Methods for Measuring and Assessing Irregularities of Stone Pavements—Part I
Abstract
:1. Introduction
2. Materials and Methods
2.1. International Roughness Index
2.2. Road Surface Profile Classification According to ISO 8608 Standard
2.3. Whole-Body Vibration Using Vehicle Mechanical Model Simulation
Innovative Vehicle Mechanical Model Simulation
- An 8-dof full-car model developed and calibrated by Cantisani and Loprencipe [33] to represent the vibration perception of a common passenger car (automobile);
- Vehicle body parts are rigidly connected;
- The vehicles move in a straight line, and the longitudinal and transversal variations are assigned by the measured profiles;
- Passenger mass and unsprung mass are considered constant in magnitude during the simulation;
- The input road profiles are responsible for vibration transfer in the vehicle models.
2.4. Straightedge Analysis for Stone Pavements
- Bike = 1 m ( = 0.5 m);
- Automobile = 3 m ( = 1.5 m);
- Bus = 6 m ( = 3 m).
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Elements of the Matrices
Symbol | Value | Unit | Description |
---|---|---|---|
ms | 100 | kg | Driver body mass |
m | 1300 | kg | Sprung vehicle mass |
mt,1 | 40 | kg | Tire front/left–unsprung mass 1 |
mt,2 | 40 | kg | Tire front/right–unsprung mass 2 |
mt,3 | 35 | kg | Tire rear/left–unsprung mass 3 |
mt,4 | 35 | kg | Tire rear/right–unsprung mass 4 |
Jθ | 2700 | kg m2 | Body (automobile) sprung mass pitch moment of inertia |
Jα | 400 | kg m2 | Body (automobile) sprung mass roll moment of inertia |
p | 2.59 | m | Automobile wheelbase |
1.0 | m | Distance between front-axle/CG | |
1.59 | m | Distance between rear-axle/CG | |
0.8 | m | Axle semi width (left) | |
0.8 | m | Axle semi width (right) | |
0.2 | m | Longitudinal distance between seat/CG | |
0.4 | m | Transversal distance between seat/CG | |
ks,1 | 38,889 | N/m | Spring constant suspension front/left (1) |
ks,2 | 38,889 | N/m | Spring constant suspension front/right (2) |
ks,3 | 35,000 | N/m | Spring constant suspension rear/left (3) |
ks,4 | 35,000 | N/m | Spring constant suspension rear/right (4) |
kt,1 | 200,000 | N/m | Spring constant tire front/left (1) |
kt,2 | 200,000 | N/m | Spring constant tire front/right (2) |
kt,3 | 200,000 | N/m | Spring constant tire rear/left (3) |
kt,4 | 200,000 | N/m | Spring constant tire rear/right (4) |
k | 87,464 | N/m | Spring constant seat |
cs,1 | 1400 | N s/m | Damping constant suspension front/left (1) |
cs,2 | 1400 | N s/m | Damping constant suspension front/right (2) |
cs,3 | 1400 | N s/m | Damping constant suspension rear/left (3) |
cs,4 | 1400 | N s/m | Damping constant suspension rear/right (4) |
c | 3000 | N s/m | Damping constant seat driver |
z | var | m | Body vertical motion coordinate (1-dof) |
z1 | var | m | Front/left wheel vertical motion coordinate (2-dof) |
z2 | var | m | Front/right wheel vertical motion coordinate (3-dof) |
z3 | var | m | Rear/left wheel vertical motion coordinate (4-dof) |
z4 | var | m | Rear/right wheel vertical motion coordinate (5-dof) |
zs | var | m | Seat vertical motion coordinate (6-dof) |
α | var | rad | Body roll motion coordinate (7-dof) |
θ | var | rad | Body pitch motion coordinate (8-dof) |
zv,1 | var | m | Road profile elevation–front/left |
zv,2 | var | m | Road profile elevation–front/right |
zv,3 | var | m | Road profile elevation–rear/left |
zv,4 | var | m | Road profile elevation–rear/right |
Symbol | Value | Unit | Description |
---|---|---|---|
ms | 100 | kg | Driver body mass |
m | 15,890 | kg | Sprung vehicle mass |
mt,1 | 373 | kg | Tire front/left–unsprung mass 1 |
mt,2 | 373 | kg | Tire front/right–unsprung mass 2 |
mt,3 | 678 | kg | Tire rear/left–unsprung mass 3 |
mt,4 | 678 | kg | Tire rear/right–unsprung mass 4 |
Jθ | 150,000 | kg m2 | Body (automobile) sprung mass pitch moment of inertia |
Jα | 13,000 | kg m2 | Body (automobile) sprung mass roll moment of inertia |
p | 5.65 | m | Bus wheelbase |
3.61 | m | Distance between front-axle/CG | |
2.04 | m | Distance between rear-axle/CG | |
1.0 | m | Axle semi width (left) | |
1.0 | m | Axle semi width (right) | |
0.8 | m | Longitudinal distance between seat/CG | |
0.5 | m | Transversal distance between seat/CG | |
ks,1 | 175,000 | N/m | Spring constant suspension front/left (1) |
ks,2 | 175,000 | N/m | Spring constant suspension front/right (2) |
ks,3 | 408,650 | N/m | Spring constant suspension rear/left (3) |
ks,4 | 408,650 | N/m | Spring constant suspension rear/right (4) |
kt,1 | 1,000,000 | N/m | Spring constant tire front/left (1) |
kt,2 | 1,000,000 | N/m | Spring constant tire front/right (2) |
kt,3 | 2,000,000 | N/m | Spring constant tire rear/left (3) |
kt,4 | 2,000,000 | N/m | Spring constant tire rear/right (4) |
k | 40,000 | N/m | Spring constant seat |
cs,1 | 40,000 | N s/m | Damping constant suspension front/left (1) |
cs,2 | 40,000 | N s/m | Damping constant suspension front/right (2) |
cs,3 | 45,973 | N s/m | Damping constant suspension rear/left (3) |
cs,4 | 45,973 | N s/m | Damping constant suspension rear/right (4) |
c | 220 | N s/m | Damping constant seat driver |
z | var | m | Body vertical motion coordinate (1-dof) |
z1 | var | m | Front/left wheel vertical motion coordinate (2-dof) |
z2 | var | m | Front/right wheel vertical motion coordinate (3-dof) |
z3 | var | m | Rear/left wheel vertical motion coordinate (4-dof) |
z4 | var | m | Rear/right wheel vertical motion coordinate (5-dof) |
zs | var | m | Seat vertical motion coordinate (6-dof) |
α | var | rad | Body roll motion coordinate (7-dof) |
θ | var | rad | Body pitch motion coordinate (8-dof) |
zv,1 | var | m | Road profile elevation–front/left |
zv,2 | var | m | Road profile elevation–front/right |
zv,3 | var | m | Road profile elevation–rear/left |
zv,4 | var | m | Road profile elevation–rear/right |
References
- Bruno, S.; Vita, L.; Loprencipe, G. Development of a GIS-Based Methodology for the Management of Stone Pavements Using Low-Cost Sensors. Sensors 2022, 22, 6560. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization (ISO) Characterization of Pavement Texture by Use of Surface Profiles-Part 2: Terminology and Basic Requirements Related to Pavement Texture Profile Analysis. Available online: https://www.iso.org/standard/25638.html (accessed on 20 June 2022).
- Di Mascio, P.; Moretti, L.; Capannolo, A. Concrete Block Pavements in Urban and Local Roads: Analysis of Stress-Strain Condition and Proposal for a Catalogue. J. Traffic Transp. Eng. 2019, 6, 557–566. [Google Scholar] [CrossRef]
- Bonin, G.; Cantisani, G.; Loprencipe, G.; Ranzo, A. Dynamic effects in concrete airport pavement joints. [Effetti dinamici nei giunti delle pavimentazioni aeroportuali in calcestruzzo]. Ind. Ital. Cem. 2007, 77, 590–607. [Google Scholar]
- Zoccali, P.; Moretti, L.; Di Mascio, P.; Loprencipe, G.; D’Andrea, A.; Bonin, G.; Teltayev, B.; Caro, S. Analysis of natural stone block pavements in urban shared areas. Case Stud. Constr. Mater. 2018, 8, 498–506. [Google Scholar] [CrossRef]
- Moretti, L.; Cantisani, G.; Carpiceci, M.; D’andrea, A.; Del Serrone, G.; Di Mascio, P.; Peluso, P.; Loprencipe, G. Investigation of Parking Lot Pavements to Counteract Urban Heat Islands. Sustainability 2022, 14, 7273. [Google Scholar] [CrossRef]
- Hu, J.; Gao, X.; Wang, R.; Sun, S. Research on Comfort and Safety Threshold of Pavement Roughness. Transp. Res. Rec. 2017, 2641, 149–155. [Google Scholar] [CrossRef]
- Sun, L.; Chen, L.; Yin, Y.; Tian, Y.; Zhang, X. Risk Assessment of Rollover and Skidding due to Pavement Roughness and Differential Settlement for Enhancing Transportation Safety. J. Adv. Transp. 2021, 2021, 7244283. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development (OECD); Forum, (ITF) International Transport. Improving Safety for Motorcycle, Scooter and Moped Riders; Organisation de Cooperation et de Developpement Economiques-OCDE: Paris, France, 2015; Volume 212. [Google Scholar]
- Bella, F.; Calvi, A.; D’Amico, F. Impact of Pavement Defects on Motorcycles’ Road Safety. Procedia—Soc. Behav. Sci. 2012, 53, 942–951. [Google Scholar] [CrossRef]
- Abdul Manan, M.M.; Várhelyi, A.; Çelik, A.K.; Hashim, H.H. Road characteristics and environment factors associated with motorcycle fatal crashes in Malaysia. IATSS Res. 2018, 42, 207–220. [Google Scholar] [CrossRef]
- D’Amico, F.; Calvi, A.; Bianchini Ciampoli, L.; Tosti, F.; Brancadoro, M.G. Evaluation of the impact of pavement degradation on driving comfort and safety using a dynamic simulation model. Adv. Transp. Stud. 2018, 1, 109–120. [Google Scholar]
- Cuomo, V. The Influence of Roughness, Evenness and Road Geometry on Wheel-Road Interaction by Means of a Numerical Simulation Procedure. In Proceedings of the III SIIV International Conference, Bari, Italy, 22–24 September 2005. [Google Scholar]
- Rome Capital|Institutional Site|Piano Sanpietrini on the Streets of Rome. Available online: https://www.comune.roma.it/web/it/notizia.page?contentId=NWS330358 (accessed on 20 June 2022).
- Strade Ammalorate, Al via IL Ripristino della Pavimentazione—Sito Ufficio Stampa Comune di Modena. Available online: https://www.comune.modena.it/salastampa/archivio-comunicati-stampa/2020/9/strade-ammalorate-al-via-il-ripristino-della-pavimentazione (accessed on 20 June 2022).
- Sandberg, U.; Bendtsen, H.; Thomsen, S.N.; Kragh, J.; Kalman, B.; Kokot, D. Possibilities to Reduce Tyre/Road Noise Emission on Paving Stones and Other Block Surfaces; European Commission DG Research: Bruxelles, Belgium, 2007. [Google Scholar]
- Cantisani, G.; Fascinelli, G.; Loprencipe, G. Urban Road Noise: The Contribution of Pavement Discontinuities. In Proceedings of the 2012 International Conference on Sustainable Design and Construction, Fort Worth, TX, USA, 7–9 November 2012; American Society of Civil Engineers: Reston, VA, USA; pp. 327–334. [Google Scholar] [CrossRef]
- Bruno, S.; Del Serrone, G.; Di Mascio, P.; Loprencipe, G.; Ricci, E.; Moretti, L. Technical proposal for monitoring thermal and mechanical stresses of a runway pavement. Sensors 2021, 21, 6797. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.B. Dynamic Decision Model for a Pavement Management System. Transp. Res. Rec. 1984, 997, 11–18. [Google Scholar]
- Zoccali, P.; Loprencipe, G.; Galoni, A. Sampietrini Stone Pavements: Distress Analysis Using Pavement Condition Index Method. Appl. Sci. 2017, 7, 669. [Google Scholar] [CrossRef] [Green Version]
- Garilli, E.; Autelitano, F.; Freddi, F.; Giuliani, F. Urban pedestrian stone pavements: Measuring functional and safety requirements. Int. J. Pavement Eng. 2022, 23, 4748–4759. [Google Scholar] [CrossRef]
- Qiao, J.Y.; Du, R.; Labi, S.; Fricker, J.D.; Sinha, K.C. Policy implications of standalone timing versus holistic timing of infrastructure interventions: Findings based on pavement surface roughness. Transp. Res. Part A Policy Pract. 2021, 148, 79–99. [Google Scholar] [CrossRef]
- Múčka, P. International Roughness Index specifications around the world. Road Mater. Pavement Des. 2017, 18, 929–965. [Google Scholar] [CrossRef]
- Sidess, A.; Ravina, A.; Oged, E. A model for predicting the deterioration of the international roughness index. Int. J. Pavement Eng. 2022, 23, 1393–1403. [Google Scholar] [CrossRef]
- Corley-Lay, J. Pavement Performance Measures How States See Good, Fair, and Poor. Transp. Res. Rec. 2014, 2431, 1–5. [Google Scholar] [CrossRef]
- Bennett, C. Sectioning of road data for pavement management. In Proceedings of the 6th International Conference on Managing Pavements: The Lessons, The Challenges, The Way AheadQueensland Department of Main RoadsARRBFRH GroupExor CorporationPavement Management ServicesFederal Highway AdministrationWorld HighwaysGHDBrisbane City CouncilTasmania Department of Infrastructure, Energy and ResourcesAustralian Road Federation (ARF) HansenCooperative Research Centre for Construction Innovation, Brisbane Queensland, Australia, 19–24 October 2004. [Google Scholar]
- Papagiannakis, A.; Woodrooffe, J. Suitability of Alternative Pavement Roughness Statistics to Describe Dynamic Axle Loads of Heavy Vehicles. In Proceedings of the 2nd International Symposium on Heavy Vehicle Weights and Dimensions, Kelowna, BC, Canada, 18–22 June 1989. [Google Scholar]
- Kırbaş, U. Determination of ride comfort thresholds based on international roughness index for asphalt concrete pavements. Int. J. Pavement Eng. 2021, 1–13. [Google Scholar] [CrossRef]
- Múčka, P. Road Roughness Limit Values Based on Measured Vehicle Vibration. J. Infrastruct. Syst. 2017, 23, 04016029. [Google Scholar] [CrossRef]
- Nguyen, T.; Lechner, B.; Wong, Y.D.; Tan, J.Y. Bus Ride Index—A refined approach to evaluating road surface irregularities. Road Mater. Pavement Des. 2021, 22, 423–443. [Google Scholar] [CrossRef]
- Múčka, P. Vibration Dose Value in Passenger Car and Road Roughness. J. Transp. Eng. Part B Pavements 2020, 146, 04020064. [Google Scholar] [CrossRef]
- Loprencipe, G.; Zoccali, P.; Cantisani, G. Effects of vehicular speed on the assessment of pavement road roughness. Appl. Sci. 2019, 9, 1783. [Google Scholar] [CrossRef] [Green Version]
- Cantisani, G.; Loprencipe, G. Road Roughness and Whole Body Vibration: Evaluation Tools and Comfort Limits. J. Transp. Eng. 2010, 136, 818–826. [Google Scholar] [CrossRef]
- Yu, J.; Chou, E.Y.J.; Yau, J.-T. Development of Speed-Related Ride Quality Thresholds Using International Roughness Index. Transp. Res. Rec. J. Transp. Res. Board 2006, 1974, 47–53. [Google Scholar] [CrossRef]
- Múčka, P. International Roughness Index Thresholds Based on Whole-Body Vibration in Passenger Cars. Transp. Res. Rec. 2020, 2675, 305–320. [Google Scholar] [CrossRef]
- La Torre, F. Criteri e valutazione delle irregolarità stradali localizzate. In Proceedings of the Adeguamento Funzionale e Manutenzione delle Infrastrutture Viarie; SIIV: Milano, Italy, 1998; pp. 224–230. (In Italian) [Google Scholar]
- La Torre, F.; Ballerini, L.; Di Volo, N. Correlation between longitudinal roughness and user perception in urban areas. Transp. Res. Rec. 2002, 1806, 131–139. [Google Scholar] [CrossRef]
- ISO 8608; Mechanical Vibration—Road Surface Profiles—Reporting of Measured Data. International Organization for Standardization: Geneva, Switzerland, 2016.
- Elson, J.M.; Bennett, J.M. Calculation of the power spectral density from surface profile data. Appl. Opt. 1995, 34, 201. [Google Scholar] [CrossRef]
- Gandhi, P.; Adarsh, S.; Ramachandran, K.I. Performance Analysis of Half Car Suspension Model with 4 DOF using PID, LQR, FUZZY and ANFIS Controllers. Procedia Comput. Sci. 2017, 115, 2–13. [Google Scholar] [CrossRef]
- Klockiewicz, Z.; Ślaski, G.; Spadło, M. The Influence of the Conditions of Use and the Type of Model Used on the Vertical Dynamic Responses of a Car Suspension; The Archives of Automotive Engineering –Archiwum Motoryzacji: Scientific Publishers of the Industrial Motorization Institute: Warsaw, Poland, 2019; Volume 85, pp. 57–82. [Google Scholar]
- Mucka, P. Simulated Road Profiles According to ISO 8608 in Vibration Analysis. J. Test. Eval. 2018, 46, 405–418. [Google Scholar]
- Loprencipe, G.; Zoccali, P. Use of generated artificial road profiles in road roughness evaluation. J. Mod. Transp. 2017, 25, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Johannesson, P.; Rychlik, I. Modelling of road profiles using roughness indicators. Int. J. Veh. Des. 2014, 66, 317–346. [Google Scholar] [CrossRef]
- Kropac, O.; Mucka, P. Be careful when using the International Roughness Index as an indicator of road unevenness. J. Sound Vib. 2005, 287, 989–1003. [Google Scholar] [CrossRef]
- Sirocchi, C.; Klopfenstein, L.C.; Bogliolo, A. Large-Scale Assessment of Mobile Crowdsensed Data: A Case Study. IEEE Access 2022, 10, 54681–54696. [Google Scholar] [CrossRef]
- Loprencipe, G.; de Almeida Filho, F.G.V.; de Oliveira, R.H.; Bruno, S. Validation of a Low-Cost Pavement Monitoring Inertial-Based System for Urban Road Networks. Sensors 2021, 21, 3127. [Google Scholar] [CrossRef]
- ISO 2631-1; Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-Body Vibration. International Organization for Standardization: Geneva, Switzerland, 1997.
- FAA. Guidelines and Procedures for Measuring Airfield Pavement Roughness; FAA: Washington, DC, USA, 2014.
- ASTM E1926-08; Standard Practice for Computing International Roughness Index of Roads from Longitudinal Profile Measurements. ASTM International: West Conshohocken, PA, USA, 2015.
- Sayers, M.W. On the calculation of International Roughness Index from longitudinal road profile. Transp. Res. Rec. 1995, 1501, 1–12. [Google Scholar]
- Sayers, M.W.; Gillespie, T.D.; Queiroz, C.A.V. The International Road Roughness Experiment: Establishing Correlation and a Calibration Standard for Measurements; The World Bank: Washington, DC, USA, 1986. [Google Scholar]
- Goenaga, B.; Fuentes, L.; Mora, O. Evaluation of the methodologies used to generate random pavement profiles based on the power spectral density: An approach based on the international roughness index. Ing. Investig. 2017, 37, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Podder, P.; Zaman Khan, T.; Haque Khan, M.; Muktadir Rahman, M. Comparative Performance Analysis of Hamming, Hanning and Blackman Window. Int. J. Comput. Appl. 2014, 96, 1–7. [Google Scholar] [CrossRef]
- Múčka, P.; Granlund, J. Is the road quality still better? J. Transp. Eng. 2012, 138, 1520–1529. [Google Scholar] [CrossRef]
- Agostinacchio, M.; Ciampa, D.; Olita, S. The vibrations induced by surface irregularities in road pavements—A Matlab® approach. Eur. Transp. Res. Rev. 2014, 6, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Sidhant, V.K. Bicycle Ride Comfort Evaluation and Optimization. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2019. [Google Scholar]
- Soffarina, M.S.S. Mountain Bicycle Cycling Comfort on Different Road Surfaces. J. Sci. Appl. Eng. 2020, 3(1), 29–34. [Google Scholar] [CrossRef]
- Gogola, M. Analysing the vibration of bicycles on various road surfaces in the city of Žilina. Arch. Motoryz. 2020, 88, 77–97. [Google Scholar] [CrossRef]
- Huang, J.; Fournier, N.; Skabardonis, A. Bicycle level of service: Proposed updated pavement quality index. Transp. Res. Rec. 2021, 2675, 1346–1356. [Google Scholar] [CrossRef]
- Tong, Z.; Gao, J.; Sha, A.; Hu, L.; Jiang, W.; Huang, Y. Evaluating the cycling comfort on urban roads based on cyclists’ perception of vibration. J. Clean. Prod. 2018, 192, 531–541. [Google Scholar]
- Thigpen, C.G.; Li, H.; Handy, S.L.; Harvey, J. Modeling the impact of pavement roughness on bicycle ride quality. Transp. Res. Rec. 2015, 2520, 67–77. [Google Scholar] [CrossRef]
- Wu, R.; Louw, S.; Li, H.; Harvey, J.T.; Thigpen, C. Bicycle Vibration and Pavement Ride Quality for Cyclists. In Proceedings of the 94th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 11–15 January 2015. [Google Scholar]
- Sekulić, D.; Dedović, V.; Rusov, S.; Šalinić, S.; Obradović, A. Analysis of vibration effects on the comfort of intercity bus users by oscillatory model with ten degrees of freedom. Appl. Math. Model. 2013, 37, 8629–8644. [Google Scholar] [CrossRef]
- Nguyen, T.; Swolana, P.; Lechner, B.; Wong, Y.D. An experimental comparison of mathematical heavy-duty city bus models to evaluate passenger ride comfort induced by road roughness. Math. Comput. Model. Dyn. Syst. 2021, 27, 203–221. [Google Scholar] [CrossRef]
- Bay, J.S. Fundamentals of Linear State Space Systems, 1st ed.; McGraw-Hill Education: London, UK, 1999. [Google Scholar]
- State-Space Model—MATLAB. Available online: https://www.mathworks.com/help/control/ref/ss.html (accessed on 25 October 2022).
Ride Quality Level | IRI Thresholds at Different Measured Speeds (m/km) | ||||||
---|---|---|---|---|---|---|---|
30 km/h | 40 km/h | 50 km/h | 60 km/h | 70 km/h | 80 km/h | 90 km/h | |
Very Good | <4.17 | <3.41 | <2.98 | <1.87 | <1.60 | <1.42 | <1.15 |
Good/Fair | 4.17–8.34 | 3.41–6.83 | 2.98–5.95 | 1.87–3.73 | 1.60–3.20 | 1.42–2.84 | 1.15–2.31 |
Mediocre | 8.34–11.92 | 6.83–9.75 | 5.95–8.51 | 3.73–5.33 | 3.20–4.58 | 2.84–4.06 | 2.31–3.30 |
Poor | >11.92 | >9.75 | >8.51 | >5.33 | >4.58 | >4.06 | >3.30 |
ISO 8608 Class | Gd(n0) (10−6 m3) |
---|---|
A | <32 |
B | 32–128 |
C | 128–512 |
D | 512–2048 |
E | 2048–8192 |
F | 8192–32,768 |
G | 32,768–131,072 |
H | >131,072 |
awz Values (m/s2) | Comfort Level |
---|---|
<0.315 | Not uncomfortable |
0.315–0.63 | Little uncomfortable |
0.5–1.0 | Fairly uncomfortable |
0.8–1.6 | Uncomfortable |
1.25–2.5 | Very uncomfortable |
>2.0 | Extremely uncomfortable |
Symbol | Value | Unit | Description |
---|---|---|---|
ms | 80 | kg | Driver body mass |
M | 20 | kg | Bike frame mass without wheels |
m1 | 2 | kg | Mass of a front unsprung mass (wheel) |
m2 | 2 | kg | Mass of a rear unsprung mass (wheel) |
Jθ | 13 | kg m2 | Body (bike) sprung mass pitch moment of inertia |
R | 0.0 | m | Distance of CG from the seat driver |
a1 | 0.6 | m | Distance of CG from the front axle |
a2 | 0.4 | m | Distance of CG from the rear axle |
k1 | 30,000 | N/m | Spring constant suspension front |
k2 | 25,000 | N/m | Spring constant suspension rear |
kt1 | 25,000 | N/m | Spring constant tire front |
kt2 | 25,000 | N/m | Spring constant tire rear |
ks | 50,000 | N/m | Spring constant seat driver |
c1 | 9000 | N s/m | Damping constant suspension front |
c2 | 9000 | N s/m | Damping constant suspension rear |
cs | 1000 | N s/m | Damping constant suspension seat driver |
Z | var | m | Body vertical motion coordinate (1-dof) |
z1 | var | m | Front-wheel vertical motion coordinate (2-dof) |
z2 | var | m | Rear wheel vertical motion coordinate (3-dof) |
zs | var | m | Driver vertical motion coordinate (4-dof) |
θ | var | rad | Body pitch motion coordinate (5-dof) |
zv,1 | var | m | Road profile elevation–front |
zv,2 | var | m | Road profile elevation–rear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loprencipe, G.; Bruno, S.; Cantisani, G.; D’Andrea, A.; Di Mascio, P.; Moretti, L. Methods for Measuring and Assessing Irregularities of Stone Pavements—Part I. Sustainability 2023, 15, 1528. https://doi.org/10.3390/su15021528
Loprencipe G, Bruno S, Cantisani G, D’Andrea A, Di Mascio P, Moretti L. Methods for Measuring and Assessing Irregularities of Stone Pavements—Part I. Sustainability. 2023; 15(2):1528. https://doi.org/10.3390/su15021528
Chicago/Turabian StyleLoprencipe, Giuseppe, Salvatore Bruno, Giuseppe Cantisani, Antonio D’Andrea, Paola Di Mascio, and Laura Moretti. 2023. "Methods for Measuring and Assessing Irregularities of Stone Pavements—Part I" Sustainability 15, no. 2: 1528. https://doi.org/10.3390/su15021528
APA StyleLoprencipe, G., Bruno, S., Cantisani, G., D’Andrea, A., Di Mascio, P., & Moretti, L. (2023). Methods for Measuring and Assessing Irregularities of Stone Pavements—Part I. Sustainability, 15(2), 1528. https://doi.org/10.3390/su15021528