Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal
Abstract
:1. Introduction
2. Hydrological Performance of GR in the Mediterranean
3. Materials and Methods
3.1. Site Description
3.2. Test Beds Characteristics
3.3. Data Collection and Analysis
3.4. Data Analysis
- Rainfall water retention (R, %), which is the difference between the total incoming rainfall depth and the total runoff depth divided by the total rainfall depth.
- Runoff delay (RD, minutes), which is the time difference between the beginning of rainfall and the beginning of runoff.
- Peak attenuation (PA, %), which is the difference between rainfall and runoff peaks (maximum values registered for 10 min durations) divided by the rainfall peak.
4. Results and Discussion
4.1. Vegetation Development
4.2. Artificial Rainfall
4.3. Hydrological Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrans, P.; Torres, M.N.; Temprano, J.; Rodríguez Sánchez, J.P. Sustainable Urban Drainage System (SUDS) modeling supporting decision-making: A systematic quantitative review. Sci. Total Environ. 2022, 806 Pt 2, 150447. [Google Scholar] [CrossRef]
- WWAP (United NationsWorldWater Assessment Programme)/UN-Water. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018. [Google Scholar]
- Cui, M.; Ferreira, F.; Fung, T.K.; Matos, J.S. Tale of Two Cities: How Nature-Based Solutions Help Create Adaptive and Resilient Urban Water Management Practices in Singapore and Lisbon. Sustainability 2021, 13, 10427. [Google Scholar] [CrossRef]
- Woods-Ballard, B.; Kellagher, R.; Martin, P.; Jefferies, C.; Bray, R.; Shaffer, P. The SuDS Manual, 2nd ed.; CIRIA: London, UK, 2015. [Google Scholar]
- Ronchi, S.; Arcidiacono, A.; Pogliani, L. Integrating green infrastructure into spatial planning regulations to improve the performance of urban ecosystems. Insights from an Italian case study. Sustain. Cities Soc. 2020, 53, 101907. [Google Scholar] [CrossRef]
- Amaral, R.; Ferreira, F.; Galvão, A.; Matos, J.S. Constructed wetlands for combined sewer overflow treatment in a Mediterranean country, Portugal. Water Sci. Technol. 2013, 67, 2739–2745. [Google Scholar] [CrossRef] [PubMed]
- Thorslund, J.; Jarsjo, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as Large-Scale Nature-Based Solutions: Status and Challenges for Research, Engineering and Management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- Orta-Ortiz, M.S.; Geneletti, D. What variables matter when designing nature-based solutions for stormwater management? A review of impacts on ecosystem services. Environ. Impact Assess. Rev. 2022, 95, 106802. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J. Green Roofs Classifications, Plant Species, Substrates. In Nature Based Strategies for Urban and Building Sustainability; Butterworth-Heinemann: Oxford, UK, 2018; pp. 65–74. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Green roofs: A critical review on the role of components, benefits, limitations and trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- FLL. Green Roof Guidelines—Guidelines for the Planning, Construction and Maintenance of Green Roofs. 2018. Available online: https://commons.bcit.ca/greenroof/files/2019/01/FLL_greenroofguidelines_2018.pdf (accessed on 10 November 2022).
- Manso, M.; Teotónio, I.; Silva, C.M.; Cruz, C.O. Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sustain. Energy Rev. 2021, 135, 110111. [Google Scholar] [CrossRef]
- Liberalesso, T.; Tassi, R.; Ceconi, D.E.; Allasia, D.G.; Arboit, N.K.S. Effect of rice husk addition on the physicochemical and hydrological properties on green roof substrates under subtropical climate conditions. J. Clean. Prod. 2021, 315, 128133. [Google Scholar] [CrossRef]
- Fioretti, R.; Palla, A.; Lanza, L.G.; Principi, P. Green roof energy and water related performance in the Mediterranean climate. Build. Environ. 2010, 45, 1890–1904. [Google Scholar] [CrossRef]
- Rocha, B.; Paço, T.A.; Luz, A.C.; Palha, P.; Milliken, S.; Kotzen, B.; Branquinho, C.; Pinho, P.; de Carvalho, R.C. Are biocrusts and xerophytic vegetation a viable green roof typology in a mediterranean climate? A comparison between differently vegetated green roofs in water runoff and water quality. Water 2021, 13, 94. [Google Scholar] [CrossRef]
- Pérez, G.; Chocarro, C.; Juárez, A.; Coma, J. Evaluation of the development of five Sedum species on extensive green roofs in a continental Mediterranean climate. Urban For. Urban Green. 2020, 48, 126566. [Google Scholar] [CrossRef]
- Cascone, S. Green Roof Design: State of the Art on Technology and Materials. Sustainability 2019, 11, 3020. [Google Scholar] [CrossRef] [Green Version]
- Berardi, U.; GhaffarianHoseini, A.H.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Silva, J.; Paço, T.A.; Sousa, V.; Silva, C.M. Hydrological Performance of Green Roofs in Mediterranean Climates: A Review and Evaluation of Patterns. Water 2021, 13, 2600. [Google Scholar] [CrossRef]
- Mahmoud, A.; Asif, M.; Hassanain, M.; Babsail, M.; Sanni-Anibire, M. Energy and Economic Evaluation of Green Roofs for Residential Buildings in Hot-Humid Climates. Buildings 2017, 7, 30. [Google Scholar] [CrossRef]
- Van Renterghem, T. Green roofs for acoustic insulation and noise reduction. In Nature Based Strategies for Urban and Building Sustainability; Elsevier: Amsterdam, The Netherlands, 2018; pp. 167–179. ISBN 9780128123249. [Google Scholar]
- Connelly, M.; Hodgson, M. Experimental investigation of the sound absorption characteristics of vegetated roofs. Build. Environ. 2015, 92, 335–346. [Google Scholar] [CrossRef]
- Fabiani, C.; Coma, J.; Pisello, A.L.; Perez, G.; Cotana, F.; Cabeza, L.F. Thermo-acoustic performance of green roof substrates in dynamic hygrothermal conditions. Energy Build. 2018, 178, 140–153. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Mazzeo, D.; Arcuri, N. Thermal inertia assessment of an experimental extensive green roof in summer conditions. Build. Environ. 2018, 131, 264–276. [Google Scholar] [CrossRef]
- Besir, A.B.; Cuce, E. Green roofs and facades: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Parizotto, S.; Lamberts, R. Investigation of green roof thermal performance in temperate climate: A case study of an experimental building in Florianópolis city, Southern Brazil. Energy Build. 2011, 43, 1712–1722. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Mazzeo, D.; Bruno, R.; Arcuri, N. Surface temperature analysis of an extensive green roof for the mitigation of urban heat island in southern mediterranean climate. Energy Build. 2017, 150, 318–327. [Google Scholar] [CrossRef]
- Peng, L.L.H.; Jim, C.Y. Seasonal and diurnal thermal performance of a subtropical extensive green roof: The impacts of background weather parameters. Sustainability 2015, 7, 11098–11113. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, F.; Di Perna, C.; D′Orazio, M.; Olivieri, L.; Neila, J. Experimental measurements and numerical model for the summer performance assessment of extensive green roofs in a Mediterranean coastal climate. Energy Build. 2013, 63, 1–14. [Google Scholar] [CrossRef]
- Chen, C.F. Performance evaluation and development strategies for green roofs in Taiwan: A review. Ecol. Eng. 2013, 52, 51–58. [Google Scholar] [CrossRef]
- Chowdhury, R.K.; Abaya, J.S. An Experimental Study of Greywater Irrigated Green Roof Systems in an Arid Climate. J. Water Manag. Model. 2018, 26, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sisco, L.; Monzer, S.; Nadim, F.; Bashour, I.; Saoud, P. Roof top gardens as a means to use recycled waste and A/C condensate and reduce temperature variation in buildings. Build. Environ. 2017, 117, 127–134. [Google Scholar] [CrossRef]
- Luo, H.; Wang, N.; Chen, J.; Ye, X.; Sun, Y. Study on the Thermal Effects and Air Quality Improvement of Green Roof. Sustainability 2015, 7, 2804–2817. [Google Scholar] [CrossRef] [Green Version]
- Currie, B.A.; Bass, B. Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosyst. 2008, 11, 409–422. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Botteldooren, D. Reducing the acoustical facade load from road traffic with green roofs. Build. Environ. 2009, 44, 1081–1087. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Raja, F.D. Pilot-scale evaluation of green roofs with Sargassum biomass as an additive to improve runoff quality. Ecol. Eng. 2015, 75, 70–78. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Zhang, R.; Li, J.; Wang, W. The impact of rainfall change on rainwater source control in Beijing. Urban Clim. 2021, 37, 100841. [Google Scholar] [CrossRef]
- Gregoire, B.G.; Clausen, J.C. Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol. Eng. 2011, 37, 963–969. [Google Scholar] [CrossRef]
- Berndtsson, J.C.; Bengtsson, L.; Jinno, K. Runoff water quality from intensive and extensive vegetated roofs. Ecol. Eng. 2009, 35, 369–380. [Google Scholar] [CrossRef]
- Gnecco, I.; Palla, A.; Lanza, L.G.; La Barbera, P. The Role of Green Roofs as a Source/sink of Pollutants in Storm Water Outflows. Water Resour. Manag. 2013, 27, 4715–4730. [Google Scholar] [CrossRef]
- Thomaidi, V.; Petousi, I.; Kotsia, D.; Kalogerakis, N.; Fountoulakis, M.S. Use of green roofs for greywater treatment: Role of substrate, depth, plants, and recirculation. Sci. Total Environ. 2022, 807, 151004. [Google Scholar] [CrossRef]
- Li, Y.; Babcock, R.W., Jr. Green roof hydrologic performance and modeling: A review. Water Sci. Technol. 2014, 69, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, B.G.; Muthanna, T.M.; Braskerud, B.C. Detention and Retention Behavior of Four Extensive Green Roofs in Three Nordic Climate Zones. Water 2018, 10, 671. [Google Scholar] [CrossRef]
- Yin, H.; Kong, F.; Dronova, I. Hydrological performance of extensive green roofs in response to different rain events in a subtropical monsoon climate. Landsc. Ecol. Eng. 2019, 15, 297–313. [Google Scholar] [CrossRef]
- Herrera, J.; Flamant, G.; Gironás, J.; Vera, S.; Bonilla, C.A.; Bustamante, W.; Suárez, F. Using a Hydrological Model to Simulate the Performance and Estimate the Runoff Coefficient of Green Roofs in Semiarid Climates. Water 2018, 10, 198. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Na, W.; Jun, C.; Seo, H.; Kim, Y. Hydrological Performance of Green Roof Systems: A Numerical Investigation. Front. Environ. Sci. 2021, 9, 627. [Google Scholar] [CrossRef]
- Ferrans, P.; Rey, C.V.; Pérez, G.; Rodríguez, J.P.; Díaz-Granados, M. Effect of green roof configuration and hydrological variables on runoffwater quantity and quality. Water 2018, 10, 960. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wei, W.; Chen, W.; Deo, R.C.; Si, J.; Xi, H.; Li, B.; Feng, Q. The impacts of substrate and vegetation on stormwater runoff quality from extensive green roofs. J. Hydrol. 2019, 576, 575–582. [Google Scholar] [CrossRef]
- Palermo, S.A.; Turco, M.; Principato, F.; Piro, P. Hydrological effectiveness of an extensive green roof in Mediterranean climate. Water 2019, 11, 1378. [Google Scholar] [CrossRef] [Green Version]
- Schultz, I.; Sailor, D.J.; Starry, O. Effects of substrate depth and precipitation characteristics on stormwater retention by two green roofs in Portland OR. J. Hydrol. Reg. Stud. 2018, 18, 110–118. [Google Scholar] [CrossRef]
- Eumorfopoulou, E.A.; Kontoleon, K.J. Experimental approach to the contribution of plant-covered walls to the thermal behaviour of building envelopes. Build. Environ. 2009, 44, 1024–1038. [Google Scholar] [CrossRef]
- Kazemi, F.; Mohorko, R. Review on the roles and effects of growing media on plant performance in green roofs in world climates. Urban For. Urban Green. 2017, 23, 13–26. [Google Scholar] [CrossRef]
- Nagase, A. Novel application and reused materials for extensive green roof substrates and drainage layers in Japan—Plant growth and moisture uptake implementation. Ecol. Eng. 2020, 153, 105898. [Google Scholar] [CrossRef]
- Almeida, R.A.S.A. Green Roofs Containing Insulation Cork Board Design and Characterization. Ph.D. Thesis, Universidade de Coimbra, Coimbra, Portugal, 2019. [Google Scholar]
- Pushkar, S. Modeling the substitution of natural materials with industrial byproducts in green roofs using life cycle assessments. J. Clean. Prod. 2019, 227, 652–661. [Google Scholar] [CrossRef]
- Chenani, S.; Lehvävirta, S.; Häkkinen, T. Life cycle assessment of layers of green roofs. J. Clean. Prod. 2015, 90, 153–162. [Google Scholar] [CrossRef]
- Tadeu, A.; Simões, N.; Almeida, R.; Manuel, C. Drainage and water storage capacity of insulation cork board applied as a layer on green roofs. Constr. Build. Mater. 2019, 209, 52–65. [Google Scholar] [CrossRef]
- Brandão, C.; do Rosário Cameira, M.; Valente, F.; de Carvalho, R.C.; Paço, T.A. Wet season hydrological performance of green roofs using native species under Mediterranean climate. Ecol. Eng. 2017, 102, 596–611. [Google Scholar] [CrossRef]
- Garofalo, G.; Palermo, S.; Principato, F.; Theodosiou, T.; Piro, P. The Influence of Hydrologic Parameters on the Hydraulic Efficiency of an Extensive Green Roof in Mediterranean Area. Water 2016, 8, 44. [Google Scholar] [CrossRef]
- Paz, S.; Negev, M.; Clermont, A.; Green, M.S. Health Aspects of Climate Change in Cities with Mediterranean Climate, and Local Adaptation Plans. Int. J. Environ. Res. Public Health 2016, 13, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, P.C. Canopy Structure of Mediterranean-Type Shrubs in Relation to Heat and Moisture. In Mediterranean-Type Ecosystems; Springer: Berlin/Heidelberg, Germany, 1983; pp. 133–166. [Google Scholar] [CrossRef]
- Paskoff, R.P. Geomorphological Processes and Characteristic Landforms in the Mediterranean Regions of the World. In Mediterranean Type Ecosystems; Springer: Berlin/Heidelberg, Germany, 1973; pp. 53–60. [Google Scholar] [CrossRef]
- Köppen, W. Grundriß der Klimakunde; De Gruyter: Berlin, Germany, 1931. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Eksi, M.; Sevgi, O.; Akburak, S.; Yurtseven, H.; Esin, İ. Assessment of recycled or locally available materials as green roof substrates. Ecol. Eng. 2020, 156, 105966. [Google Scholar] [CrossRef]
- López-Uceda, A.; Galvín, A.P.; Ayuso, J.; Jiménez, J.R.; Vanwalleghem, T.; Peña, A. Risk assessment by percolation leaching tests of extensive green roofs with fine fraction of mixed recycled aggregates from construction and demolition waste. Environ. Sci. Pollut. Res. 2018, 25, 36024–36034. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, E.; Urru, S.; Farris, S.; Ruggiu, D.; Deidda, R.; Viola, F. Analysis of potential benefits on flood mitigation of a CAM green roof in Mediterranean urban areas. Build. Environ. 2020, 183, 107179. [Google Scholar] [CrossRef]
- Razzaghmanesh, M.; Beecham, S. The hydrological behaviour of extensive and intensive green roofs in a dry climate. Sci. Total Environ. 2014, 499, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Buccola, N.; Spolek, G. A pilot-scale evaluation of greenroof runoff retention, detention, and quality. Water Air Soil Pollut. 2011, 216, 83–92. [Google Scholar] [CrossRef]
- Piro, P.; Carbone, M.; De Simone, M.; Maiolo, M.; Bevilacqua, P.; Arcuri, N. Energy and Hydraulic Performance of a Vegetated Roof in Sub-Mediterranean Climate. Sustainability 2018, 10, 3473. [Google Scholar] [CrossRef] [Green Version]
- Doménech, I.; Perales-Momparler, S.; Morales-Torres, A.; Escuder-Bueno, I. Hydrological Performance of Green Roofs at Building and City Scales under Mediterranean Conditions. Sustainability 2018, 10, 3105. [Google Scholar] [CrossRef] [Green Version]
- Palla, A.; Sansalone, J.J.; Gnecco, I.; Lanza, L.G. Storm water infiltration in a monitored green roof for hydrologic restoration. Water Sci. Technol. 2011, 64, 766–773. [Google Scholar] [CrossRef]
- Schroll, E.; Lambrinos, J.; Righetti, T.; Sandrock, D. The role of vegetation in regulating stormwater runoff from green roofs in a winter rainfall climate. Ecol. Eng. 2011, 37, 595–600. [Google Scholar] [CrossRef]
- Soulis, K.X.; Ntoulas, N.; Nektarios, P.A.; Kargas, G. Runoff reduction from extensive green roofs having different substrate depth and plant cover. Ecol. Eng. 2017, 102, 80–89. [Google Scholar] [CrossRef]
- Soulis, K.X.; Valiantzas, J.D.; Ntoulas, N.; Kargas, G.; Nektarios, P.A. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model. J. Environ. Manag. 2017, 200, 434–445. [Google Scholar] [CrossRef]
- Barnhart, B.; Pettus, P.; Halama, J.; McKane, R.; Mayer, P.; Djang, K.; Brookes, A.; Moskal, L.M. Modeling the hydrologic effects of watershed-scale green roof implementation in the Pacific Northwest, United States. J. Environ. Manag. 2021, 277, 111418. [Google Scholar] [CrossRef]
- Wong, G.K.L.; Jim, C.Y. Quantitative hydrologic performance of extensive green roof under humid-tropical rainfall regime. Ecol. Eng. 2014, 70, 366–378. [Google Scholar] [CrossRef]
- ZinCo, I. Cobertura Ecológica Extensiva “Tapete Sedum”. 2022. Available online: https://zinco.pt/sistemas/extensivas/tapete_sedum.php (accessed on 30 November 2022).
- Mendonça, A.O. Análise do Desempenho de Coberturas Verdes em Clima Mediterrânico. Master’s Thesis, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal, 2021. [Google Scholar]
- Scientific, C. HS2 (Hydrosense II) User Manual. 2011, p. 54. Available online: www.campbellsci.co.uk (accessed on 1 December 2022).
- Sněhota, M.; Hanzlíková, J.; Sobotková, M.; Moravcik, P. Water and thermal regime of extensive green roof test beds planted with sedum cuttings and sedum carpets. J. Soils Sediments 2021, 21, 2089–2101. [Google Scholar] [CrossRef]
- Mickovski, S.B.; Buss, K.; McKenzie, B.M.; Sökmener, B. Laboratory study on the potential use of recycled inert construction waste material in the substrate mix for extensive green roofs. Ecol. Eng. 2013, 61, 706–714. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, X.; Li, H.; Zhang, X.; He, S.; Miao, Y. A comparison of the growth status, rainfall retention and purification effects of four green roof plant species. J. Environ. Manag. 2021, 278, 111451. [Google Scholar] [CrossRef] [PubMed]
- Di Miceli, G.; Iacuzzi, N.; Licata, M.; La Bella, S.; Tuttolomondo, T.; Aprile, S. Growth and development of succulent mixtures for extensive green roofs in a Mediterranean climate. PLoS ONE 2022, 17, e0269446. [Google Scholar] [CrossRef]
- Matos, M.R.; Silva, M.H. Estudos de precipitação com aplicação no projecto de sistemas de drenagem pluvial. Curvas intensidade-duração-frequência da precipitação em Portugal. In Proceedings of the Encontro Nacional de Saneamento Básico/86; Laboratório Nacional de Engenharia Civil: Lisboa, Portugal, 1986. [Google Scholar]
- Ferreira, F. Modelação e Gestão Integrada de Sistemas de Águas Residuais; Dissertação de Doutoramento em Engenharia Civil, IST/UNL: Lisboa, Portugal, 2006. [Google Scholar]
- Kemp, S.; Hadley, P.; Blanuša, T. The influence of plant type on green roof rainfall retention. Urban Ecosyst. 2019, 22, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Feng, Q.; Chen, W.; Wei, W.; Deo, R.C. The influence of structural factors on stormwater runoff retention of extensive green roofs: New evidence from scale-based models and real experiments. J. Hydrol. 2019, 569, 230–238. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Chen, W.; Wei, W.; Si, J.; Xi, H. Runoff retention assessment for extensive green roofs and prioritization of structural factors at runoff plot scale using the Taguchi method. Ecol. Eng. 2019, 138, 281–288. [Google Scholar] [CrossRef]
- Villarreal, E.L.; Bengtsson, L. Response of a Sedum green-roof to individual rain events. Ecol. Eng. 2005, 25, 1–7. [Google Scholar] [CrossRef]
- Green Roof Ecosystems; Sutton, R.K. (Ed.) Springer: Berlin/Heidelberg, Germany, 2015; p. 446. [Google Scholar]
- Mehmood, T.; Gaurav, G.K.; Cheng, L.; Klemeš, J.J.; Usman, M.; Bokhari, A.; Lu, J. A review on plant-microbial interactions, functions, mechanisms and emerging trends in bioretention system to improve multi-contaminated stormwater treatment. J. Environ. Manag. 2021, 294, 113108. [Google Scholar] [CrossRef] [PubMed]
- Czemiel Berndtsson, J. Green roof performance towards management of runoff water quantity and quality: A review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Rainwater runoff retention on an aged intensive green roof. Sci. Total Environ. 2013, 461, 28–38. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, M.J.; Han, M. A pilot study to evaluate runoff quantity from green roofs. J. Environ. Manag. 2015, 152, 171–176. [Google Scholar] [CrossRef]
- Zhang, Q.; Miao, L.; Wang, X.; Liu, D.; Zhu, L.; Zhou, B.; Sun, J.; Liu, J. The capacity of greening roof to reduce stormwater runoff and pollution. Landsc. Urban Plan. 2015, 144, 142–150. [Google Scholar] [CrossRef]
Reference | Climate Köppen Classification | Type of Green Roof | Type of Solution | Type of Precipitation | Number of Events | |||
---|---|---|---|---|---|---|---|---|
Extensive | Intensive | Real Green Roof | Tests Beds | Real | Artificial | |||
Brandão et al. [59] | Csa | X | X | X | 46 | |||
Palermo et al. [50] | Csa | X | X | X | 62 | |||
Cristiano et al. [68] | Csa | X | X | X | 6 | |||
Fioretti et al. [14] | Csa | X | X | X | 30 | |||
Razzaghmanesh and Beecham [69] | Csa | X | X | X | X | 226 | ||
Schultz et al. [51] | Csb | X | X | X | 82 | |||
BuccolaandSpolek [70] | Csb | X | X | X | 2 | |||
Piro et al. [71] | Csa | X | X | X | 8 | |||
Doménech et al. [72] | Csa | X | X | X | 17 | |||
Garofalo et al. [60] | Csa | X | X | X | 135 | |||
Palla et al. [73] | Csa | X | X | X | 29 | |||
Schroll et al. [74] | Csb | X | X | X | X | 17 | ||
Soulis et al. [75] | Csa | X | X | X | 45 | |||
Soulis et al. [76] | Csa | X | X | X | 11 | |||
Rocha et al. [15] | Csa | X | X | X | 3 | |||
Barnhart et al. [77] | Csb | X | X | X | X | - |
Reference | Rainfall Retention (%) | Runoff Delay (h) | Peak Attenuation (%) | Peak Delay (h) | Runoff Coefficient | Runoff Delay (min) |
---|---|---|---|---|---|---|
Brandão et al. [59] | 91 | 0.45 | 99 | 0.38 | - | - |
Palermo et al. [50] | - | - | 56 | 4.92 | 50.4% (>8 mm) | 52.1 |
Cristiano et al. [68] | 52 and 71 | - | - | - | - | - |
Fioretti et al. [14] | 68 | - | 89 and 74 | 2.75 | - | - |
Razzaghmanesh and Beecham [69] | 74 and 88.6 | 3 extensive, 17 intensive | - | - | - | - |
Schultz et al. [51] | 32.9 and 23.2 | - | - | - | - | - |
Buccola and Spolek [70] | 20.0 to 56.0 and 36.0 to 54.0 | - | - | - | - | 3.7 to 4.9 and 5.3 to 8.1 |
Piro et al. [71] | 57.5 | - | 72.3 | - | - | - |
Doménech et al. [72] | 80.8 | - | - | - | 75% 1 | - |
Garofalo et al. [60] | 80 (max) | - | - | - | 0.70 and 0.79 | - |
Palla et al. [73] | 68 and 22 | - | 89 and 72 | 6.8 and 2.5 | - | - |
Schroll et al. [74] | 27.2 and 64.7 | - | - | - | - | - |
Soulis et al. [76] | 2.0 to 100.0 | - | - | - | - | - |
Soulis et al. [76] | 42.8 (for total runoff depth) and 70.2 (peak runoff rate considered) | Aprox. 0.5 (max) | - | - | - | - |
Rocha et al. [15] | - | - | - | - | 0.26–0.43 | - |
Barnhart et al. [77] | 10–15 (extensive) and 20–25 (intensive) 2 | - | - | - | - | - |
Test Bed | Substrate | Vegetation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | A + RCW | B + RCW | Sedum Album | Sedum Coral Reef | Sedum Forsterianum | Sedum Oreganum | Sedum Sexangular | Sedum Spurium | Sedum Spurium Tricolor | Armeria Maritima | Thymus Red Creeping | Rosmarinus Officinalis | |
G1 | X | X | ||||||||||||
G2 | X | X | X | X | X | X | ||||||||
G3 | X | X | X | |||||||||||
G4 | X | X | X | X | X | X | X | |||||||
G5 | X | X | ||||||||||||
G6 | X | X | X | X | X | X | ||||||||
G7 | X | X | X | |||||||||||
G8 | X | X | X | X | X | X |
Granulometry | Subst. A | Subst. B | Subst. A + RCW | Subst. B + RCW | |
---|---|---|---|---|---|
Fine fraction (%) | 26.2 | 17.8 | 37.2 | 34.5 | |
Coarse fraction (%) | 73.8 | 82.2 | 62.8 | 65.5 | |
Granulometry (<2 mm) | Coarse sand (g kg−1) | 278.2 | 208.0 | 208.0 | 304.7 |
Fine sand (g kg−1) | 172.0 | 117.3 | 117.3 | 162.1 | |
Slime (g kg−1) | 343.5 | 476.1 | 476.1 | 333.6 | |
Clay (g kg−1) | 206.3 | 198.7 | 198.7 | 199.6 |
Parameters | Subst. A | Subst. B | Subst. A + RCW | Subst. B + RCW |
---|---|---|---|---|
pH (H2O) | 7.1 | 8.0 | 7.0 | 7.7 |
Nitric nitrogen (mg/L) | 3.3 | 5.6 | 431 | 7.7 |
Extractable phosphorus (mg/L) | <1.0 | 9.4 | <1.0 | 2.4 |
Extractable potassium (mg/L) | 35.9 | 91.3 | 207 | 173 |
Organic matter (%) | 20.9 | 41.4 | 14.9 | 34.6 |
Dry matter (%) | 54.4 | 59.0 | 71.8 | 55.5 |
Density (g/cm3) | 0.53 | 0.47 | 0.78 | 0.71 |
Hydraulic conductivity of saturated soil (cm/h) | 124.1 | 361.6 | 270.3 | 249.8 |
Events | Test Beds | Date | Flow Rate (L/s) | Rainfall Intensity (mm/h) | Rainfall Duration (minutes) | Rainfall Frequency | Rainfall Depth (mm) | Rainfall Classification |
---|---|---|---|---|---|---|---|---|
1 | G1–G4 | 06/04/2021 | 0.0480 | 168.20 | 10 | >50 years | 28.03 | Violent |
2 | G1–G4 | 13/04/2021 | 0.0120 | 42.45 | 15 | 2 years | 10.61 | Strong |
3 | G1–G4 | 20/04/2021 | 0.0035 | 12.40 | 15 | 3 times per year | 3.10 | Strong |
4 | G1–G4 | 27/04/2021 | 0.0024 | 8.39 | 20 | 7 times per year | 2.80 | Moderate |
5 | G1–G4 | 11/05/2021 | 0.0066 | 23.16 | 20 | 1 years | 7.72 | Strong |
6 | G1–G8 | 25/05/2021 | 0.0101 | 35.50 | 20 | 2 years | 11.82 | Strong |
7 | G1–G8 | 01/06/2021 | 0.0128 | 44.96 | 20 | 5 years | 14.99 | Strong |
8 | G5–G8 | 08/06/2021 | 0.0182 | 63.59 | 20 | 20 years | 21.20 | Violent |
9 | G5–G8 | 09/06/2021 | 0.0182 | 63.59 | 20 | 20 years | 21.20 | Violent |
Events | Substrate Moisture before the Rainfall Event (%) | |||||||
---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | |
1 | 41.7 | 23.2 | 18.4 | 11.5 | - | - | - | - |
2 | 39.4 | 33.0 | 31.5 | 19.4 | - | - | - | - |
3 | 24.2 | 23.8 | 19.7 | 15.6 | - | - | - | - |
4 | 26.9 | 27.9 | 25.4 | 21.6 | - | - | - | - |
5 | 19.1 | 30.6 | 38.1 | 29.8 | - | - | - | - |
6 | 15.3 | 14.2 | 22.8 | 14.4 | 13.5 | 6.3 | 19.3 | 9.6 |
7 | 12.7 | 18.2 | 26.2 | 14.2 | 14.5 | 6.4 | 13.2 | 9.9 |
8 | - | - | - | - | 7.5 | 5.3 | 7.3 | 7.7 |
9 | - | - | - | - | 26.3 | 29.6 | 31.3 | 22.0 |
Events | Percentage Absorbed by the Substrate (%) | Average Event Retention | |||||||
---|---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | (%) | |
1 | 55.4 | 72.4 | 84.5 | 68.9 | - | - | - | - | 70.3 |
2 | 76.2 | 45.1 | 62.2 | 55.9 | - | - | - | - | 59.9 |
3 | 100.0 | 100.0 | 100.0 | 100.0 | - | - | - | - | 100.0 |
4 | 100.0 | 100.0 | 100.0 | 100.0 | - | - | - | - | 100.0 |
5 | 100.0 | 23.4 | 64.0 | 81.4 | - | - | - | - | 67.2 |
6 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
7 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
8 | - | - | - | - | 98.1 | 98.7 | 100.0 | 98.4 | 98.8 |
9 | - | - | - | - | 38.4 | 35.5 | 41.6 | 32.3 | 37.0 |
Events | Runoff Delay (hour) | |||||||
---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | |
1 | 2.4 | 8.8 | 10.7 | 7.4 | - | - | - | - |
2 | 2.2 | 4.1 | 14.5 | 13.0 | - | - | - | - |
5 | No runoff occurred | 9.3 | 17.7 | 4.9 | - | - | - | - |
8 | - | - | - | - | 14.7 | 20.7 | No runoff occurred | 15.7 |
9 | - | - | - | - | 5.6 | 6.4 | 5.0 | 6.6 |
Events | Peak Attenuation (%) | |||||||
---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | |
1 | 93 | 76 | 93 | 84 | - | - | - | - |
2 | 94 | 59 | 79 | 93 | - | - | - | - |
5 | 100 | 30 | 63 | 91 | - | - | - | - |
8 | - | - | - | - | 98 | 99 | 100 | 98 |
9 | - | - | - | - | 76 | 55 | 70 | 58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.L.; Silva, C.M.; Ferreira, F.; Matos, J.S. Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal. Sustainability 2023, 15, 1064. https://doi.org/10.3390/su15021064
Santos ML, Silva CM, Ferreira F, Matos JS. Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal. Sustainability. 2023; 15(2):1064. https://doi.org/10.3390/su15021064
Chicago/Turabian StyleSantos, Maria Luíza, Cristina Matos Silva, Filipa Ferreira, and José Saldanha Matos. 2023. "Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal" Sustainability 15, no. 2: 1064. https://doi.org/10.3390/su15021064