Pyrolysis and Combustion Characteristics of Two Russian Facemasks: Kinetic Analysis, Gaseous Emissions, and Pyrolysis By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Facemasks
2.2. Characterizations
2.3. Thermogravimetric Experiments
2.4. Kinetic Modeling Using the EIPR Model
2.5. Gas Chromatography Analysis
2.6. Gaseous Emissions during Combustion Experiments Performed on the Two Masks in a Horizontal Oven
3. Results and Discussion
3.1. Characterizations
3.2. Pyrolysis Experiments
3.3. Combustion Experiments
3.4. Kinetic Modeling
3.4.1. Determination of the Optimal Values of the Unknown Parameters and Error Measurements in the Pyrolysis Case
3.4.2. Determination of the Optimal Values of the Unknown Parameters and Error Measurements in the Combustion Case
3.5. Chromatogram Peaks
3.6. Main Gaseous Emissions Occurring during Combustion Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asim, N.; Badiei, M.; Sopian, K. Review of the Valorization Options for the Proper Disposal of Face Masks during the COVID-19 Pandemic. Environ. Technol. Innov. 2021, 23, 101797. [Google Scholar] [CrossRef]
- Manić, N.; Janković, B.; Stojiljković, D.; Angelopoulos, P.; Radojević, M. Thermal Characteristics and Combustion Reactivity of Coronavirus Face Masks Using TG-DTG-MS Analysis. J. Therm. Anal. Calorim. 2022, 147, 10131–10143. [Google Scholar] [CrossRef]
- Felix, C.B.; Ubando, A.T.; Chen, W.-H.; Goodarzi, V.; Ashokkumar, V. COVID-19 and Industrial Waste Mitigation via Thermochemical Technologies towards a Circular Economy: A State-of-the-Art Review. J. Hazard. Mater. 2022, 423, 127215. [Google Scholar] [CrossRef] [PubMed]
- Selvaranjan, K.; Navaratnam, S.; Rajeev, P.; Ravintherakumaran, N. Environmental Challenges Induced by Extensive Use of Face Masks during COVID-19: A Review and Potential Solutions. Environ. Chall. 2021, 3, 100039. [Google Scholar] [CrossRef]
- Harussani, M.M.; Sapuan, S.M.; Rashid, U.; Khalina, A.; Ilyas, R.A. Pyrolysis of Polypropylene Plastic Waste into Carbonaceous Char: Priority of Plastic Waste Management amidst COVID-19 Pandemic. Sci. Total Environ. 2022, 803, 149911. [Google Scholar] [CrossRef]
- Li, C.; Yuan, X.; Sun, Z.; Suvarna, M.; Hu, X.; Wang, X.; Ok, Y.S. Pyrolysis of Waste Surgical Masks into Liquid Fuel and Its Life-Cycle Assessment. Bioresour. Technol. 2022, 346, 126582. [Google Scholar] [CrossRef]
- Jung, S.; Lee, S.; Dou, X.; Kwon, E.E. Valorization of Disposable COVID-19 Mask through the Thermo-Chemical Process. Chem. Eng. J. 2021, 405, 126658. [Google Scholar] [CrossRef] [PubMed]
- Brillard, A.; Kehrli, D.; Douguet, O.; Gautier, K.; Tschamber, V.; Bueno, M.-A.; Brilhac, J.-F. Pyrolysis and Combustion of Community Masks: Thermogravimetric Analyses, Characterizations, Gaseous Emissions, and Kinetic Modeling. Fuel 2021, 306, 121644. [Google Scholar] [CrossRef]
- Sun, S.; Yuan, Y.; Chen, R.; Xu, X.; Zhang, D. Kinetic, Thermodynamic and Chemical Reaction Analyses of Typical Surgical Face Mask Waste Pyrolysis. Therm. Sci. Eng. Prog. 2021, 26, 101135. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Striūgas, N.; Abdelnaby, M.A. Pyrolysis Kinetic Behaviour and TG-FTIR-GC–MS Analysis of Coronavirus Face Masks. J. Anal. Appl. Pyrolysis 2021, 156, 105118. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Stasiulaitiene, I.; Zakarauskas, K.; Striūgas, N. Pyrolysis of All Layers of Surgical Mask Waste as a Mixture and Its Life-Cycle Assessment. Sustain. Prod. Consum. 2022, 32, 519–531. [Google Scholar] [CrossRef]
- Purnomo, C.W.; Kurniawan, W.; Aziz, M. Technological Review on Thermochemical Conversion of COVID-19-Related Medical Wastes. Resour. Conserv. Recycl. 2021, 167, 105429. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Ong, H.C.; Ibrahim, S.; Fattah, I.M.R.; Mofijur, M.; Chong, C.T. Valorisation of Medical Waste through Pyrolysis for a Cleaner Environment: Progress and Challenges. Environ. Pollut. 2021, 279, 116934. [Google Scholar] [CrossRef] [PubMed]
- Farru, G.; Libra, J.A.; Ro, K.S.; Cannas, C.; Cara, C.; Muntoni, A.; Piredda, M.; Cappai, G. Valorization of Face Masks Produced during COVID-19 Pandemic through Hydrothermal Carbonization (HTC): A Preliminary Study. Sustainability 2023, 15, 9382. [Google Scholar] [CrossRef]
- Amutio, M.; Lopez, G.; Aguado, R.; Artetxe, M.; Bilbao, J.; Olazar, M. Kinetic Study of Lignocellulosic Biomass Oxidative Pyrolysis. Fuel 2012, 95, 305–311. [Google Scholar] [CrossRef]
- Van Krevelen, D.W.; Te Nijenhuis, K. Properties of Polymers Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier Science & Technology Books: Amsterdam, The Netherlands, 2009; ISBN 9780080915104. [Google Scholar]
- ISO-1171:2010; Solid Mineral Fuels Determination of Ash. International Organization for Standardization: Geneva, Switzerland, 2010. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/59/55944.html (accessed on 16 March 2021).
- NF EN ISO 18122:2015; Afnor Solid Biofuels—Determination of Ash Content. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 29541:2010; Afnor Solid Mineral Fuels—Determination of Total Carbon, Hydrogen and Nitrogen Content—Instrumental Method. International Organization for Standardization: Geneva, Switzerland, 2010.
- ISO 19579:2006; Afnor Solid Mineral Fuels—Determination of Sulfur by IR Spectroscopy. International Organization for Standardization: Geneva, Switzerland, 2006.
- ASTM D3176—15; D05 Committee Practice for Ultimate Analysis of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2015.
- Janajreh, I.; Adeyemi, I.; Elagroudy, S. Gasification Feasibility of Polyethylene, Polypropylene, Polystyrene Waste and Their Mixture: Experimental Studies and Modeling. Sustain. Energy Technol. Assess. 2020, 39, 100684. [Google Scholar] [CrossRef]
- Park, K.-B.; Jeong, Y.-S.; Kim, J.-S. Activator-Assisted Pyrolysis of Polypropylene. Appl. Energy 2019, 253, 113558. [Google Scholar] [CrossRef]
- Parku, G.K.; Collard, F.-X.; Görgens, J.F. Pyrolysis of Waste Polypropylene Plastics for Energy Recovery: Influence of Heating Rate and Vacuum Conditions on Composition of Fuel Product. Fuel Process. Technol. 2020, 209, 106522. [Google Scholar] [CrossRef]
- Van Krevelen Diagram. Available online: https://en.wikipedia.org/w/index.php?title=Van_Krevelen_diagram&oldid=1146975953 (accessed on 7 July 2023).
- Wang, W.; Lemaire, R.; Bensakhria, A.; Luart, D. Review on the Catalytic Effects of Alkali and Alkaline Earth Metals (AAEMs) Including Sodium, Potassium, Calcium and Magnesium on the Pyrolysis of Lignocellulosic Biomass and on the Co-Pyrolysis of Coal with Biomass. J. Anal. Appl. Pyrolysis 2022, 163, 105479. [Google Scholar] [CrossRef]
- Miranda, R.; Sosa_Blanco, C.; Bustos-Martínez, D.; Vasile, C. Pyrolysis of Textile Wastes. J. Anal. Appl. Pyrolysis 2007, 80, 489–495. [Google Scholar] [CrossRef]
- Gao, Z.; Kaneko, T.; Amasaki, I.; Nakada, M. A Kinetic Study of Thermal Degradation of Polypropylene. Polym. Degrad. Stab. 2003, 80, 269–274. [Google Scholar] [CrossRef]
- Vovelle, C.; Mellottée, H. Étude de la cinétique de la dégradation thermique du polypropylène et du polystyrène par analyse thermogravimétrique. Eur. Polym. J. 1983, 19, 387–390. [Google Scholar] [CrossRef]
- Purohit, V.; Orzel, R.A. Polypropylene: A Literature Review of the Thermal Decomposition Products and Toxicity. J. Am. Coll. Toxicol. 1988, 7, 221–242. [Google Scholar] [CrossRef]
- Xu, W.; Liu, J.; Ding, Z.; Fu, J.; Evrendilek, F.; Xie, W.; He, Y. Dynamic Pyrolytic Reaction Mechanisms, Pathways, and Products of Medical Masks and Infusion Tubes. Sci. Total Environ. 2022, 842, 156710. [Google Scholar] [CrossRef] [PubMed]
Mask | Proximate Analysis (%) a | HHV (MJ/kg) b | LHV (MJ/kg) c | |||
---|---|---|---|---|---|---|
Moisture | Fixed Carbon | Volatile Matter | Ash | |||
Tissue | 4.3 | 7.5 | 87.8 | 0.4 | 17.63 | 15.37 |
Surgical | 0.1 | 2.1 | 97.7 | 0.1 | 46.25 | 43.29 |
Sample | Ultimate Analysis (%) | H/C Ratio | O/C Ratio | ||||
---|---|---|---|---|---|---|---|
C | H | O | N | S | |||
Tissue | 42.9 | 10.0 | 46.9 | 0.2 | n.d. | 1.84 | 0.82 |
Surgical | 85.6 | 13.1 | 0.7 | 0.6 | n.d. | 2.33 | 0.01 |
Sample | Fe | Si | P | Cu | Ni | Mn | Cr | Al | Zn | Ca | K | Cl | Mg | Na | Ti |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tissue | 14 | 28 | 13 | 7 | 5 | <3 | 8 | 10 | 1 | 70 | 26 | <50 | 3 | 45 | 395 |
Surgical | 52 | 287 | 80 | 19 | 9 | 3 | 25 | 17 | 1 | 820 | 116 | 238 | 244 | 382 | 3 |
Sample | Tissue | Surgical | ||
---|---|---|---|---|
0.98 | 1.00 | |||
0.02 | - | |||
(1/s) | 58.4 | 1712.4 | ||
(J/mol) | 55,024.0 | 82,902.0 | ||
(1/s) | 32.99 × 107 | - | ||
(J/mol) | 121,348.0 | - | ||
Abs. (-) | Rel. (%) | Abs. (-) | Rel. (%) | |
R5 | 3.0 × 10−4 | 13.4 | 6.0 × 10−4 | 27.9 |
R10 | 1.0 × 10−4 | 23.3 | 5.5 × 10−4 | 11.7 |
R15 | 1.5 × 10−3 | 23.8 | 6.1 × 10−4 | 9.0 |
R20 | 1.2 × 10−3 | 20.1 | 6.4 × 10−4 | 10.4 |
Abs (%/s) | Rel. (%) | Abs (%/s) | Rel. (%) | |
R5 | 1.1 × 10−3 | 15.7 | 1.7 × 10−3 | 22.4 |
R10 | 2.4 × 10−3 | 17.2 | 1.6 × 10−3 | 10.0 |
R15 | 3.6 × 10−3 | 17.0 | 1.8 × 10−3 | 8.0 |
R20 | 4.7 × 10−3 | 16.4 | 2.2 × 10−3 | 7.0 |
R5 | 0.994 | 0.996 | ||
R10 | 0.995 | 0.999 | ||
R15 | 0.995 | 0.999 | ||
R20 | 0.995 | 1.000 | ||
R5 | 0.973 | 0.946 | ||
R10 | 0.968 | 0.989 | ||
R15 | 0.969 | 0.993 | ||
R20 | 0.971 | 0.995 | ||
R5 | 0.967 | 0.942 | ||
R10 | 0.962 | 0.988 | ||
R15 | 0.964 | 0.992 | ||
R20 | 0.965 | 0.995 |
Sample | Tissue | Surgical | ||
---|---|---|---|---|
0.98 | 1.00 | |||
0.02 | - | |||
0.98 | 0.85 | |||
0.44 | - | |||
(1/s) | 9.8 × 105 | 2.2 | ||
(J /mol) | 98,884.9 | 32,173.9 | ||
(1/s) | 1.2 × 105 | - | ||
(J/mol) | 82,073.9 | - | ||
(1/s) | 111,119.6 | 1.5 × 105 | ||
(J/mol) | 165,999.8 | 136,000.0 | ||
Abs. (-) | Rel. (%) | Abs. (-) | Rel. (%) | |
R5 | 3.2 × 10−4 | 9.3 | 4.4 × 10−4 | 19.7 |
R10 | 1.2 × 10−3 | 18.6 | 4.7 × 10−4 | 16.9 |
R15 | 2.4 × 10−3 | 14.2 | 6.1 × 10−4 | 12.8 |
R20 | 1.5 × 10−3 | 13.3 | 9.4 × 10−4 | 16.3 |
Abs. (%/s) | Rel. (%) | Abs. (%/s) | Rel. (%) | |
R5 | 1.0 × 10−3 | 13.1 | 1.9 × 10−3 | 27.4 |
R10 | 2.3 × 10−3 | 14.2 | 2.0 × 10−3 | 16.6 |
R15 | 3.9 × 10−3 | 26.2 | 2.2 × 10−3 | 11.6 |
R20 | 3.3 × 10−3 | 10.8 | 3.6 × 10−3 | 14.5 |
R5 | 0.999 | 0.995 | ||
R10 | 1.000 | 0.999 | ||
R15 | 1.000 | 0.999 | ||
R20 | 1.000 | 0.999 | ||
R5 | 0.982 | 0.918 | ||
R10 | 0.979 | 0.969 | ||
R15 | 0.971 | 0.985 | ||
R20 | 0.988 | 0.976 | ||
R5 | 0.980 | 0.913 | ||
R10 | 0.978 | 0.968 | ||
R15 | 0.971 | 0.984 | ||
R20 | 0.987 | 0.975 |
Tissue | Surgical | ||
---|---|---|---|
Name | Relative Peak Area (%) | Name | Relative Peak Area (%) |
D-Allose | 51.0 | 2,4-Dimethyl-1-heptene | 8.3 |
1,3-Diphenyl-1,3,5,5-Tetramethyl Cyclotrisiloxane | 14.3 | Cyclohexane, 1,2,3,5-tetraisopropyl- | 7.1 |
2-oxo-propanoic acid, methyl ester | 5.2 | Tridecanol | 5.9 |
2-Furancarboxaldehyde, 5-(Hydroxymethyl)- | 4.1 | 1-Undecene, 8-methyl- | 5.1 |
Acetic acid, methyl ester | 2.4 | Isotridecanol- | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kangash, A.; Kehrli, D.; Maryandyshev, P.; Brillard, A.; Tschamber, V. Pyrolysis and Combustion Characteristics of Two Russian Facemasks: Kinetic Analysis, Gaseous Emissions, and Pyrolysis By-Products. Sustainability 2023, 15, 14930. https://doi.org/10.3390/su152014930
Kangash A, Kehrli D, Maryandyshev P, Brillard A, Tschamber V. Pyrolysis and Combustion Characteristics of Two Russian Facemasks: Kinetic Analysis, Gaseous Emissions, and Pyrolysis By-Products. Sustainability. 2023; 15(20):14930. https://doi.org/10.3390/su152014930
Chicago/Turabian StyleKangash, Aleksei, Damaris Kehrli, Pavel Maryandyshev, Alain Brillard, and Valérie Tschamber. 2023. "Pyrolysis and Combustion Characteristics of Two Russian Facemasks: Kinetic Analysis, Gaseous Emissions, and Pyrolysis By-Products" Sustainability 15, no. 20: 14930. https://doi.org/10.3390/su152014930
APA StyleKangash, A., Kehrli, D., Maryandyshev, P., Brillard, A., & Tschamber, V. (2023). Pyrolysis and Combustion Characteristics of Two Russian Facemasks: Kinetic Analysis, Gaseous Emissions, and Pyrolysis By-Products. Sustainability, 15(20), 14930. https://doi.org/10.3390/su152014930