Impact of Carbon Sequestration by Terrestrial Vegetation on Economic Growth: Evidence from Chinese County Satellite Data
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Model
3.2. Variables
3.2.1. Explanatory Variable: Economic Growth ()
3.2.2. Core Explanatory Variable: Carbon Sequestration by Terrestrial Vegetation ()
3.2.3. Control Variables
3.3. Data Sources and Descriptive Statistics
4. Results
4.1. Baseline Regression Analysis
4.2. Heterogeneity Analysis
5. Discussion: Mechanism Analysis
5.1. Theoretical Mechanism Analysis
5.1.1. Upgrading the Industrial Structure ()
5.1.2. Resource Allocation ()
5.1.3. Vegetation Coverage ()
5.1.4. Carbon Sequestration ()
5.2. Mechanism Model
5.3. Analysis of Mechanism Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, H.; Peng, J.; Lu, X. Do Factor Market Distortions and Carbon Dioxide Emissions Distort Energy Industry Chain Technical Efficiency? A Heterogeneous Stochastic Frontier Analysis. Energies 2022, 15, 6154. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Shao, Q.; Xu, X. Carbon sequestration by forestation across China: Past, present, and future. Renew. Sustain. Energy Rev. 2012, 16, 1291–1299. [Google Scholar] [CrossRef]
- Abdo, Z.A. Satyaprakash Modeling urban dynamics and carbon sequestration in Addis Ababa, Ethiopia, using satellite images. Arab. J. Geosci. 2021, 14. [Google Scholar] [CrossRef]
- He, N.; Wen, D.; Zhu, J.; Tang, X.; Xu, L.; Zhang, L.; Hu, H.; Huang, M.; Yu, G. Vegetation carbon sequestration in Chinese forests from 2010 to 2050. Glob. Chang. Biol. 2017, 23, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, B.; Peng, J.; Liu, X. The impact of the embedded global value chain position on energy-biased technology progress: Evidence from chinas manufacturing. Technol. Soc. 2022, 71, 102065. [Google Scholar] [CrossRef]
- Wang, F.; Wang, R.; Wang, J. Measurement of China’s green GDP and its dynamic variation based on industrial perspective. Environ. Sci. Pollut. Res. 2020, 27, 43813–43828. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Band, L.E.; Sun, G. No proportional increase of terrestrial gross carbon sequestration from the greening Earth. J. Geophys. Res. Biogeosci. 2019, 124, 2540–2553. [Google Scholar] [CrossRef]
- Tian, H.; Lu, C.; Ciais, P.; Michalak, A.M.; Canadell, J.G.; Saikawa, E.; Huntzinger, D.N.; Gurney, K.R.; Sitch, S.; Zhang, B. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 2016, 531, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Wang, P.; Gao, M.; Hou, W.; Liao, H. Carbon sequestration capacity of terrestrial vegetation in China based on satellite data. J. Chin. Econ. Bus. Stud. 2022, 20, 109–124. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Guo, F.; Song, Z.; Sullivan, L.; Wang, H.; Liu, X.; Wang, X.; Li, Z.; Zhao, Y. Enhancing phytolith carbon sequestration in rice ecosystems through basalt powder amendment. Sci. Bull. 2015, 60, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Xiao, G.; Zhang, X. An Inquiry into China’s Urbanization Quality in the Era of Urban Society. Chin. J. Urban Environ. Stu. 2020, 8, 2050005. [Google Scholar] [CrossRef]
- Chen, K.; Cai, Q.; Zheng, N.; Li, Y.; Li, Y. Forest Carbon Sink Evaluation—An Important Contribution for Carbon Neutrality. IOP Conf. Ser. Earth Environ. Sci. 2021, 811, 12009. [Google Scholar] [CrossRef]
- Blešić, I.; Ivkov, M.; Tepavčević, J.; Popov Raljić, J.; Petrović, M.D.; Gajić, T.; Tretiakova, T.N.; Syromiatnikova, J.A.; Demirović Bajrami, D.; Aleksić, M. Risky Travel? Subjective vs. Objective Perceived Risks in Travel Behaviour—Influence of Hydro-Meteorological Hazards in South-Eastern Europe on Serbian Tourists. Atmosphere 2022, 13, 1671. [Google Scholar] [CrossRef]
- Hu, Q.; Gong, E.; Wang, Z.; Zhang, J.; Liu, W.; Feng, F. Spatiotemporal Changes in Leaf Area and Carbon Sequestration of Terrestrial Vegetation in China over the Last Two Decades. Forests 2022, 13, 1623. [Google Scholar] [CrossRef]
- Popkova, E.G.; Shakhovskaya, L.S.; Mitrakhovich, T.N. New quality of economic growth concept. Int. J. Econ. Policy Stud. 2010, 5, 75–88. [Google Scholar] [CrossRef]
- Zou, C.; Li, H.; Chen, D.; Fan, J.; Liu, Z.; Xu, X.; Li, J.; Wang, Z. Spatial-Temporal Changes of Carbon Source/Sink in Terrestrial Vegetation Ecosystem and Response to Meteorological Factors in Yangtze River Delta Region (China). Sustainability 2022, 14, 10051. [Google Scholar] [CrossRef]
- Wang, Z.; Gong, H.; Huang, M.; Gu, F.; Wei, J.; Guo, Q.; Song, W. A multimodel random forest ensemble method for an improved assessment of Chinese terrestrial vegetation carbon density. Methods Ecol. Evol. 2021, 14, 117–132. [Google Scholar] [CrossRef]
- Jindal, R.; Kerr, J.M.; Carter, S. Carter Reducing Poverty Through Carbon Forestry? Impacts of the N’hambita Community Carbon Project in Mozambique. World Dev. 2012, 40, 2123–2135. [Google Scholar] [CrossRef]
- Woodwell, G.M.; Whittaker, R.; Reiners, W.A.; Likens, G.E.; Delwiche, C.C.; Botkin, D.B. The Biota and the World Carbon Budget: The terrestrial biomass appears to be a net source of carbon dioxide for the atmosphere. Science 1978, 199, 141–146. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Bastin, L.; Longden, D.M. Comparing transport emissions and impacts for energy recovery from domestic waste (EfW): Centralised and distributed disposal options for two UK Counties. Comput. Environ. Urban Syst. 2009, 33, 492–503. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Hu, Z.; Li, S.; Li, X.; Sun, X.; Yu, G. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: Effects of mean annual precipitation and its seasonal distribution. Glob. Chang. Biol. 2012, 18, 3624–3631. [Google Scholar] [CrossRef]
- Chen, L.; Huo, C. The Measurement and Influencing Factors of High-Quality Economic Development in China. Sustainability 2022, 14, 9293. [Google Scholar] [CrossRef]
- Fu, S.; Ma, Z.; Ni, B.; Peng, J.; Zhang, L.; Fu, Q. Research on the spatial differences of pollution-intensive industry transfer under the environmental regulation in China. Ecol. Indic. 2021, 129, 107921. [Google Scholar] [CrossRef]
- Hou, Y.; Yin, G.; Chen, Y. Environmental Regulation, Financial Pressure and Industrial Ecological Efficiency of Resource-Based Cities in China: Spatiotemporal Characteristics and Impact Mechanism. Int. J. Environ. Res. Public Health 2022, 19, 11079. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G. Can Environmental Regulation Improve High-Quality Economic Development in China? The Mediating Effects of Digital Economy. Sustainability 2022, 14, 12143. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, J. Spatiotemporal Heterogeneity and Driving Factors of Water Resource and Environment Carrying Capacity under High-Quality Economic Development in China. Int. J. Environ. Res. Public Health 2022, 19, 10929. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Hu, M.; Elahi, E.; Liu, X. Does digital finance affect the quality of economic growth? Analysis based on Chinese city data. Front. Environ. Sci. Switz 2022, 1330. [Google Scholar] [CrossRef]
- Tian, X.; Sarkis, J.; Geng, Y.; Bleischwitz, R.; Qian, Y.; Xu, L.; Wu, R. Examining the role of BRICS countries at the global economic and environmental resources nexus. J. Environ. Manag. 2020, 262, 110330. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.-J.; Zheng, X.-W.; Zhang, M. Influencing factors of forestry economic growth in Guangdong province. Ecol. Econ. 2019, 15, 29–34. [Google Scholar]
- Hu, Y.; Zheng, W.; Zeng, W.; Lan, H. The economic effects of clean development mechanism afforestation and reforestation project: Evidence from China. Int. J. Clim. Chang. Strateg. Manag. 2021, 13, 142–161. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X. Optimization of regional forestry industrial structure and economic benefit based on deviation share and multi-level fuzzy comprehensive evaluation. J. Intell. Fuzzy Syst. Appl. Eng. Technol. 2019, 37, 145–157. [Google Scholar]
- Zhang, L.; Fu, S.; Tian, J.; Peng, J. A Review of Energy Industry Chain and Energy Supply Chain. Energies 2022, 15, 9246. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, J. Air pollution control and enterprise competitiveness—A re-examination based on China’s Clean Air Action. J. Environ. Manag. 2022, 312, 114968. [Google Scholar] [CrossRef]
- Hua, J.; Zhu, D.; Jia, Y. Research on the policy effect and mechanism of carbon emission trading on the total factor productivity of agricultural enterprises. Int. J. Environ. Res. Public Health 2022, 19, 7581. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, J.; Ding, Z. A study on the influencing factors of total factor productivity of cultivated land resource utilization: Evidences from direct influence and spatial spillover in China. Int. J. Low-Carbon Tec. 2022, ctac101. [Google Scholar] [CrossRef]
- Oh, D. A global Malmquist-Luenberger productivity index. J. Prod. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Oh, D.; Heshmati, A. A sequential Malmquist—Luenberger productivity index: Environmentally sensitive productivity growth considering the progressive nature of technology. Energ. Econ. 2010, 32, 1345–1355. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Xiao, J.; Wen, L.; Zhang, L. Energy industry investment influences total factor productivity of energy exploitation: A biased technical change analysis. J. Clean. Prod. 2019, 237, 117847. [Google Scholar] [CrossRef]
- Peng, J.; Wen, L.; Fu, L.; Yi, M. Total factor productivity of cultivated land use in China under environmental constraints: Temporal and spatial variations and their influencing factors. Environ. Sci. Pollut. Res. 2020, 27, 18443–18462. [Google Scholar] [CrossRef] [PubMed]
- Chenery, H.B. Interactions between industrialization and exports. Am. Econ. Rev. 1980, 70, 281–287. [Google Scholar]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Jia, J.; Deng, H.; Duan, J.; Zhao, J. Analysis of the major drivers of the ecological footprint using the STIRPAT model and the PLS method—A case study in Henan Province, China. Ecol. Econ. 2009, 68, 2818–2824. [Google Scholar] [CrossRef]
- Wong, Z.; Li, R.; Zhang, Y.; Kong, Q.; Cai, M. Financial services, spatial agglomeration, and the quality of urban economic growth—based on an empirical analysis of 268 cities in China. Financ. Res. Lett. 2021, 43, 101993. [Google Scholar] [CrossRef]
- Tan, L.; Fan, X.; Yan, G.; Peng, M.; Liang, Y. Sequestration potential of phytolith occluded carbon in China’s paddy rice (Oryza sativa L.) systems. Sci. Total Environ. 2021, 774, 145696. [Google Scholar] [CrossRef]
- Manzoor, S.A.; Malik, A.; Zubair, M.; Griffiths, G.; Lukac, M. Linking social perception and provision of ecosystem services in a sprawling urban landscape: A case study of Multan, Pakistan. Sustainability 2019, 11, 654. [Google Scholar] [CrossRef] [Green Version]
- Shochat, E.; Lerman, S.B.; Anderies, J.M.; Warren, P.S.; Faeth, S.H.; Nilon, C.H. Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 2010, 60, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Grimm, N.B.; Foster, D.; Groffman, P.; Grove, J.M.; Hopkinson, C.S.; Nadelhoffer, K.J.; Pataki, D.E.; Peters, D.P. The changing landscape: Ecosystem responses to urbanization and pollution across climatic and societal gradients. Front. Ecol. Environ. 2008, 6, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Tölgyesi, C.; Hábenczyus, A.A.; Kelemen, A.; Török, P.; Valkó, O.; Deák, B.; Erdős, L.; Tóth, B.; Csikós, N.; Bátori, Z. How to not trade water for carbon with tree planting in water-limited temperate biomes? Sci. Total Environ. 2023, 856, 158960. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.F.; Van Pelt, R. Spatial aspects of structural complexity in old-growth forests. J. For. 2004, 102, 22–28. [Google Scholar]
Variable | Measurement | Data Sources |
---|---|---|
gtfp | Calculated using ML index | EPS database, China City Statistical Yearbook, and China Regional Economic Statistical Yearbook |
CN | Carbon sequestration | DMSP/OLS data for the period of 1992–2013 and NPP/VIIRS data for the period of 2012–2020 |
STRU | Secondary sector of the economy value added/GDP | EPS database and China City Statistical Yearbook |
TECH | Number of Internet accesses | EPS database and China City Statistical Yearbook |
FDI | Foreign investment/GDP | EPS database and China City Statistical Yearbook |
URB | The urban population/total population | EPS database |
PGDP | GDP/The urban population | EPS database |
CO2 | Carbon dioxide emissions | DMSP/OLS data for the period of 1992–2013 and NPP/VIIRS data for the period of 2012–2020 |
SO2 | Industrial sulfur dioxide emissions | EPS database |
RE | Discharge of industrial sewage | EPS database |
Vars | Variable Meaning | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
gtfp | Economic growth | 49,230 | 0.71 | 0.179 | 0.33 | 1.26 |
CN | Carbon sequestration by terrestrial vegetation (millions of tons) | 49,230 | 27.54 | 22.95 | 0.42 | 160.82 |
STRU | Secondary sector of the economy value added as a percentage of GDP | 49,230 | 0.48 | 0.10 | 0.14 | 0.86 |
TECH | Number of Internet accesses (10,000 persons) | 49,230 | 285.4 | 14,250.46 | 0.02 | 569.73 |
FDI | Foreign investment as a percentage of GDP (%) | 49,230 | 0.02 | 0.02 | 0 | 0.30 |
URB | The proportion of urban population to the total population (%) | 49,230 | 0.51 | 1.26 | 0.03 | 54.34 |
PGDP | Gross domestic product per capita (CNY 10,000) | 49,230 | 3.47 | 2.97 | 0 | 46.77 |
CO2 | Carbon dioxide emissions from industry (Million tons) | 49,230 | 25.64 | 23.31 | 1.53 | 230.71 |
SO2 | Industrial sulfur dioxide emissions (Million tons) | 49,230 | 0.05 | 0.06 | 0 | 0.68 |
RE | Discharge of industrial sewage (Million tons) | 49,230 | 74.94 | 95.66 | 0.07 | 912.6 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Lag. gtfp | 0.116 *** (0.003) | 0.219 *** (0.076) | 0.278 *** (0.104) | 0.124 *** (0.031) |
CN | −0.045 (0.061) | −0.033 (0.065) | ||
STRU | −0.001 ** (0.000) | −0.001 * (0.000) | ||
TECH | 0.626 *** (0.227) | 0.708 *** (0.241) | ||
FDI | 0.002 (0.008) | −0.004 (0.009) | ||
URB | 0.001 (0.004) | 0.008 ** (0.004) | ||
PGDP | 0.000 *** (0.000) | 0.000 *** (0.000) | ||
CO2 | 0.014 (0.003) | 0.012 (0.001) | ||
SO2 | −0.015 (0.043) | −0.067 (0.061) | ||
RE | −0.010 *** (0.002) | −0.002 *** (0.002) | ||
Constant | 0.632 *** (0.067) | 0.631 *** (0.072) | ||
Individual effect | Yes | Yes | No | No |
Time effect | Yes | Yes | No | No |
Sample size | 4035 | 4035 | 4035 | 4035 |
Variable | Northeast | Central | South | Southwest | Northwest | North | East |
---|---|---|---|---|---|---|---|
CN | 0.241 * (0.132) | 0.614 *** (0.201) | 0.312 * (0.163) | 0.631 ** (0.315) | 0.287 (0.237) | 0.085 (0.209) | 0.147 (0.249) |
STRU | −0.043 (0.128) | −0.437 ** (0.185) | 0.249 ** (0.121) | 0.119 (0.146) | −0.251 * (0.138) | 0.175 (0.138) | 0.085 (0.161) |
TECH | 0.010 (0.013) | −0.010 (0.013) | 0.016 ** (0.007) | −0.001 (0.005) | 0.007 (0.007) | −0.036 ** (0.016) | 0.010 (0.013) |
FDI | −0.416 (0.366) | 0.872 (0.823) | 0.02581 (0.2368) | 0.7377 (1.0351) | 1.092 (0.798) | 0.326 (0.755) | 1.229 *** (0.413) |
URB | −0.001 (0.001) | 0.1974 ** (0.0833) | 0.001 (0.062) | −0.003 *** (0.001) | 0.008 (0.111) | −0.003 *** (0.001) | 0.292 *** (0.107) |
PGDP | 0.050 (0.051) | 0.053 (0.059) | −0.036 (0.024) | 0.010 (0.012) | −0.001 (0.031) | 0.099 (0.049) | −0.0031 (0.0522) |
CO2 | 8.53 × 106 *** (2.08 × 106) | 4.86 × 106 (2.30 × 106) | 1.83 × 106 * (1.08 × 106) | 1.18 × 107 (3.38 × 106) | −0.001 (0.001) | 5.08 × 106 (2.58 × 106) | 4.99 × 106 (1.91 × 106) |
SO2 | −1.53 × 107 (3. 8 × 107) | 1.16 × 106 ** (1.90 × 107) | 6.24 × 107 ** (3.06 × 107) | 2.85 × 107 (2.50 × 107) | 0.012 (0.011) | 6.10 × 107 (2.72 × 107) | 4.75 × 108 (2.79 × 107) |
RE | −0.010 *** (0.002) | −0.002 *** (0.002) | −0.004 *** (0.001) | −0.002 (0.002) | −0.002 (0.001) | −0.001 (0.001) | 0.001 (0.001) |
Constant | 0.304 (0.467) | 0.487 (0.432) | 0.866 *** (0.261) | 0.468 (0.140) | 1.079 *** (0.318) | −0.275 (0.408) | 0.474 (0.464) |
Individual effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Variable | (1) Structure | (2) Factor | (3) Forest | (4) Action |
---|---|---|---|---|
CN | 0.0542 ** (2.44) | 0.0841 ** (2.08) | 0.0945 ** (1.87) | 0.0638 ** (2.05) |
Control variables | Yes | Yes | Yes | Yes |
Individual effect | Yes | Yes | Yes | Yes |
Time effect | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wan, X.; Sheng, K.; Sun, H.; Jia, L.; Peng, J. Impact of Carbon Sequestration by Terrestrial Vegetation on Economic Growth: Evidence from Chinese County Satellite Data. Sustainability 2023, 15, 1369. https://doi.org/10.3390/su15021369
Zhang Z, Wan X, Sheng K, Sun H, Jia L, Peng J. Impact of Carbon Sequestration by Terrestrial Vegetation on Economic Growth: Evidence from Chinese County Satellite Data. Sustainability. 2023; 15(2):1369. https://doi.org/10.3390/su15021369
Chicago/Turabian StyleZhang, Zuoming, Xiaoying Wan, Kaixi Sheng, Hanyue Sun, Lei Jia, and Jiachao Peng. 2023. "Impact of Carbon Sequestration by Terrestrial Vegetation on Economic Growth: Evidence from Chinese County Satellite Data" Sustainability 15, no. 2: 1369. https://doi.org/10.3390/su15021369
APA StyleZhang, Z., Wan, X., Sheng, K., Sun, H., Jia, L., & Peng, J. (2023). Impact of Carbon Sequestration by Terrestrial Vegetation on Economic Growth: Evidence from Chinese County Satellite Data. Sustainability, 15(2), 1369. https://doi.org/10.3390/su15021369