Sustainable Approaches for Wastewater Treatment: An Analysis of Sludge-Based Materials for Heavy Metal Removal from Wastewater by Adsorption
Abstract
:1. Introduction
2. Sludge-Based Adsorbents for Heavy Metal Removal from Wastewater
2.1. Industrial Sludge
2.2. Drinking Water Treatment Plant Sludge
2.3. Agricultural Sludge
2.4. Sewage Sludge
3. Physicochemical Properties of Sludge-Based Adsorbents
4. Factors Affecting the Adsorption Process
4.1. Effect of pH on Adsorption of Heavy Metals
4.2. Effect of Temperature on Adsorption
Adsorption Thermodynamics
4.3. Effect of Initial Metal Ion Concentration on Adsorption
4.3.1. Adsorption Isotherm Models
Langmuir Isotherm Model
Freundlich Isotherm Model
4.4. Effect of Contact Time on Adsorption
4.4.1. Adsorption Kinetic Models
Pseudo-First-Order Model
Pseudo-Second-Order Model
4.5. Effect of Adsorbent Dose on Adsorption
5. Regeneration of Sludge-Based Adsorbents
5.1. Regeneration by Acid Treatment
5.2. Regeneration by Bases
5.3. Other Regeneration Methods
6. Way Forward
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aljerf, L. Data of Thematic Analysis of Farmer׳s Use Behavior of Recycled Industrial Wastewater. Data Br. 2018, 21, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.B.; Baumgartner, D.J.; Gerba, C.P.; Fitzsimmons, K. Surface Water Pollution. In Environmental and Pollution Science; Elsevier: Amsterdam, The Netherlands, 2019; pp. 261–292. [Google Scholar]
- Dharwal, M.; Parashar, D.; Shehu Shuaibu, M.; Garba Abdullahi, S.; Abubakar, S.; Baba Bala, B. Water Pollution: Effects on Health and Environment of Dala LGA, Nigeria. Mater. Today Proc. 2022, 49, 3036–3039. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Z. Industrial Water Pollution, Water Environment Treatment, and Health Risks in China. Environ. Pollut. 2016, 218, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Mokhena, T.C.; Matabola, K.P.; Mokhothu, T.H.; Mtibe, A.; Mochane, M.; Ndlovu, G.; Andrew, J.E. Electrospun Carbon Nanofibres: Preparation, Characterization and Application for Adsorption of Pollutants from Water and Air. Sep. Purif. Technol. 2022, 288, 120666. [Google Scholar] [CrossRef]
- Kumwimba, M.N.; Meng, F.; Iseyemi, O.; Moore, M.T.; Zhu, B.; Tao, W.; Liang, T.J.; Ilunga, L. Removal of Non-Point Source Pollutants from Domestic Sewage and Agricultural Runoff by Vegetated Drainage Ditches (VDDs): Design, Mechanism, Management Strategies, and Future Directions. Sci. Total Environ. 2018, 639, 742–759. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Hemmati, A.; Majidi, M.R.; Eyvazi, S.; Jahanban-Esfahlan, A.; Baradaran, B.; Adlpour-Azar, R.; Mokhtarzadeh, A.; de la Guardia, M. Recent Advances on Portable Sensing and Biosensing Assays Applied for Detection of Main Chemical and Biological Pollutant Agents in Water Samples: A Critical Review. TrAC Trends Anal. Chem. 2021, 143, 116344. [Google Scholar] [CrossRef]
- Wasewar, K.L.; Singh, S.; Kansal, S.K. Process Intensification of Treatment of Inorganic Water Pollutants. In Inorganic Pollutants in Water; Elsevier: Amsterdam, The Netherlands, 2020; pp. 245–271. [Google Scholar]
- Zhang, K.; Shi, H.; Peng, J.; Wang, Y.; Xiong, X.; Wu, C.; Lam, P.K.S. Microplastic Pollution in China’s Inland Water Systems: A Review of Findings, Methods, Characteristics, Effects, and Management. Sci. Total Environ. 2018, 630, 1641–1653. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, P.; Gojenko, B.; Yu, J.; Wei, L.; Luo, D.; Xiao, T. A Review of Water Pollution Arising from Agriculture and Mining Activities in Central Asia: Facts, Causes and Effects. Environ. Pollut. 2021, 291, 118209. [Google Scholar] [CrossRef]
- Xu, H.; Gao, Q.; Yuan, B. Analysis and Identification of Pollution Sources of Comprehensive River Water Quality: Evidence from Two River Basins in China. Ecol. Indic. 2022, 135, 108561. [Google Scholar] [CrossRef]
- Aljerf, L. High-Efficiency Extraction of Bromocresol Purple Dye and Heavy Metals as Chromium from Industrial Effluent by Adsorption onto a Modified Surface of Zeolite: Kinetics and Equilibrium Study. J. Environ. Manag. 2018, 225, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Li, J. Environmental Effects of Heavy Metals Derived from the E-Waste Recycling Activities in China: A Systematic Review. Waste Manag. 2014, 34, 2587–2594. [Google Scholar] [CrossRef]
- Rizk, R.; Juzsakova, T.; Ben Ali, M.; Rawash, M.A.; Domokos, E.; Hedfi, A.; Almalki, M.; Boufahja, F.; Shafik, H.M.; Rédey, Á. Comprehensive Environmental Assessment of Heavy Metal Contamination of Surface Water, Sediments and Nile Tilapia in Lake Nasser, Egypt. J. King Saud Univ.—Sci. 2022, 34, 101748. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Chen, H.; Liu, L.; Liu, C.; Teng, Y. An Integrated Multidisciplinary-Based Framework for Characterizing Environmental Risks of Heavy Metals and Their Effects on Antibiotic Resistomes in Agricultural Soils. J. Hazard. Mater. 2022, 426, 128113. [Google Scholar] [CrossRef] [PubMed]
- Sewwandi, B.G.N.; Wijesekara, S.S.R.M.D.H.; Rajapaksha, A.; Mowjood, M.I.M.; Vithanage, M. Risk of Soil and Water Pollution by Heavy Metals in Landfill Leachate. In Proceedings of the 12th Annual Conference of Thai Society of Agricultural Engineering “International Conference on Agricultural Engineering” (Novelty, Clean and Sustainable) Chon-Chan Pattaya Resort, Chonburi, Thailand, 31 March–1 April 2011. [Google Scholar]
- Adamcová, D.; Radziemska, M.; Ridošková, A.; Bartoň, S.; Pelcová, P.; Elbl, J.; Kynický, J.; Brtnický, M.; Vaverková, M.D. Environmental Assessment of the Effects of a Municipal Landfill on the Content and Distribution of Heavy Metals in Tanacetum Vulgare L. Chemosphere 2017, 185, 1011–1018. [Google Scholar] [CrossRef]
- Chen, Y.-G.; He, X.-L.-S.; Huang, J.-H.; Luo, R.; Ge, H.-Z.; Wołowicz, A.; Wawrzkiewicz, M.; Gładysz-Płaska, A.; Li, B.; Yu, Q.-X.; et al. Impacts of Heavy Metals and Medicinal Crops on Ecological Systems, Environmental Pollution, Cultivation, and Production Processes in China. Ecotoxicol. Environ. Saf. 2021, 219, 112336. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Vieira, R.; Luzio, A.; Félix, L. Zebrafish Early Life Stages for Toxicological Screening: Insights From Molecular and Biochemical Markers. Adv. Mol. Toxicol. 2018, 12, 151–179. [Google Scholar]
- Fu, Z.; Xi, S. The Effects of Heavy Metals on Human Metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Alabi, A.O.; Bakare, A.A. Genetic Damage Induced by Electronic Waste Leachates and Contaminated Underground Water in Two Prokaryotic Systems. Toxicol. Mech. Methods 2017, 27, 657–665. [Google Scholar] [CrossRef]
- Schoof, R.A. How Will New USEPA Guidance Affect Research on the Bioavailability of Metals in Soil? Hum. Ecol. Risk Assess. An Int. J. 2008, 14, 1–4. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological Trends in Heavy Metals Removal from Industrial Wastewater: A Review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Kaabi, M.A.; Ashfaq, M.Y.; Da’na, D.A. Produced Water Characteristics, Treatment and Reuse: A Review. J. Water Process Eng. 2019, 28, 222–239. [Google Scholar] [CrossRef]
- Saleh, T.A.; Mustaqeem, M.; Khaled, M. Water Treatment Technologies in Removing Heavy Metal Ions from Wastewater: A Review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100617. [Google Scholar] [CrossRef]
- Liu, Z.; Haddad, M.; Sauvé, S.; Barbeau, B. Alleviating the Burden of Ion Exchange Brine in Water Treatment: From Operational Strategies to Brine Management. Water Res. 2021, 205, 117728. [Google Scholar] [CrossRef] [PubMed]
- Muhamad, I.I.; Pa’e, N.; Yusof, A.H.M. Bacterial Nanocellulose and Its Application in Wastewater Treatment. In Sustainable Nanocellulose and Nanohydrogels from Natural Sources; Elsevier: Amsterdam, The Netherlands, 2020; pp. 299–314. [Google Scholar]
- Kyzas, G.; Matis, K. Flotation in Water and Wastewater Treatment. Processes 2018, 6, 116. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, W.; Wen, S.; Wang, H.; Zhao, W.; Han, G. Flotation of Copper Oxide Minerals: A Review. Int. J. Min. Sci. Technol. 2022, 32, 1351–1364. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.-H.; Show, P.L. A Review on Conventional and Novel Materials towards Heavy Metal Adsorption in Wastewater Treatment Application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Devi, P.; Saroha, A.K. Improvement in Performance of Sludge-Based Adsorbents by Controlling Key Parameters by Activation/Modification: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1704–1743. [Google Scholar] [CrossRef]
- Cossu, R.; Ehrig, H.-J.; Muntoni, A. Physical–Chemical Leachate Treatment. In Solid Waste Landfilling; Elsevier: Amsterdam, The Netherlands, 2018; pp. 575–632. [Google Scholar]
- Hussain, A.; Madan, S.; Madan, R. Removal of Heavy Metals from Wastewater by Adsorption. In Heavy Metals—Their Environmental Impacts and Mitigation; IntechOpen: London, UK, 2021. [Google Scholar]
- Ince, M.; Kaplan İnce, O. An Overview of Adsorption Technique for Heavy Metal Removal from Water/Wastewater: A Critical Review. Int. J. Pure Appl. Sci. 2017, 3, 10–19. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S. Application of Adsorption Process for Effective Removal of Emerging Contaminants from Water and Wastewater. Environ. Pollut. 2021, 280, 116995. [Google Scholar] [CrossRef] [PubMed]
- Sounthararajah, D.; Loganathan, P.; Kandasamy, J.; Vigneswaran, S. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon. Int. J. Environ. Res. Public Health 2015, 12, 10475–10489. [Google Scholar] [CrossRef] [PubMed]
- Eeshwarasinghe, D.; Loganathan, P.; Vigneswaran, S. Simultaneous Removal of Polycyclic Aromatic Hydrocarbons and Heavy Metals from Water Using Granular Activated Carbon. Chemosphere 2019, 223, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and Non-Conventional Adsorbents for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Hegazi, H.A. Removal of Heavy Metals from Wastewater Using Agricultural and Industrial Wastes as Adsorbents. HBRC J. 2013, 9, 276–282. [Google Scholar] [CrossRef]
- Khan, A.A.; Mondal, M. Low-Cost Adsorbents, Removal Techniques, and Heavy Metal Removal Efficiency. In New Trends in Removal of Heavy Metals from Industrial Wastewater; Elsevier: Amsterdam, The Netherlands, 2021; pp. 83–103. [Google Scholar]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.; Babel, S. Comparisons of Low-Cost Adsorbents for Treating Wastewaters Laden with Heavy Metals. Sci. Total Environ. 2006, 366, 409–426. [Google Scholar] [CrossRef]
- Renu; Agarwal, M.; Singh, K. Heavy Metal Removal from Wastewater Using Various Adsorbents: A Review. J. Water Reuse Desalin. 2017, 7, 387–419. [Google Scholar] [CrossRef]
- Iwuozor, K.O.; Emenike, E.C.; Aniagor, C.O.; Iwuchukwu, F.U.; Ibitogbe, E.M.; Okikiola, T.B.; Omuku, P.E.; Adeniyi, A.G. Removal of Pollutants from Aqueous Media Using Cow Dung-Based Adsorbents. Curr. Res. Green Sustain. Chem. 2022, 5, 100300. [Google Scholar] [CrossRef]
- Uddin, M.K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the Past Decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Soliman, N.K.; Moustafa, A.F. Industrial Solid Waste for Heavy Metals Adsorption Features and Challenges; a Review. J. Mater. Res. Technol. 2020, 9, 10235–10253. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. Industrial Wastes as Low-Cost Potential Adsorbents for the Treatment of Wastewater Laden with Heavy Metals. Adv. Colloid Interface Sci. 2011, 166, 36–59. [Google Scholar] [CrossRef]
- Lim, A.P.; Aris, A.Z. A Review on Economically Adsorbents on Heavy Metals Removal in Water and Wastewater. Rev. Environ. Sci. Bio/Technol. 2014, 13, 163–181. [Google Scholar] [CrossRef]
- Bilal, M.; Ihsanullah, I.; Younas, M.; Ul Hassan Shah, M. Recent Advances in Applications of Low-Cost Adsorbents for the Removal of Heavy Metals from Water: A Critical Review. Sep. Purif. Technol. 2021, 278, 119510. [Google Scholar] [CrossRef]
- Stefanakis, A.; Akratos, C.S.; Tsihrintzis, V.A. General Aspects of Sludge Management. In Vertical Flow Constructed Wetlands; Elsevier: Amsterdam, The Netherlands, 2014; pp. 181–189. [Google Scholar]
- Geethakarthi, A.; Phanikumar, B.R. Characterization of Tannery Sludge Activated Carbon and Its Utilization in the Removal of Azo Reactive Dye. Environ. Sci. Pollut. Res. 2012, 19, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhu, Y.; Shan, R.; Shao, Y.; Tian, C. Heavy Metals in Sludge during Anaerobic Sanitary Landfill: Speciation Transformation and Phytotoxicity. J. Environ. Manag. 2017, 189, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Kelessidis, A.; Stasinakis, A.S. Comparative Study of the Methods Used for Treatment and Final Disposal of Sewage Sludge in European Countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef]
- Scholz, M. Sludge Treatment and Disposal. In Wetlands for Water Pollution Control; Elsevier: Amsterdam, The Netherlands, 2016; pp. 157–168. [Google Scholar]
- Sharma, M.; Yadav, A.; Mandal, M.K.; Pandey, S.; Pal, S.; Chaudhuri, H.; Chakrabarti, S.; Dubey, K.K. Wastewater Treatment and Sludge Management Strategies for Environmental Sustainability. In Circular Economy and Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 97–112. [Google Scholar]
- Matichenkov, V.; Bocharnikova, E. Utilization of Sludge as Manure. In Environmental Materials and Waste; Elsevier: Amsterdam, The Netherlands, 2016; pp. 213–220. [Google Scholar]
- Tyagi, V.K.; Lo, S.-L. Energy and Resource Recovery From Sludge. In Environmental Materials and Waste; Elsevier: Amsterdam, The Netherlands, 2016; pp. 221–244. [Google Scholar]
- Zhao, L.; Sun, Z.F.; Pan, X.W.; Tan, J.Y.; Yang, S.S.; Wu, J.T.; Chen, C.; Yuan, Y.; Ren, N.Q. Sewage Sludge Derived Biochar for Environmental Improvement: Advances, Challenges, and Solutions. Water Res. X 2023, 18, 100167. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Laskar, M.A.; Hewaidy, I.F.; Barakat, M.A. Modified Adsorbents for Removal of Heavy Metals from Aqueous Environment: A Review. Earth Syst. Environ. 2019, 3, 83–93. [Google Scholar] [CrossRef]
- Tran, T.H.; Tran, Q.M.; Le, T.V.; Pham, T.T.; Le, V.T.; Nguyen, M.K. Removal of Cu (II) by Calcinated Electroplating Sludge. Heliyon 2021, 7, e07092. [Google Scholar] [CrossRef]
- Peng, G.; Deng, S.; Liu, F.; Qi, C.; Tao, L.; Li, T.; Yu, G. Calcined Electroplating Sludge as a Novel Bifunctional Material for Removing Ni(II)-Citrate in Electroplating Wastewater. J. Clean. Prod. 2020, 262, 121416. [Google Scholar] [CrossRef]
- Du, X.; Cui, S.; Fang, X.; Wang, Q.; Liu, G. Adsorption of Cd(II), Cu(II), and Zn(II) by Granules Prepared Using Sludge from a Drinking Water Purification Plant. J. Environ. Chem. Eng. 2020, 8, 104530. [Google Scholar] [CrossRef]
- Cai, L.; Cui, L.; Lin, B.; Zhang, J.; Huang, Z. Advanced Treatment of Piggery Tail Water by Dual Coagulation with Na+ Zeolite and Mg/Fe Chloride and Resource Utilization of the Coagulation Sludge for Efficient Decontamination of Cd2+. J. Clean. Prod. 2018, 202, 759–769. [Google Scholar] [CrossRef]
- Lwin, C.M.; Maung, K.N.; Hashimoto, S. Future Sewage Sludge Generation and Sewer Pipeline Extension in Economically Developing ASEAN Countries. J. Mater. Cycles Waste Manag. 2015, 17, 290–302. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, G.; Wang, H. Current State of Sludge Production, Management, Treatment and Disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, Z.; Ma, W.; Fu, P. Evaluation of Pyrolysis Residue Derived by Oily Sludge on Removing Heavy Metals from Artificial Flotation Wastewater. S. Afr. J. Chem. Eng. 2020, 34, 82–89. [Google Scholar] [CrossRef]
- Nguyen, K.; Nguyen, B.; Nguyen, H.; Nguyen, H. Adsorption of Arsenic and Heavy Metals from Solutions by Unmodified Iron-Ore Sludge. Appl. Sci. 2019, 9, 619. [Google Scholar] [CrossRef]
- Zhu, S.; Lin, X.; Dong, G.; Yu, Y.; Yu, H.; Bian, D.; Zhang, L.; Yang, J.; Wang, X.; Huo, M. Valorization of Manganese-Containing Groundwater Treatment Sludge by Preparing Magnetic Adsorbent for Cu(II) Adsorption. J. Environ. Manag. 2019, 236, 446–454. [Google Scholar] [CrossRef]
- Lee, X.J.; Yan Zhang Hiew, B.; Chiew Lai, K.; Ting Tee, W.; Thangalazhy-Gopakumar, S.; Gan, S.; Yee Lee, L. Evaluation of Industrial Palm Oil Sludge as an Effective Green Adsorbing Substrate for Toxic Aqueous Cadmium Removal. Mater. Sci. Energy Technol. 2021, 4, 224–235. [Google Scholar] [CrossRef]
- Gu, H.; Lin, W.; Sun, S.; Wu, C.; Yang, F.; Ziwei, Y.; Chen, N.; Ren, J.; Zheng, S. Calcium Oxide Modification of Activated Sludge as a Low-Cost Adsorbent: Preparation and Application in Cd(II) Removal. Ecotoxicol. Environ. Saf. 2021, 209, 111760. [Google Scholar] [CrossRef]
- Li, L.Y.; Gong, X.D.; Abida, O. Waste-to-Resources: Exploratory Surface Modification of Sludge-Based Activated Carbon by Nitric Acid for Heavy Metal Adsorption. Waste Manag. 2019, 87, 375–386. [Google Scholar] [CrossRef]
- Geng, H.; Xu, Y.; Zheng, L.; Gong, H.; Dai, L.; Dai, X. An Overview of Removing Heavy Metals from Sewage Sludge: Achievements and Perspectives. Environ. Pollut. 2020, 266, 115375. [Google Scholar] [CrossRef]
- Sabir, A.; Altaf, F.; Batool, R.; Shafiq, M.; Khan, R.U.; Jacob, K.I. Agricultural Waste Absorbents for Heavy Metal Removal. In Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 195–228. [Google Scholar]
- Wołowiec, M.; Komorowska-Kaufman, M.; Pruss, A.; Rzepa, G.; Bajda, T. Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review. Minerals 2019, 9, 487. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, W.; Liu, Y.; Jia, H.; Zhou, J.; Wei, P.; Zhou, H. Bioleaching of Dewatered Electroplating Sludge for the Extraction of Base Metals Using an Adapted Microbial Consortium: Process Optimization and Kinetics. Hydrometallurgy 2020, 191, 105227. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, M.; Wu, X.; Ding, J.; Dai, L.; Xue, H.; Ye, X.; Chen, R.; Ding, R.; Liu, J.; et al. Recovery of Copper from Electroplating Sludge Using Integrated Bipolar Membrane Electrodialysis and Electrodeposition. J. Colloid Interface Sci. 2023, 642, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Wajima, T. A New Carbonaceous Adsorbent for Heavy Metal Removal from Aqueous Solution Prepared from Paper Sludge by Sulfur-Impregnation and Pyrolysis. Process Saf. Environ. Prot. 2017, 112, 342–352. [Google Scholar] [CrossRef]
- Hong, S.-H.; Lee, C.-G.; Park, S.-J. Removal of Cd2+, Cu2+, Pb2+, and Ni2+ by Sludge Produced from Liquid Crystal Display Glass Substrate. Int. J. Environ. Sci. Technol. 2022, 19, 6971–6980. [Google Scholar] [CrossRef]
- Lin, B.; Wang, J.; Huang, Q.; Chi, Y. Effects of Potassium Hydroxide on the Catalytic Pyrolysis of Oily Sludge for High-Quality Oil Product. Fuel 2017, 200, 124–133. [Google Scholar] [CrossRef]
- Lin, B.; Wang, J.; Huang, Q.; Ali, M.; Chi, Y. Aromatic Recovery from Distillate Oil of Oily Sludge through Catalytic Pyrolysis over Zn Modified HZSM-5 Zeolites. J. Anal. Appl. Pyrolysis 2017, 128, 291–303. [Google Scholar] [CrossRef]
- Yang, H.; Shen, K.; Fu, P.; Zhang, G. Preparation of a Novel Carbonaceous Material for Cr(VI) Removal in Aqueous Solution Using Oily Sludge of Tank Bottom as a Raw Material. J. Environ. Chem. Eng. 2019, 7, 102898. [Google Scholar] [CrossRef]
- Iakovleva, E.; Sillanpää, M. The Use of Low-Cost Adsorbents for Wastewater Purification in Mining Industries. Environ. Sci. Pollut. Res. 2013, 20, 7878–7899. [Google Scholar] [CrossRef]
- Senberber, F.T.; Yildirim, M.; Mermer, N.K.; Derun, E.M. Adsorption of Cr(III) from Aqueous Solution Using Borax Sludge. Acta Chim. Slov. 2017, 64, 654–660. [Google Scholar] [CrossRef]
- Yang, D.; Chu, Z.; Feng, X.; Ge, Q.; Wang, R.; Zhang, J.; Li, S.; Zheng, R.; Wei, W.; Yi, S.; et al. Dual Ions Neutralized and Stabilized Red Mud for Chromium(VI) Polluted Soil Remediation. ACS ES&T Eng. 2022, 2, 913–923. [Google Scholar] [CrossRef]
- Bai, B.; Bai, F.; Li, X.; Nie, Q.; Jia, X.; Wu, H. The Remediation Efficiency of Heavy Metal Pollutants in Water by Industrial Red Mud Particle Waste. Environ. Technol. Innov. 2022, 28, 102944. [Google Scholar] [CrossRef]
- Katrivesis, F.K.; Karela, A.D.; Papadakis, V.G.; Paraskeva, C.A. Revisiting of Coagulation-Flocculation Processes in the Production of Potable Water. J. Water Process Eng. 2019, 27, 193–204. [Google Scholar] [CrossRef]
- Matilainen, A.; Vepsäläinen, M.; Sillanpää, M. Natural Organic Matter Removal by Coagulation during Drinking Water Treatment: A Review. Adv. Colloid Interface Sci. 2010, 159, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Fedler, C.B. Adsorptive Removal of Pb2+ and Cu2+ from Stormwater by Using Water Treatment Residuals. Urban Water J. 2021, 18, 237–247. [Google Scholar] [CrossRef]
- Jiao, J.; Zhao, J.; Pei, Y. Adsorption of Co(II) from Aqueous Solutions by Water Treatment Residuals. J. Environ. Sci. 2017, 52, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Abba, A.B.; Saggai, S.; Touil, Y.; Al-Ansari, N.; Kouadri, S.; Nouasria, F.Z.; Najm, H.M.; Mashaan, N.S.; Eldirderi, M.M.A.; Khedher, K.M. Copper and Zinc Removal from Wastewater Using Alum Sludge Recovered from Water Treatment Plant. Sustainability 2022, 14, 9806. [Google Scholar] [CrossRef]
- Shahin, S.A.; Mossad, M.; Fouad, M. Evaluation of Copper Removal Efficiency Using Water Treatment Sludge. Water Sci. Eng. 2019, 12, 37–44. [Google Scholar] [CrossRef]
- Abo-El-Enein, S.A.; Shebl, A.; Abo El-Dahab, S.A. Drinking Water Treatment Sludge as an Efficient Adsorbent for Heavy Metals Removal. Appl. Clay Sci. 2017, 146, 343–349. [Google Scholar] [CrossRef]
- Siswoyo, E.; Qoniah, I.; Lestari, P.; Fajri, J.A.; Sani, R.A.; Sari, D.G.; Boving, T. Development of a Floating Adsorbent for Cadmium Derived from Modified Drinking Water Treatment Plant Sludge. Environ. Technol. Innov. 2019, 14, 100312. [Google Scholar] [CrossRef]
- Ghorpade, A.; Ahammed, M.M. Water Treatment Sludge for Removal of Heavy Metals from Electroplating Wastewater. Environ. Eng. Res. 2017, 23, 92–98. [Google Scholar] [CrossRef]
- Zubrytė, E.; Gefenienė, A.; Kaušpėdienė, D.; Ragauskas, R.; Binkienė, R.; Selskienė, A.; Pakštas, V. Fast Removal of Pb(II) and Cu(II) from Contaminated Water by Groundwater Treatment Waste: Impact of Sorbent Composition. Sep. Sci. Technol. 2020, 55, 2855–2868. [Google Scholar] [CrossRef]
- Lin, L.; Xu, X.; Papelis, C.; Xu, P. Innovative Use of Drinking Water Treatment Solids for Heavy Metals Removal from Desalination Concentrate: Synergistic Effect of Salts and Natural Organic Matter. Chem. Eng. Res. Des. 2017, 120, 231–239. [Google Scholar] [CrossRef]
- Kan, C.-C.; Ibe, A.H.; Rivera, K.K.P.; Arazo, R.O.; de Luna, M.D.G. Hexavalent Chromium Removal from Aqueous Solution by Adsorbents Synthesized from Groundwater Treatment Residuals. Sustain. Environ. Res. 2017, 27, 163–171. [Google Scholar] [CrossRef]
- Chong, H.L.H.; Idris, R.; Surugau, N. Preparation, Characterisation and Application of Palm Oil Mill Solid Waste as Sustainable Natural Adsorbent for the Removal of Heavy Metal. In Waste Management, Processing and Valorisation; Springer: Singapore, 2022; pp. 101–117. [Google Scholar]
- Goh, C.L.; Sethupathi, S.; Bashir, M.J.; Ahmed, W. Adsorptive Behaviour of Palm Oil Mill Sludge Biochar Pyrolyzed at Low Temperature for Copper and Cadmium Removal. J. Environ. Manag. 2019, 237, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Shen, M.; Huang, Z.; Chen, Z.; Chen, Z.; Lin, B.; Cui, L. Efficient Removal of Pb(II) through Recycled Biochar-Mineral Composite from the Coagulation Sludge of Swine Wastewater. Environ. Res. 2020, 190, 110014. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, Z.; Chen, Z.; Sun, J.; Gao, Y.; Wu, E. Resource Utilization of Swine Sludge to Prepare Modified Biochar Adsorbent for the Efficient Removal of Pb(II) from Water. J. Clean. Prod. 2020, 257, 120322. [Google Scholar] [CrossRef]
- Smith, K.M.; Fowler, G.D.; Pullket, S.; Graham, N.J.D. Sewage Sludge-Based Adsorbents: A Review of Their Production, Properties and Use in Water Treatment Applications. Water Res. 2009, 43, 2569–2594. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, C.; Hu, Z.; Zhou, Y.; Xiao, Y.; Wang, T. Pyrolysis of Sewage Sludge by Electromagnetic Induction: Biochar Properties and Application in Adsorption Removal of Pb(II), Cd(II) from Aqueous Solution. Waste Manag. 2019, 89, 48–56. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Poon, C.S. Recycling of Incinerated Sewage Sludge Ash as an Adsorbent for Heavy Metals Removal from Aqueous Solutions. J. Environ. Manag. 2019, 247, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-H.; Chen, Y.; Yang, Z.; Nagarajan, D.; Chang, J.-S.; Ren, N. High-Efficiency Removal of Lead from Wastewater by Biochar Derived from Anaerobic Digestion Sludge. Bioresour. Technol. 2017, 246, 142–149. [Google Scholar] [CrossRef]
- Yang, X.; Xu, G.; Yu, H. Removal of Lead from Aqueous Solutions by Ferric Activated Sludge-Based Adsorbent Derived from Biological Sludge. Arab. J. Chem. 2019, 12, 4142–4149. [Google Scholar] [CrossRef]
- Wang, J.; Cao, R.; He, D.; Saleem, A. Facile Preparation of Polyethyleneimine Modified Activated Sludge-Based Adsorbent for Hexavalent Chromium Removal from Aqueous Solution. Sep. Sci. Technol. 2021, 56, 498–506. [Google Scholar] [CrossRef]
- Li, J.; Xing, X.; Li, J.; Shi, M.; Lin, A.; Xu, C.; Zheng, J.; Li, R. Preparation of Thiol-Functionalized Activated Carbon from Sewage Sludge with Coal Blending for Heavy Metal Removal from Contaminated Water. Environ. Pollut. 2018, 234, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Nekooghadirli, R.; Taghizadeh, M.; Mahmoudi Alami, F. Adsorption of Pb(II) and Ni(II) From Aqueous Solution by a High-Capacity Industrial Sewage Sludge-Based Adsorbent. J. Dispers. Sci. Technol. 2016, 37, 786–798. [Google Scholar] [CrossRef]
- Khosravi, M.; Maddah, A.S.; Mehrdadi, N.; Bidhendi, G.N.; Baghdadi, M. Synthesis of TiO 2 /ZnO Electrospun Nanofibers Coated-Sewage Sludge Carbon for Adsorption of Ni(II), Cu(II), and COD from Aqueous Solutions and Industrial Wastewaters. J. Dispers. Sci. Technol. 2021, 42, 802–812. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, J.; Jin, Q.; Li, Z.; Zhang, X.; Chen, Y.; Zhang, S.; Chen, H. Sludge-Based Biochar Activation to Enhance Pb(II) Adsorption. Fuel 2019, 252, 101–108. [Google Scholar] [CrossRef]
- dos Reis, G.S.; Adebayo, M.A.; Lima, E.C.; Sampaio, C.H.; Prola, L.D.T. Activated Carbon from Sewage Sludge for Preconcentration of Copper. Anal. Lett. 2016, 49, 541–555. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, J.; Liu, L.; Song, K.; Wang, Q. Combined Physical and Chemical Activation of Sludge-Based Adsorbent Enhances Cr(Ⅵ) Removal from Wastewater. J. Clean. Prod. 2019, 238, 117904. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, J.; Jin, Q.; Zhang, X.; Yang, H.; Chen, Y.; Zhang, S.; Chen, H. Effect of Deashing on Activation Process and Lead Adsorption Capacities of Sludge-Based Biochar. Sci. Total Environ. 2020, 716, 137016. [Google Scholar] [CrossRef] [PubMed]
- Ahsaine, H.A.; Zbair, M.; El Haouti, R. Mesoporous Treated Sewage Sludge as Outstanding Low-Cost Adsorbent for Cadmium Removal. Desalin. Water Treat. 2017, 85, 330–338. [Google Scholar] [CrossRef]
- Sultana, M.; Rownok, M.H.; Sabrin, M.; Rahaman, M.H.; Alam, S.M.N. A Review on Experimental Chemically Modified Activated Carbon to Enhance Dye and Heavy Metals Adsorption. Clean. Eng. Technol. 2022, 6, 100382. [Google Scholar] [CrossRef]
- Song, J.; Messele, S.A.; Meng, L.; Huang, Z.; Gamal El-Din, M. Adsorption of Metals from Oil Sands Process Water (OSPW) under Natural PH by Sludge-Based Biochar/Chitosan Composite. Water Res. 2021, 194, 116930. [Google Scholar] [CrossRef]
- Luo, X.; Huang, Z.; Lin, J.; Li, X.; Qiu, J.; Liu, J.; Mao, X. Hydrothermal Carbonization of Sewage Sludge and In-Situ Preparation of Hydrochar/MgAl-Layered Double Hydroxides Composites for Adsorption of Pb(II). J. Clean. Prod. 2020, 258, 120991. [Google Scholar] [CrossRef]
- Huang, X.; Wei, D.; Zhang, X.; Fan, D.; Sun, X.; Du, B.; Wei, Q. Synthesis of Amino-Functionalized Magnetic Aerobic Granular Sludge-Biochar for Pb(II) Removal: Adsorption Performance and Mechanism Studies. Sci. Total Environ. 2019, 685, 681–689. [Google Scholar] [CrossRef]
- Saleem, A.; Wang, J.; Sun, T.; Sharaf, F.; Haris, M.; Lei, S. Enhanced and Selective Adsorption of Copper Ions from Acidic Conditions by Diethylenetriaminepentaacetic Acid-Chitosan Sewage Sludge Composite. J. Environ. Chem. Eng. 2020, 8, 104430. [Google Scholar] [CrossRef]
- Rashed, M.N.; Soltan, M.E.; Ahmed, M.M.; Abdou, A. Heavy Metals Removal from Wastewater by Adsorption on Modified Physically Activated Sewage Sludge. Arch. Org. Inorg. Chem. Sci. 2018, 1, 18–25. [Google Scholar] [CrossRef]
- Richter, M. Temperatures in the Tropics. In Tropical Forestry Handbook; Springer: Berlin/Heidelberg, Germany, 2016; pp. 343–361. [Google Scholar]
- Ong, D.C.; Pingul-Ong, S.M.B.; Kan, C.-C.; de Luna, M.D.G. Removal of Nickel Ions from Aqueous Solutions by Manganese Dioxide Derived from Groundwater Treatment Sludge. J. Clean. Prod. 2018, 190, 443–451. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Zhang, P.; Yang, L.; Xu, H.; Xi, G. Adsorption Characteristics of a Novel Ceramsite for Heavy Metal Removal from Stormwater Runoff. Chinese J. Chem. Eng. 2018, 26, 96–103. [Google Scholar] [CrossRef]
- Sewwandi, B.G.N.; Vithanage, M.; Wijesekara, S.S.R.M.D.H.R.; Mowjood, M.I.M.; Hamamoto, S.; Kawamoto, K. Adsorption of Cd(II) and Pb(II) onto Humic Acid–Treated Coconut (Cocos Nucifera) Husk. J. Hazard. Toxic Radioact. Waste 2014, 18, 04014001. [Google Scholar] [CrossRef]
- Li, Z.; Yu, D.; Wang, X.; Liu, X.; Xu, Z.; Wang, Y. A Novel Strategy of Tannery Sludge Disposal—Converting into Biochar and Reusing for Cr(VI) Removal from Tannery Wastewater. J. Environ. Sci. 2024, 138, 637–649. [Google Scholar] [CrossRef]
- Ebrahim Malool, M.; Keshavarz Moraveji, M.; Shayegan, J. Co-Hydrothermal Carbonization of Digested Sewage Sludge and Sugarcane Bagasse: Integrated Approach for Waste Management, Optimized Production, Characterization and Pb(II) Adsorption. Alex. Eng. J. 2023, 74, 79–105. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Sahoo, T.R.; Prelot, B. Adsorption Processes for the Removal of Contaminants from Wastewater. In Nanomaterials for the Detection and Removal of Wastewater Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 161–222. [Google Scholar]
- Ho, Y.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Hu, H.; Xu, K. Physicochemical Technologies for HRPs and Risk Control. In High-Risk Pollutants in Wastewater; Elsevier: Amsterdam, The Netherlands, 2020; pp. 169–207. [Google Scholar]
- Vakili, M.; Deng, S.; Cagnetta, G.; Wang, W.; Meng, P.; Liu, D.; Yu, G. Regeneration of Chitosan-Based Adsorbents Used in Heavy Metal Adsorption: A Review. Sep. Purif. Technol. 2019, 224, 373–387. [Google Scholar] [CrossRef]
- Tzou, Y.-M.; Wang, S.-L.; Hsu, L.-C.; Chang, R.-R.; Lin, C. Deintercalation of Li/Al LDH and Its Application to Recover Adsorbed Chromate from Used Adsorbent. Appl. Clay Sci. 2007, 37, 107–114. [Google Scholar] [CrossRef]
- Sud, D.; Mahajan, G.; Kaur, M. Agricultural Waste Material as Potential Adsorbent for Sequestering Heavy Metal Ions from Aqueous Solutions—A Review. Bioresour. Technol. 2008, 99, 6017–6027. [Google Scholar] [CrossRef] [PubMed]
- Lata, S.; Singh, P.K.; Samadder, S.R. Regeneration of Adsorbents and Recovery of Heavy Metals: A Review. Int. J. Environ. Sci. Technol. 2015, 12, 1461–1478. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, N.; Xing, C.; Cui, Q.; Sun, Q. The Adsorption, Regeneration and Engineering Applications of Biochar for Removal Organic Pollutants: A Review. Chemosphere 2019, 223, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Diao, Z.-H.; Du, J.-J.; Jiang, D.; Kong, L.-J.; Huo, W.-Y.; Liu, C.-M.; Wu, Q.-H.; Xu, X.-R. Insights into the Simultaneous Removal of Cr6+ and Pb2+ by a Novel Sewage Sludge-Derived Biochar Immobilized Nanoscale Zero Valent Iron: Coexistence Effect and Mechanism. Sci. Total Environ. 2018, 642, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lin, L.; Papelis, C.; Xu, P. Sorption of Arsenic from Desalination Concentrate onto Drinking Water Treatment Solids: Operating Conditions and Kinetics. Water 2018, 10, 96. [Google Scholar] [CrossRef]
- Ren, B.; Zhao, Y.; Ji, B.; Wei, T.; Shen, C. Granulation of Drinking Water Treatment Residues: Recent Advances and Prospects. Water 2020, 12, 1400. [Google Scholar] [CrossRef]
Raw Material | Treatment for Adsorbent | Best-Fitted Isotherm Model | Nature of Adsorption | Maximum Adsorption Capacity (mg g−1) | Reference |
---|---|---|---|---|---|
Surface water treatment sludge | Drying at 105 °C | Langmuir | monolayer adsorption | Pb2+: 224.4 | [88] |
Cu2+: 89 | |||||
Surface water treatment sludge | Air drying | Langmuir | monolayer adsorption | Co2+: 17.3 | [89] |
Groundwater treatment sludge | Recovery of MnO2 from sludge | Langmuir | monolayer adsorption | Ni2+: 145.56 | [123] |
Surface water treatment sludge | Adding clay and making granules | Langmuir | monolayer adsorption | Cd2+: 1.53 | [62] |
Cu2+: 2.76 | |||||
Zn2+: 1.23 | |||||
Groundwater treatment sludge | Magnetization by hydrothermal method | Langmuir | monolayer adsorption | Cu2+: 73.1 | [68] |
Oily sludge from the Petrochemical industry | Pyrolysis at 750 °C | Langmuir | monolayer adsorption | Cd2+: 106.16 | [66] |
Pb2+: 140.65 | |||||
Cu2+: 128.04 | |||||
Electroplating sludge | Calcination at 500 °C | Langmuir | monolayer adsorption | Cu2+: 91 | [60] |
Iron Ore Sludge | Drying at 80-105 °C | Langmuir | monolayer adsorption | Pb2+: 1.305 | [67] |
As2+: 1.113 | |||||
Cd2+: 0.771 | |||||
Zn2+: 0.745 | |||||
Mn2+: 0.710 | |||||
Tannery sludge | Pyrolysis at 800 °C | Langmuir | monolayer adsorption | Cr6+: 352 | [127] |
Sewage sludge | Activation by ZnCl2 and pyrolysis at 600 °C | Langmuir | monolayer adsorption | Ni2+: 74.06 | [109] |
Pb2+: 88.76 | |||||
Sewage sludge | Anaerobic digestion and Pyrolysis at 600 °C | Langmuir | monolayer adsorption | Pb2+: 51.2 | [105] |
Sewage sludge | Pyrolysis at 400 °C | Langmuir | monolayer adsorption | Pb2+: 116.2 | [103] |
Cd2+: 97.3 | |||||
Sewage sludge | Activation by KOH, and pyrolysis at 700 °C | Langmuir | monolayer adsorption | Pb2+: 57.48 | [111] |
Sewage sludge | Urea and NaOH modification and carbonized at 850 °C | Langmuir | monolayer adsorption | Cr6+: 15.3 | [113] |
Sewage sludge | hydrothermal treatment at 120 °C | Langmuir | monolayer adsorption | Pb2+: 62.441 | [118] |
Sewage sludge | H2SO4 treatment | Langmuir | monolayer adsorption | Cd2+: 56.2 | [115] |
Sewage sludge and sugarcane bagasse | KOH treatment | Langmuir | monolayer adsorption | Pb2+: 137.12 | [128] |
Palm oil mill sludge | Pyrolysis at 400 °C | Langmuir | monolayer adsorption | Cu2+: 48.8 | [99] |
Cd2+: 46.2 | |||||
Palm oil mill sludge | Drying at 80 °C | Freundlich | multi-layered adsorption | Cd2+: 18.49 | [69] |
Sewage sludge | Activation by FeSO4 and pyrolysis at 750 °C | Freundlich | multi-layered adsorption | Pb2+: 42.96 | [106] |
Adsorbent | Heavy Metal/s | Adsorption Capacity at Equilibrium (mg g−1) | Best-Fitted Kinetic Model | Mechanism of Adsorption | Reference |
---|---|---|---|---|---|
Pyrolyzed sewage sludge | Cd2+ | 32.3 | Pseudo- first-order model | Physical adsorption | [103] |
Pb2+ | 41.2 | ||||
KOH-activated pyrolyzed sewage sludge | Pb2+ | - | [111] | ||
Surface water treatment sludge | Pb2+ | 136.9 | [88] | ||
Cu2+ | 54.5 | Pseudo- second-order model | Chemical adsorption | ||
Surface water treatment sludge | Co2+ | 16.72 | [89] | ||
Pyrolyzed sludge of Petrochemical industry | Cd2+ | 39.67 | [66] | ||
Pb2+ | 44.35 | ||||
Cu2+ | 40.27 | ||||
Pyrolyzed palm oil mill sludge | Cu2+ | 51.81 | [99] | ||
Cd2+ | 58.48 | ||||
Calcinated electroplating sludge | Cu2+ | 38.46 | [60] | ||
Clay-added drinking water treatment sludge | Cu2+ | 0.39 | [62] | ||
Zn2+ | 0.33 | ||||
Cd2+ | 0.28 | ||||
Urea and NaOH-modified sewage sludge | Cr6+ | 13.351 | [113] |
Adsorbent | Heavy Metal/s | Regeneration Method | Number of Regeneration Cycles | Removal Efficiency | Reference |
---|---|---|---|---|---|
Diethylenetriaminepentaacetic acid–chitosan sewage sludge composite | Cu2+ | Stirring with HCl (0.1 M) for 24 h | 6 | 56.79% | [120] |
ZnCl2-treated Sewage sludge-derived activated carbon | Cu2+ | Treating with HNO3 (1.5 M) | 1 | 98.9% | [112] |
Sulfur-impregnated paper sludge | Ni2+ | Stirring with H2SO4 (0.05 M) /HCl (0.5 M) for 2 h | 1 | H2SO4—85.9% HCl—99.9% | [77] |
TiO2/ZnO electrospun nanofibers coated-sewage sludge carbon | Ni2+, Cu2+ | Treating with HCl (0.1 M) | 5 | >90% | [110] |
KOH-activated sewage sludge and sugarcane bagasse | Pb2+ | Treating with HCl (0.1 M) & NaOH (0.1 M) | 5 | 70.82% | [128] |
Urea and NaOH-treated carbonized sludge | Cr6+ | Impregnating in NaOH (2 M) for 12 h | 5 | >95% | [113] |
Amino-functionalized magnetic aerobic granular sludge biochar | Pb2+ | Stirring with Na2EDTA (0.1 M) for 4 h | 5 | 88.14% | [119] |
Zero-valent iron-treated sewage sludge-derived biochar | Cr6+, Pb2+ | Centrifugation and filtration | 3 | Cr6+—78.1% Pb2+—67.4% | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajakaruna, R.M.A.S.D.; Sewwandi, B.G.N.; Najim, M.M.M.; Baig, M.B.; Alotaibi, B.A.; Traore, A. Sustainable Approaches for Wastewater Treatment: An Analysis of Sludge-Based Materials for Heavy Metal Removal from Wastewater by Adsorption. Sustainability 2023, 15, 14937. https://doi.org/10.3390/su152014937
Rajakaruna RMASD, Sewwandi BGN, Najim MMM, Baig MB, Alotaibi BA, Traore A. Sustainable Approaches for Wastewater Treatment: An Analysis of Sludge-Based Materials for Heavy Metal Removal from Wastewater by Adsorption. Sustainability. 2023; 15(20):14937. https://doi.org/10.3390/su152014937
Chicago/Turabian StyleRajakaruna, R. M. A. S. Dhananjana, B. G. N. Sewwandi, Mohamed M. M. Najim, Mirza Barjees Baig, Bader Alhafi Alotaibi, and Abou Traore. 2023. "Sustainable Approaches for Wastewater Treatment: An Analysis of Sludge-Based Materials for Heavy Metal Removal from Wastewater by Adsorption" Sustainability 15, no. 20: 14937. https://doi.org/10.3390/su152014937
APA StyleRajakaruna, R. M. A. S. D., Sewwandi, B. G. N., Najim, M. M. M., Baig, M. B., Alotaibi, B. A., & Traore, A. (2023). Sustainable Approaches for Wastewater Treatment: An Analysis of Sludge-Based Materials for Heavy Metal Removal from Wastewater by Adsorption. Sustainability, 15(20), 14937. https://doi.org/10.3390/su152014937