J.W.; Abudu, A. Salt movement of seasonal freezing-thawing soil under autumn irrigation condition. Trans. Chin. Soc. Agric. Eng. 2012, 28, 77–81. [Google Scholar]
- Hou, R.; Li, T.; Fu, Q.; Liu, D.; Li, M.; Zhou, Z.; Li, L.; Yan, J. Characteristics of water–heat variation and the transfer relationship in sandy loam under different conditions. Geoderma 2019, 340, 259–268. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, F.; Ma, F.; Chai, X.; Zhang, S. Spatiotemporal changes in soil salinity in a drip-irrigated field. Geoderma 2009, 149, 243–248. [Google Scholar] [CrossRef]
- Leib, B.G.; Caspari, H.W.; Redulla, C.A.; Andrews, P.K.; Jabro, J.J. Partial rootzone drying and deficit irrigation of ‘Fuji’ apples in a semi-arid climate. Irrig. Sci. 2006, 24, 85–99. [Google Scholar] [CrossRef]
- Gowing, J.W.; Rose, D.A.; Ghamarnia, H. The effect of salinity on water productivity of wheat under deficit irrigation above shallow groundwater. Agric. Water Manag. 2009, 96, 517–524. [Google Scholar] [CrossRef]
- Aslam, M.; Maqbool, M.A.; Zaman, Q.U.; Shahid, M.; Saeed, A. Full length article comparison of different tolerance indices and PCA biplot analysis for assessment of salinity tolerance in Lentil (Lens culinaris) genotypes. Int. J. Agric. Biol. 2017, 19, 470–478. [Google Scholar] [CrossRef]
- Li, K.J.; Ma, J.Y.; Cao, C.Y.; Zheng, C.L.; Niu, Y.J. Effect of irrigation water salt content on cotton growth and yield. Chin. J. Eco-Agric. 2011, 19, 312–317. [Google Scholar] [CrossRef]
- Lou, S.W.; Tuoheti, A.; Sidikejiang, A.; Ma, T.F.; Bian, Y.; Paerhti, M.; Zhang, P.Z. Soil temperature at seedling stage:effect on early growth process of cotton. Chin. Agric. Sci. Bull. 2018, 34, 13–16. [Google Scholar]
- Zhang, H.; Yang, P.; Wang, C. Effect of winter irrigation amount on soil moisture and salt distribution in arid area. J. Irrig. Drain. 2016, 35, 42–46. [Google Scholar]
- Fan, J.C.; Lu, X.J.; Gu, S.H.; Guo, X.Y. Improving nutrient and water use efficiencies using water-drip irrigation and fertilization technology in Northeast China. Agric. Water Manag. 2020, 241, 106352. [Google Scholar] [CrossRef]
- Liang, J.P.; He, Z.J.; Shi, W.J. Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China. Agric. Water Manag. 2020, 240, 106277. [Google Scholar] [CrossRef]
Soil Layer (cm) | Soil Particle Distribution (%) | Bulk Density (g/cm3) | Soil Porosity (%) | Soil Texture | PH | ||
---|---|---|---|---|---|---|---|
Clay (<0.002 mm) | Silt (0.002–0.02 mm) | Sand (2–0.02 mm) | |||||
Mild saline-alkali farmland | |||||||
0–20 | 11.1 | 32.2 | 56.7 | 1.37 | 47.53 | Sandy loamy | 7.4–8.9 |
20–40 | 8.9 | 32.8 | 58.3 | 1.42 | 45.69 | Sandy loamy | |
40–60 | 11.2 | 35.4 | 53.4 | 1.48 | 42.31 | Sandy loamy | |
60–80 | 10.5 | 42.4 | 47.1 | 1.53 | 41.98 | Loamy | |
80–100 | 13.7 | 55.7 | 30.6 | 1.55 | 41.91 | Loamy | |
Moderate saline-alkali farmland | |||||||
0–20 | 12.7 | 34.4 | 52.9 | 1.38 | 48.30 | Sandy loamy | 7.7–10.2 |
20–40 | 13.9 | 30.9 | 55.2 | 1.45 | 46.42 | Sandy loamy | |
40–60 | 17.7 | 34.6 | 47.7 | 1.50 | 44.15 | Loamy | |
60–80 | 24.8 | 32.6 | 42.6 | 1.52 | 42.91 | Loamy | |
80–100 | 21.8 | 37.4 | 40.8 | 1.58 | 42.59 | Loamy |
Treatment | Initial Salt Storage (8 November 2018) (g/cm2) | Final Salt Storage (6 April 2020) (g/cm2) | Variation in Salt Storage (g/cm2) | RSC (%) |
---|---|---|---|---|
S1W1 | 0.41 c | 0.54 e | 0.13 b | 31.71 a |
S1W2 | 0.40 c | 0.39 f | −0.01 d | −2.50 c |
S1W3 | 0.40 c | 0.36 g | −0.04 e | −10.00 e |
S1W4 | 0.38 c | 0.34 h | −0.04 e | −10.53 f |
S1W5 | 0.39 c | 0.33 h | −0.06 f | −15.38 g |
S2W1 | 1.04 a | 1.37 a | 0.33 a | 31.73 a |
S2W2 | 0.90 b | 1.01 b | 0.11 c | 12.22 b |
S2W3 | 0.86 bc | 0.78 c | −0.08 g | −9.30 d |
S2W4 | 0.89 bc | 0.69 d | −0.20 i | −22.47 i |
S2W5 | 0.89 bc | 0.74 cd | −0.15 h | −16.85 h |
Treatment | 2019 | 2020 | ||
---|---|---|---|---|
Sprouting Rate | Survival Rate | Sprouting Rate | Survival Rate | |
S1W1 | 55.9 c | 96.1 a | 53.4 c | 94.0 a |
S1W2 | 85.3 bc | 95.4 a | 86.2 b | 97.8 a |
S1W3 | 92.3 a | 96.8 a | 92.3 a | 96.3 a |
S1W4 | 92.1 a | 95.3 a | 93.8 a | 96.4 a |
S1W5 | 91.7 a | 96.1 a | 92.2 a | 96.1 a |
S2W1 | 44.2 d | 75.8 c | 40.6 d | 86.0 b |
S2W2 | 71.3 c | 87.1 b | 76.4 c | 88.4 b |
S2W3 | 77.4 bc | 88.7 ab | 81.8 bc | 90.7 ab |
S2W4 | 89.6 a | 87.0 a | 90.6 a | 93.7 a |
S2W5 | 85.5 a | 86.8 a | 87.2 b | 89.3 b |
Treatment | 2019 | 2020 | ||||
---|---|---|---|---|---|---|
Height/cm | Boll Number/(per Plant) | Yield/(kg/hm2) | Height/cm | Boll Number/(per Plant) | Yield/(kg/hm2) | |
S1W1 | 65.34 c | 5.2 c | 2742.49 c | 62.37 c | 5.4 c | 2661.15 c |
S1W2 | 77.71 b | 7.6 b | 6071.79 b | 79.32 b | 7.7 b | 6372.98 b |
S1W3 | 81.54 a | 8.0 a | 7017.35 a | 80.68 a | 8.0 a | 6981.10 a |
S1W4 | 82.82 a | 8.1 a | 7065.98 a | 81.54 a | 8.1 a | 7190.69 a |
S1W5 | 81.73 a | 8.1 a | 7007.83 a | 80.77 a | 8.0 a | 6959.05 a |
S2W1 | 57.21 d | 4.5 c | 1480.16 e | 51.11 c | 4.2 d | 1439.73 e |
S2W2 | 62.34 c | 5.7 b | 3475.27 d | 65.33 b | 5.8 c | 3845.74 d |
S2W3 | 67.55 b | 6.1 ab | 4111.50 c | 68.72 b | 6.2 b | 4516.04 c |
S2W4 | 71.63 a | 6.3 a | 4812.20 a | 75.45 a | 6.7 a | 5584.04 a |
S2W5 | 70.71 a | 6.3 a | 4590.21 b | 72.54 ab | 6.5 a | 4969.21 b |
Treatment | 2018–2019 | 2019–2020 | ||||||
---|---|---|---|---|---|---|---|---|
Winter Irrigation Amount (mm) | Irrigation Amount in the Growth Period (mm) | WUE (kg/m3·mm) | Winter Irrigation Amount (mm) | Irrigation Amount in the Growth Period (mm) | WUE (kg/m3·mm) | |||
iWUE | IWUE | iWUE | IWUE | |||||
S1W1 | 0 | 475 | 0.58 c | 0.58 d | 0 | 475 | 0.56 c | 0.56 d |
S1W2 | 150 | 475 | 1.28 b | 0.97 ab | 150 | 475 | 1.34 b | 1.02 a |
S1W3 | 225 | 475 | 1.48 a | 1.00 a | 225 | 475 | 1.47 a | 1.02 a |
S1W4 | 300 | 475 | 1.49 a | 0.91 b | 300 | 475 | 1.51 a | 0.93 b |
S1W5 | 375 | 475 | 1.48 a | 0.82 c | 375 | 475 | 1.47 a | 0.82 c |
S2W1 | 0 | 475 | 0.31 d | 0.31 c | 0 | 475 | 0.30 e | 0.30 d |
S2W2 | 150 | 475 | 0.73 c | 0.56 b | 150 | 475 | 0.81 d | 0.62 b |
S2W3 | 225 | 475 | 0.87 b | 0.59 ab | 225 | 475 | 0.95 c | 0.65 b |
S2W4 | 300 | 475 | 1.01 a | 0.62 a | 300 | 475 | 1.18 a | 0.72 a |
S2W5 | 375 | 475 | 0.97 ab | 0.54 b | 375 | 475 | 1.05 b | 0.58 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Li, M.; Li, Q. The Influence of Winter Irrigation Amount on the Characteristics of Water and Salt Distribution and WUE in Different Saline-Alkali Farmlands in Northwest China. Sustainability 2023, 15, 15428. https://doi.org/10.3390/su152115428
Chen W, Li M, Li Q. The Influence of Winter Irrigation Amount on the Characteristics of Water and Salt Distribution and WUE in Different Saline-Alkali Farmlands in Northwest China. Sustainability. 2023; 15(21):15428. https://doi.org/10.3390/su152115428
Chicago/Turabian StyleChen, Wenjuan, Mingsi Li, and Qinglin Li. 2023. "The Influence of Winter Irrigation Amount on the Characteristics of Water and Salt Distribution and WUE in Different Saline-Alkali Farmlands in Northwest China" Sustainability 15, no. 21: 15428. https://doi.org/10.3390/su152115428
APA StyleChen, W., Li, M., & Li, Q. (2023). The Influence of Winter Irrigation Amount on the Characteristics of Water and Salt Distribution and WUE in Different Saline-Alkali Farmlands in Northwest China. Sustainability, 15(21), 15428. https://doi.org/10.3390/su152115428