Influencing Factors Analysis and Optimization of Land Use Allocation: Combining MAS with MOPSO Procedure
Abstract
:1. Introduction
2. Data Sources and Methods
2.1. Overview of the Study Region
2.2. Data Sources
2.3. Building of the Optimal Land-Use Allocation Model
2.4. The Probabilities Calculation of Rural Land Use Conversion
2.5. Expression of the Objective Functions and Constraints
2.6. Calculation of the Fitness Value
3. Results
3.1. The Influencing Factors of Rural Land Use Conversion Probability
3.1.1. Restricted Areas by Government
3.1.2. Decision Factors by the Main Land Users
- (1)
- Decision Factors by Entrepreneurs
- (2)
- Decision Factors by Town residents
- (3)
- Decision Factors by Farmers
3.2. Optimization Objectives and Constraints
3.2.1. Optimization Objectives
3.2.2. Optimal Constraints
3.3. Optimal Allocation of Land Use
4. Discussion
4.1. Complexity of Rural Land Use—Based Structure and Layout
4.2. Accuracy of Model—Based Combining MAS and MOPSO
4.3. Rationality of Land Function Categories—Based Optimal Allocation of Land Use
4.4. Limitations of the Influencing Factors and the Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scarborough, V.L.; Dunning, N.P.; Tankersley, K.B.; Carr, C.; Weaver, E.; Grazioso, L.; Lane, B.; Jones, J.G.; Buttles, P.; Valdez, F.; et al. Water and sustainable land use at the ancient tropical city of Tikal, Guatemala. Proc. Natl. Acad. Sci. USA 2012, 109, 12408–12413. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Song, W. A land-use spatial optimum allocation model coupling a multi-agent system with the shuffled frog leaping algorithm. Comput. Environ. Urban Syst. 2019, 77, 101360. [Google Scholar] [CrossRef]
- Liu, Y.; Schen, C.; Li, Y. Differentiation regularity of urban-rural equalized development at prefecture-level city in China. J. Geogr. Sci. 2015, 25, 1075–1088. [Google Scholar] [CrossRef]
- He, Y. Economic Logic of Development and Value Basis of Reform of China’s Rural Land System. Asian Agric. Res. 2019, 11, 6–9. [Google Scholar]
- Peng, J.; Yan, S.; Strijker, D.; Wu, Q.; Chen, W.; Ma, Z. The influence of place identity on perceptions of landscape change: Exploring evidence from rural land consolidation projects in Eastern China. Land Use Policy 2020, 99, 104891. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, Y.; Huang, X.; Ye, C. The Integration of New-Type Urbanization and Rural Revitalization Strategies in China: Origin, Reality and Future Trends. Land 2021, 10, 207. [Google Scholar] [CrossRef]
- Huang, Y.; Hui, E.C.M.; Zhou, J.; Lang, W.; Chen, T.; Li, X. Rural Revitalization in China: Land-Use Optimization through the Practice of Place-making. Land Use Policy 2020, 97, 104788. [Google Scholar] [CrossRef]
- Liu, Y. Research on the urban-rural integration and rural revitalization in the new era in China. Acta Geogr. Sin. 2018, 73, 637–650. [Google Scholar]
- Schäfer, M.; Kröger, M. Joint problem framing in sustainable land use research. Land Use Policy 2016, 57, 526–539. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, F.; Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Zeng, Y.; Huang, W.; Jin, W.; Li, S. Multi-Agent Based Simulation of Optimal Urban Land Use Allocation in the Middle Reaches of the Yangtze River, China. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 8, 1089–1092. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Jin, X.; Wang, L.; Zhou, Y.; Shu, B. Multi-agent based modeling of spatiotemporal dynamical urban growth in developing countries: Simulating future scenarios of Lianyungang city, China. Stoch. Environ. Res. Risk Assess. 2015, 29, 63–78. [Google Scholar] [CrossRef]
- Yin, C.; Kong, X.; Liu, Y.; Wang, J.; Wang, Z. Spatiotemporal changes in ecologically functional land in China: A quantity-quality coupled perspective. J. Clean. Prod. 2019, 238, 117917. [Google Scholar] [CrossRef]
- Sá, J.; Virtudes, A. Towards Rural Land Use: Challenges for Oversizing Urban Perimeters in Shrinking Towns. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 052016. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, P.; Singh, R.M. Agricultural Land Allocation for Crop Planning in a Canal Command Area Using Fuzzy Multiobjective Goal Programming. J. Irrig. Drain. Eng. 2017, 143, 04017007. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, Y.; Zhang, Z.; Liu, J.; Ou, W.; Zou, W. Modeling agricultural land use change in a rapid urbanizing town: Linking the decisions of government, peasant households and enterprises. Land Use Policy 2020, 90, 104266. [Google Scholar] [CrossRef]
- Tian, F.; Li, M.; Han, X.; Liu, H.; Mo, B. A Production–Living–Ecological Space Model for Land-Use Optimisation: A case study of the core Tumen River region in China. Ecol. Model. 2020, 437, 109310. [Google Scholar] [CrossRef]
- He, Q.; Tan, S.; Yin, C.; Zhou, M. Collaborative optimization of rural residential land consolidation and urban construction land expansion: A case study of Huangpi in Wuhan, China. Comput. Environ. Urban Syst. 2019, 74, 218–228. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, W.; Zhou, Z. Construction resource allocation for industrial solid waste treatment centers in cities of Anhui Province, China. Manag. Environ. Qual. Int. J. 2019, 30, 1190–1202. [Google Scholar] [CrossRef]
- Zheng, D.; Shi, M. Industrial land policy, firm heterogeneity and firm location choice: Evidence from China. Land Use Policy 2018, 76, 58–67. [Google Scholar] [CrossRef]
- Lin, Z.; Vlachos, I.; Ollier, J. Prioritizing destination attributes for optimal resource allocation: A study of Chinese tourists visiting Britain. J. Travel Tour. Mark. 2018, 35, 1013–1026. [Google Scholar] [CrossRef]
- Behera, N.K.; Behera, M.D. Predicting land use and land cover scenario in Indian national river basin: The Ganga. Trop. Ecol. 2020, 61, 51–64. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.; Deng, X.; Lan, X. Optimal Water Resources Allocation under the Constraint of Land Use in the Heihe River Basin of China. Sustainability 2015, 7, 1558–1575. [Google Scholar] [CrossRef] [Green Version]
- Santé, I.; Crecente, R. LUSE, a decision support system for exploration of rural land use allocation: Application to the Terra Chá district of Galicia (N.W. Spain). Agric. Syst. 2007, 94, 341–356. [Google Scholar] [CrossRef]
- Zheng, W.; Ke, X.; Xiao, B.; Zhou, T. Optimising land use allocation to balance ecosystem services and economic benefits—A case study in Wuhan, China. J. Environ. Manage. 2019, 248, 109306. [Google Scholar] [CrossRef]
- Zarei, A.; Dadashpoor, H.; Amini, M. Determination of the optimal land use allocation pattern in Nowshahr County, Northern Iran. Environ. Dev. Sustain. 2016, 18, 37–56. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Liu, Y.; He, J.; Jiao, L.; Chen, Y.; Hong, X. Rural land use spatial allocation in the semiarid loess hilly area in China: Using a Particle Swarm Optimization model equipped with multi-objective optimization techniques. Sci. China Earth Sci. 2012, 55, 1166–1177. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, X. Land Use Allocation Based on a Multi-Objective Artificial Immune Optimization Model: An Application in Anlu County, China. Sustainability 2015, 7, 15632–15651. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zeng, Y.; Jin, X.; Shu, B.; Zhou, Y.; Yang, X. Simulating multi-objective land use optimization allocation using Multi-agent system—A case study in Changsha, China. Ecol. Model. 2016, 320, 334–347. [Google Scholar] [CrossRef]
- Duangjai, W.; Schmidt-Vogt, D.; Shrestha, R.P. Farmers’ land use decision-making in the context of changing land and conservation policies: A case study of Doi Mae Salong in Chiang Rai Province, Northern Thailand. Land Use Policy 2015, 48, 179–189. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Q.; Rao, Y.; Fu, M. Government, enterprise and resident: Roles of local agents in regulating and simulating built-up land use and change in a mining city. Land Use Policy 2017, 67, 222–238. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Chen, Y.; Long, H. The process and driving forces of rural hollowing in China under rapid urbanization. J. Geogr. Sci. 2010, 20, 876–888. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, Y.; Li, J. Conversion from rural settlements and arable land under rapid urbanization in Beijing during 1985–2010. J. Rural Stud. 2017, 51, 141–150. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, X.; Wang, H. Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata. Ecol. Model. 2020, 417, 108924. [Google Scholar] [CrossRef]
- Wang, H.; Li, W.; Huang, W.; Nie, K. A Multi-Objective Permanent Basic Farmland Delineation Model Based on Hybrid Particle Swarm Optimization. ISPRS Int. J. Geo-Inf. 2020, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Murray-Rust, D.; Brown, C.; van Vliet, J.; Alam, S.J.; Robinson, D.T.; Verburg, P.H.; Rounsevell, M. Combining agent functional types, capitals and services to model land use dynamics. Environ. Model. Softw. 2014, 59, 187–201. [Google Scholar] [CrossRef]
- An, L.; Zvoleff, A.; Liu, J.; Axinn, W. Agent-Based Modeling in Coupled Human and Natural Systems (CHANS): Lessons from a Comparative Analysis. Ann. Assoc. Am. Geogr. 2014, 104, 723–745. [Google Scholar] [CrossRef]
- Song, M.; Chen, D. A comparison of three heuristic optimization algorithms for solving the multi-objective land allocation (MOLA) problem. Ann. GIS 2018, 24, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Huang, D.; Tan, X.; Kong, F. Planning consistency and implementation in urbanizing China: Comparing urban and land use plans in suburban Beijing. Land Use Policy 2020, 94, 104498. [Google Scholar] [CrossRef]
- Bartkowski, B.; Beckmann, M.; Drechsler, M.; Kaim, A.; Liebelt, V.; Müller, B.; Witing, F.; Strauch, M. Aligning Agent-Based Modeling With Multi-Objective Land-Use Allocation: Identification of Policy Gaps and Feasible Pathways to Biophysically Optimal Landscapes. Front. Environ. Sci. 2020, 8, 103. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Ko, T.-T. An interactive dynamic multi-objective programming model to support better land use planning. Land Use Policy 2014, 36, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Liu, B.; Fang, Z. New grey prediction model and its application in forecasting land subsidence in coal mine. Nat. Hazards 2014, 71, 1181–1194. [Google Scholar] [CrossRef]
- Strauch, M.; Cord, A.F.; Pätzold, C.; Lautenbach, S.; Kaim, A.; Schweitzer, C.; Seppelt, R.; Volk, M. Constraints in multi-objective optimization of land use allocation—Repair or penalize? Environ. Model. Softw. 2019, 118, 241–251. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Zhao, M.; Zhai, X. Optimization of Planning Layout of Urban Building Based on Improved Logit and PSO Algorithms. Complexity 2018, 2018, 9452813. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, Z.; Zhang, X.; Yu, Y. Influence of Landscape Pattern Changes on Runoff and Sediment in the Dali River Watershed on the Loess Plateau of China. Land 2019, 8, 180. [Google Scholar] [CrossRef]
Rural Land-Use Type (j) | Agent Types (ai) | |||
---|---|---|---|---|
Government | Entrepreneurs | Town Residents | Farmers | |
cultivated land | 0.5 | 0.2 | 0 | 0.3 |
aquaculture surface | 0.5 | 0.2 | 0 | 0.3 |
rural residential land | 0.5 | 0.2 | 0 | 0.3 |
town residential land | 0.6 | 0.2 | 0.2 | 0 |
enterprise land | 0.6 | 0.4 | 0 | 0 |
ecological land | 1 | 0 | 0 | 0 |
other land | 1 | 0 | 0 | 0 |
Restricted Areas | Details |
---|---|
basic cultivated land protection zone | traditional agricultural plots; characteristic agricultural areas |
town built-up area | agglomeration settlements; the high-end cable industry section, research and development industry section, new chemical industry section, wire and cable industry |
ecological protection area | ecological buffer zones; ecological corridors |
Target Layer | Criterion Layer | Index Layer | ||
---|---|---|---|---|
Variable | Parameter | Variable | Parameter | |
Entrepreneurs site selection A1 | Regional traffic B11 | 0.539, 0 | Proximity to resources C101 | 0.088, 3 |
Proximity to market C102 | 0.290, 5 | |||
Peripheral road conditions C103 | 0.160, 2 | |||
Industry factor B12 | 0.297, 2 | Land cost C104 | 0.127, 4 | |
Labor cost C105 | 0.091, 4 | |||
Energy and power cost C106 | 0.078, 4 | |||
Economic factor B13 | 0.163, 8 | Urbanized economy C107 | 0.048, 6 | |
Localized economy C108 | 0.082, 9 | |||
Market size C109 | 0.032, 2 |
Target Layer | Criterion Layer | Index Layer | ||
---|---|---|---|---|
Variable | Parameter | Variable | Parameter | |
Town residential land site selection A2 | Regional traffic B21 | 0.297, 2 | Distance to original residence C201 | 0.018, 5 |
Distance to the nearest school C202 | 0.047, 9 | |||
Distance to the nearest hospital C203 | 0.077, 8 | |||
Distance to the nearest supermarket C204 | 0.123, 7 | |||
Distance to the nearest river and green space C205 | 0.029, 3 | |||
Community environment B22 | 0.163, 8 | Security level C206 | 0.068, 2 | |
Greening rate of community C207 | 0.042, 9 | |||
Public facilities perfection C208 | 0.016, 1 | |||
Social class structure C209 | 0.010, 2 | |||
Property management level C210 | 0.026, 4 | |||
Housing situation B23 | 0.539, 0 | Housing cost C211 | 0.134, 1 | |
Building area C212 | 0.055, 2 | |||
Building quality C213 | 0.204, 5 | |||
Building structure C214 | 0.086, 5 | |||
Housing appreciation potential C215 | 0.023, 4 | |||
Housing developer Brand C216 | 0.035, 3 |
Target Layer | Criterion Layer | Index Layer | ||
---|---|---|---|---|
Variable | Parameter | Variable | Parameter | |
Cultivated land site selection A3 | Regional condition B31 | 0.251, 8 | Distance to residential land C301 | 0.069, 8 |
Distance to farmland C302 | 0.117, 3 | |||
Distance to river C303 | 0.040, 5 | |||
Distance to village road C304 | 0.024, 2 | |||
Facilities condition B32 | 0.159, 3 | Irrigation facility C305 | 0.085, 8 | |
Drainage facility C306 | 0.047, 4 | |||
Flood control and diversion C307 | 0.026, 1 | |||
Land quality B33 | 0.588, 9 | Natural quality C308 | 0.317, 4 | |
Use quality C309 | 0.175, 1 | |||
Economic quality C310 | 0.096, 4 | |||
Aquaculture surface site selection A4 | Regional condition B41 | 0.539, 0 | Distance to residential land C401 | 0.033, 6 |
Distance to aquaculture land C402 | 0.224, 4 | |||
Distance to load C403 | 0.141, 1 | |||
Distance to market C404 | 0.053, 1 | |||
Distance to wharf and town C405 | 0.086, 8 | |||
Water condition B42 | 0.297, 2 | Headwater condition C406 | 0.160, 2 | |
Water-quality condition C407 | 0.088, 3 | |||
Underwater quality C408 | 0.048, 7 | |||
Surrounding environment B43 | 0.163, 8 | Natural environment C409 | 0.088, 3 | |
Infrastructure condition C410 | 0.026, 8 | |||
Transaction environment C411 | 0.048, 7 | |||
Rural residential land site selection A5 | Traffic and region B51 | 0.539, 0 | Distance to primary school C501 | 0.055, 2 |
Distance to county market C502 | 0.134, 1 | |||
Distance to health-center C503 | 0.035, 3 | |||
Distance to town center C504 | 0.023, 4 | |||
Distance to contracted land C505 | 0.204, 5 | |||
Distance to residence C506 | 0.086, 5 | |||
Facilities condition B52 | 0.297, 2 | Drinking water facility C507 | 0.138, 4 | |
Waste treatment facility C508 | 0.082, 4 | |||
Cultural infrastructure C509 | 0.028, 5 | |||
Recreational Facility C510 | 0.047, 9 | |||
Surrounding environment B53 | 0.163, 8 | Green land area C511 | 0.016, 1 | |
neighborly relation C512 | 0.010, 2 | |||
Security situation C513 | 0.026, 4 | |||
Sanitary condition C514 | 0.042, 9 | |||
Air-quality condition C515 | 0.068, 2 |
Optimal Objectives (to Be Maximized) | Cultivated Land | Aquaculture Surface | Rural Residential Land | Town Residential Land | Enterprise Land | Ecological Land | Other Land |
---|---|---|---|---|---|---|---|
economic revenue | 231,481.52 | 266,238.42 | 74,037.58 | 2,200,352.00 | 7,902,817.60 | 59,187.28 | 5575.80 |
basic living security | 159.99 | 271.76 | 2878.06 | 2529.24 | 107,645.14 | 10.29 | 0.22 |
employment security | 3.06 | 7.47 | 68.50 | 105.00 | 335.71 | 0.00 | 0.00 |
ecosystem service function | 20.8 | 0.54 | 0.26 | 0.25 | 0.59 | 3.86 | 0.30 |
Rural Land-Use Type | Numerical Restrictions in 2015 | Numerical Restrictions in 2030 | ||
---|---|---|---|---|
Lower Value | Upper Value | Lower Value | Upper Value | |
cultivated land | 33.16 | 29.12 | ||
aquaculture surface | 9.43 | 10.84 | 10.82 | 16.58 |
rural residential land | 6.92 | 7.15 | 6.45 | 6.99 |
town residential land | 5.76 | 7.07 | 6.88 | 7.62 |
enterprise land | 13.15 | 17.24 | 15.93 | 17.24 |
ecological land | 25.73 | 29.12 | 20.35 | 26.32 |
other land | 5.98 | 8.77 |
Rural Land-Use Type | Actual Conditions in 2015 | Optimal Allocation Results in 2015 | Optimal Allocation Results in 2030 | |||
---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
cultivated land | 34.04 | 32.14 | 35.12 | 33.16 | 29.39 | 27.75 |
aquaculture surface | 10.82 | 10.22 | 11.09 | 10.47 | 16.28 | 15.38 |
rural residential land | 6.92 | 6.53 | 7.24 | 6.83 | 6.49 | 6.13 |
town residential land | 6.88 | 6.49 | 6.78 | 6.40 | 7.01 | 6.62 |
enterprise land | 15.93 | 15.05 | 14.20 | 13.41 | 16.30 | 15.39 |
ecological land | 25.73 | 24.30 | 25.38 | 23.97 | 24.09 | 22.75 |
other land | 5.58 | 5.27 | 6.10 | 5.76 | 6.34 | 5.98 |
Rural Land-Use Type | Agent Types | |||
---|---|---|---|---|
Government | Entrepreneurs | Town Residents | Farmers | |
cultivated land | 0.53 | 0.13 | 0 | 0.34 |
aquaculture surface | 0.54 | 0.10 | 0 | 0.36 |
rural residential land | 0.53 | 0.14 | 0 | 0.33 |
town residential land | 0.61 | 0.12 | 0.27 | 0 |
enterprise land | 0.59 | 0.36 | 0.05 | 0 |
ecological land | 1 | 0 | 0 | 0 |
other land | 1 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Xia, M. Influencing Factors Analysis and Optimization of Land Use Allocation: Combining MAS with MOPSO Procedure. Sustainability 2023, 15, 1401. https://doi.org/10.3390/su15021401
Liu J, Xia M. Influencing Factors Analysis and Optimization of Land Use Allocation: Combining MAS with MOPSO Procedure. Sustainability. 2023; 15(2):1401. https://doi.org/10.3390/su15021401
Chicago/Turabian StyleLiu, Jingjie, and Min Xia. 2023. "Influencing Factors Analysis and Optimization of Land Use Allocation: Combining MAS with MOPSO Procedure" Sustainability 15, no. 2: 1401. https://doi.org/10.3390/su15021401
APA StyleLiu, J., & Xia, M. (2023). Influencing Factors Analysis and Optimization of Land Use Allocation: Combining MAS with MOPSO Procedure. Sustainability, 15(2), 1401. https://doi.org/10.3390/su15021401