Methane and Nitrous Oxide Emissions from a Temperate Peatland under Simulated Enhanced Nitrogen Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Microcosms Sampling
2.2. Simulation of N Deposition
2.3. CH4 and N2O Flux Measurements
2.4. Environmental Factors Measurement
2.5. Data Analysis
3. Results
3.1. Variations of CH4 and N2O Emissions before N Addition
Treatment | CH4 Flux (mg m−2 h−1) | N2O Flux (μg m−2 h−1) | n | ||
---|---|---|---|---|---|
Mean | SE | Mean | SE | ||
CK | 2.50 | 0.40 | 55.3 | 7.5 | 12 |
N5 | 1.79 | 0.66 | 55.1 | 6.9 | 12 |
N10 | 2.57 | 0.95 | 55.5 | 6.5 | 12 |
p value (ANOVA) | 0.471 | 0.959 |
3.2. Effects of N Addition on Vegetation and Environmental Factors
3.3. Effects of N Addition on Seasonal Variation of CH4 Emissions
3.4. Effects of N Addition on Seasonal Average CH4 Emissions
3.5. Effects of N Addition on Seasonal Variation of N2O Emissions
3.6. Effects of N Addition on Seasonal Average N2O Emissions
4. Discussion
4.1. Effects of N Addition on CH4 Emissions
4.2. Effects of N Addition on N2O Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holland, E.A.; Braswell, B.H.; Sulzman, J.; Lamarque, J.F. Nitrogen deposition onto the United States and Western Europe: Synthesis of observations and models. Ecol. Appl. 2005, 15, 38–57. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitznger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen cycles: Past, present and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhang, Y.; Han, W.X.; Tang, A.H.; Shen, J.L.; Cui, Z.L.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Lü, X.T.; Tian, H.Q. Spatial and temporal patterns of nitrogen deposition in China synthesis of observational data. J. Geophys. Res. 2007, 112, D22S05. [Google Scholar] [CrossRef]
- Yu, Z.C. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 2012, 9, 4071–4085. [Google Scholar] [CrossRef] [Green Version]
- Dinsmore, K.J.; Skiba, U.M.; Billett, M.F.; Rees, R.M.; Drewer, J. Spatial and temporal variability in CH4 and N2O fluxes from a Scottish ombrotrophic peatland. Soil Biol. Biochem. 2009, 41, 1315–1323. [Google Scholar] [CrossRef] [Green Version]
- Song, C.C.; Xu, X.F.; Tian, H.Q.; Wang, Y.Y. Ecosystem–atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Glob. Chang. Biol. 2009, 15, 692–705. [Google Scholar] [CrossRef]
- Wang, M.; Larmola, T.; Murphy, M.T.; Moore, T.R.; Bubier, J.L. Stoichiometric response of shrubs and mosses to long-term nutrient (N, P and K) addition in an ombrotrophic peatland. Plant Soil 2016, 400, 403–416. [Google Scholar] [CrossRef]
- Levy, P.; van Dijk, N.; Gray, A.; Sutton, M.; Jones, M.; Leeson, S.; Dise, N.; Leith, L.; Sheppard, L. Response of a peat bog vegetation community to long-term experimental addition of nitrogen. J. Ecol. 2019, 107, 1167–1186. [Google Scholar] [CrossRef] [Green Version]
- Bragazza, L.; Buttler, A.; Habermacher, J.; Brancaleoni, L.; Gerdol, R.; Fritze, H.; Hanajík, P.; Laiho, R.; Johnson, D. High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Glob. Chang. Biol. 2012, 18, 1163–1172. [Google Scholar] [CrossRef]
- Moore, T.R.; Knorr, K.H.; Thompson, L.; Roy, C.; Bubier, J.L. The effect of long-term fertilization on peat in an ombrotrophic bog. Geoderma 2019, 343, 176–186. [Google Scholar] [CrossRef]
- Joabsson, A.; Christensen, T.R.; Wallen, B. Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol. Evol. 1999, 14, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.N.; Song, C.C.; Miao, Y.Q.; Mao, R.; Wang, X.W. Response of CH4 emissions to moss removal and N addition in boreal peatland of northeast China. Biogeosciences 2014, 11, 4809–4816. [Google Scholar] [CrossRef] [Green Version]
- Cui, Q.; Song, C.; Wang, X.; Shi, F.; Wang, L.; Guo, Y. Rapid N2O fluxes at high level of nitrate nitrogen addition during freeze-thaw events in boreal peatlands of Northeast China. Atmos. Environ. 2016, 135, 1–8. [Google Scholar] [CrossRef]
- Bridgham, S.D.; Cadillo-quiroz, H.; Keller, J.K.; Zhuang, Q.L. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Chang. Biol. 2013, 19, 1325–1346. [Google Scholar] [CrossRef]
- Wilmoth, J.L.; Schaefer, J.K.; Schlesinger, D.R.; Roth, S.W.; Hatcher, P.G.; Shoemaker, J.K.; Zhang, X.N. The role of oxygen in stimulating methane production in wetlands. Glob. Chang. Biol. 2020, 22, 5831–5847. [Google Scholar] [CrossRef]
- Melling, L.; Hatano, R.; Kah, J.G. Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Biol. Biochem. 2005, 37, 1445–1453. [Google Scholar] [CrossRef]
- Bergman, I.; Klarqvist, M.; Nilsson, M. Seasonal variation in rates of methane production from peat of various botanical origins effects of temperature and substrate quality. FEMS Microbiol. Ecol. 2000, 33, 181–189. [Google Scholar] [CrossRef]
- MacDonald, J.A.; Fowler, D.; Hargreaves, K.J.; Skiba, U.; Leith, I.D.; Murray, M.B. Methane emission rates from a northern wetland: Response to temperature, water table and transport. Atmos. Environ. 1998, 32, 3219–3227. [Google Scholar] [CrossRef]
- Sun, X.X.; Song, C.C.; Guo, Y.D.; Wang, X.W.; Yang, G.S.; Li, Y.C.; Mao, R.; Lu, Y.Z. Effect of plants on methane emissions from a temperate marsh in different seasons. Atmos. Environ. 2012, 60, 277–282. [Google Scholar] [CrossRef]
- Segers, R. Methane production and methane consumption-a review of processes underlying wetland methane fluxes. Biogeochemistry 1998, 41, 23–51. [Google Scholar] [CrossRef]
- Zhang, L.H.; Song, C.C.; Wang, D.W.; Wang, Y.Y. Effects of exogenous nitrogen on freshwater marsh plant growth and N2O fluxes in Sanjiang Plain, Northeast China. Atmos. Environ. 2007, 41, 1080–1090. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ding, W.X.; Cai, Z.C.; Valerie, P.; Han, F.X. Response of methane emission to invasion of Spartina alterniflora and exogenous N deposition in the coastal salt marsh. Atmos. Environ. 2010, 44, 4588–4594. [Google Scholar] [CrossRef]
- Moseman-Valtierra, S.M.; Szura, K.; Eagle, M.; Thornber, C.S.; Wang, F.M. CO2 uptake offsets other greenhouse gas emissions from salt marshes with chronic nitrogen loading. Wetlands 2022, 42, 79. [Google Scholar] [CrossRef]
- Lund, M.; Christensen, T.R.; Mastepanov, M.; Lindroth, A.; Ström, L. Effect of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates. Biogeoscience 2009, 6, 2135–2144. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, G.; Zhang, T.; Mao, T.; Wei, D.; Song, C.; Hu, Z.; Huang, K. Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region. Sci. Total Environ. 2017, 601–602, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Penuelas, J.; Sardans, J.; Huang, J.; Li, D.; Tong, C. Effects of nitrogen loading on emission of carbon gases from estuarine tidal marshes with varying salinity. Sci. Total Environ. 2019, 667, 648–657. [Google Scholar] [CrossRef]
- Nykänen, H.; Vasander, H.; Huttunen, J.T.; Martikainen, P.J. Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland. Plant Soil 2002, 242, 147–155. [Google Scholar] [CrossRef]
- Hu, M.J.; Wilson, B.J.; Sun, Z.G.; Ren, P.; Tong, C. Effects of the addition of nitrogen and sulfate on CH4 and CO2 emissions, soil, and pore water chemistry in a high marsh of the Min River estuary in southeastern China. Sci. Total Environ. 2017, 579, 292–304. [Google Scholar] [CrossRef] [Green Version]
- Song, C.C.; Wang, L.L.; Tian, H.Q.; Liu, D.Y.; Lu, C.Q.; Xu, X.F.; Zhang, L.H.; Yang, G.S.; Wan, Z.M. Effect of continued nitrogen enrichment on greenhouse gas emissions from a wetland ecosystem in the Sanjiang Plain, Northeast China: A 5 year nitrogen addition experiment. J. Geophys. Res. Biogeosci. 2013, 118, 741–751. [Google Scholar] [CrossRef]
- Zhang, L.H.; Song, C.C.; Wang, D.W.; Wang, Y.Y.; Xu, X.F. The variation of methane emission from freshwater marshes and response to the exogenous N in Sanjiang Plain Northeast China. Atmos. Environ. 2007, 41, 4063–4072. [Google Scholar] [CrossRef]
- Eriksson, T.; Öquist, M.G.; Nilsson, M.B. Effects of decadal deposition of nitrogen and sulfur, and increased temperature, on methane emissions from a boreal peatland. J. Geophys. Res. Biogeosci. 2010, 115, 701–719. [Google Scholar] [CrossRef] [Green Version]
- Conrad, R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 1996, 60, 609–640. [Google Scholar] [CrossRef] [PubMed]
- Bulseco, A.N.; Giblin, A.E.; Tucker, J.; Murphy, A.E.; Sanderman, J.; Hiller-Bittrolff, K.; Bowen, J.L. Nitrate addition stimulates microbial decomposition of organic matter in salt marsh sediments. Glob. Chang. Biol. 2019, 25, 3224–3241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.H.; Shao, H.B.; Wang, B.C.; Zhang, L.W.; Qin, X.C. Effects of nitrogen and phosphorus on the production of carbon dioxide and nitrous oxide in salt-affected soils under different vegetation communities. Atmos. Environ. 2019, 204, 78–88. [Google Scholar] [CrossRef]
- Kroon, P.S.; Schrier-Uijl, A.P.; Hensen, A.; Veenendaal, E.M.; Jonker, H.J.J. Annual balances of CH4 and N2O from a managed fen meadow using eddy covariance flux measurements. Eur. J. Soil Sci. 2010, 61, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yu, L.F.; Zhang, Z.H.; Liu, W.; Chen, L.T.; Cao, G.M.; Yue, H.W.; Zhou, J.Z.; Yang, Y.F.; Tang, Y.H.; et al. Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland. Glob. Chang. Biol. 2017, 23, 815–829. [Google Scholar] [CrossRef] [Green Version]
- Le, T.B.; Wu, J.H.; Gong, Y.; Vogt, J. Graminoid removal reduces the increase in N2O fluxes due to nitrogen fertilization in a boreal peatland. Ecosystems 2021, 24, 261–271. [Google Scholar] [CrossRef]
- Aerts, R.; de Caluwe, H. Nitrogen deposition effects on carbon dioxide and methane emissions from temperate peatland soils. Oikos 1999, 84, 44–54. [Google Scholar] [CrossRef]
- Augustin, J.; Merbach, W.; Rogasik, J. Factors influencing nitrous oxide and methane emissions from minerotrophic fens in northeast Germany. Biol. Fertil. Soils 1998, 28, 1–4. [Google Scholar] [CrossRef]
- Zhang, L.H.; Song, C.C.; Zheng, X.H.; Wang, D.W.; Wang, Y.Y. Effects of nitrogen on the ecosystem respiration, CH4 and N2O emissions to the atmosphere from the freshwater marshes in northeast China. Environ. Geol. 2007, 52, 529–539. [Google Scholar] [CrossRef]
- Liu, X.T. Wetlands in Northeast China; Science Press: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Wang, J.Y.; Song, C.C.; Wang, X.W.; Song, Y.Y. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. Catena 2012, 96, 83–89. [Google Scholar] [CrossRef]
- Guan, B.; Xie, B.H.; Yang, S.S.; Hou, A.X.; Chen, M.; Han, G.X. Effects of five years’ nitrogen deposition on soil properties and plant growth in a salinized reed wetland of the Yellow River Delta. Ecol. Eng. 2019, 136, 160–166. [Google Scholar] [CrossRef]
- Gong, Y.; Wu, J.H.; Vogt, J.; Le, T.B. Warming reduces the increase in N2O emission under nitrogen fertilization in a boreal peatland. Sci. Total Environ. 2019, 664, 72–78. [Google Scholar] [CrossRef]
- Verville, J.H.; Hobbie, S.E.; Chapin, F.S., III; Hooper, D.U. Response of tundra CH4 and CO2 flux to manipulation of temperature and vegetation. Biogeochemistry 1998, 41, 215–235. [Google Scholar] [CrossRef]
- Kim, S.Y.; Veraart, A.J.; Meima-Franke, M.; Bodelier, P.L.E. Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments. Geoderma 2015, 259–260, 354–361. [Google Scholar] [CrossRef]
- Granberg, G.; Sundh, I.; Svensson, B.H.; Nilsson, U. Effects of temperature, and nitrogen and sulfur deposition, on methane emission from a boreal mire. Ecology 2001, 82, 1982–1998. [Google Scholar] [CrossRef]
- Moore, T.R.; Dalva, M. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol. Biochem. 1997, 29, 1157–1164. [Google Scholar] [CrossRef]
- Inglett, K.S.; Inglett, P.W.; Reddy, K.R.; Osborne, T.Z. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. Biogeochemistry 2012, 108, 77–90. [Google Scholar] [CrossRef]
- Sun, X.X.; Mu, C.C.; Song, C.C. Seasonal and spatial variations of methane emissions from montane wetlands in Northeast China. Atmos. Environ. 2011, 45, 1809–1816. [Google Scholar] [CrossRef]
- Rask, H.; Schoenau, J.; Anderson, D. Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biol. Biochem. 2002, 34, 435–443. [Google Scholar] [CrossRef]
- Bellisario, L.M.; Bubier, J.L.; Moore, T.R.; Chanton, J.P. Controls on CH4 emissions from a northern peatland. Glob. Biogeochem. Cycles 1999, 13, 81–91. [Google Scholar] [CrossRef]
- Treat, C.C.; Bubier, J.L.; Varner, R.K.; Crill, P.M. Timescale dependence of environmental and plant-mediated controls on CH4 flux in a temperate fen. J. Geophys. Res. 2007, 112, G01014. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.R.; Roulet, N.T. Methane flux: Water table relations in northern wetlands. Geophys. Res. Lett. 1993, 20, 587–590. [Google Scholar] [CrossRef] [Green Version]
- Heyer, J.; Berger, U.; Kuzin, I.L.; Yakovlev, O.N. Methane emissions from different ecosystem structures of the subarctic tundra in Western Siberia during midsummer and during the thawing period. Tellus 2002, 54B, 231–249. [Google Scholar] [CrossRef]
- Mou, X.J.; Liu, X.T.; Sun, Z.G.; Tong, C.; Lu, X.R. Short-term effect of exogenous nitrogen on N2O fluxes from native and invaded tidal marshes in the Min River Estuary, China. Wetlands 2019, 39, 139–148. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, Z.X.; Zheng, X.H.; Liu, C.Y.; Yao, Z.S.; Xie, B.H.; Cui, F.; Han, S.H.; Zhu, J.G. Annual emissions of nitrous oxide and nitric oxide from rice-wheat rotation and vegetable fields: A case study in the Tai-Lake region, China. Plant Soil 2012, 360, 37–53. [Google Scholar] [CrossRef]
- Anthony, T.L.; Silver, W.L. Hot moments drive extreme nitrous oxide and methane emissions from agricultural peatlands. Glob. Chang. Biol. 2021, 2, 5141–5153. [Google Scholar] [CrossRef]
- Jørgenson, C.J.; Struwe, S.; Elberling, B. Temporal trends in N2O flux dynamics in a Danish wetland -effects of plant mediated gas transport of N2O and O2 following changes in water level and soil mineral-N availability. Glob. Chang. Biol. 2012, 18, 210–222. [Google Scholar] [CrossRef]
- Lu, Y.; Song, C.C.; Wang, Y.Y.; Zhao, Z.C. Influence of plants on N2O emissions from wetlands ecosystems. J. Ecol. Rural. Environ. 2007, 23, 72–75, (In Chinese with English abstract). [Google Scholar]
- Ma, W.K.; Schautz, A.; Fishback, L.-A.E.; Bedard-Haughn, A.; Farrell, R.E.; Siciliano, S.D. Assessing the potential of ammonia oxidizing bacteria to produce nitrous oxide in soils of a high arctic lowland ecosystem on Devon Island, Canada. Soil Biol. Biochem. 2007, 39, 2001–2013. [Google Scholar] [CrossRef]
- Stadmark, J.; Seifert, A.-G.; Leonardson, L. Transforming meadows into free surface water wetlands: Impact of increased nitrate and carbon loading on greenhouse gas production. Atmos. Environ. 2009, 43, 1182–1188. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Zhu, R.B.; Wang, Q.; Xu, H. Methane and nitrous oxide fluxes from four tundra ecotopes in Ny-Ålesund of the High. J. Environ. Sci. 2014, 26, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Kandel, T.P.; Karki, S.; Elsgaard, L.; Lærke, P.E. Fertilizer-induced fluxes dominate annual N2O emissions from a nitrogen-rich temperate fen rewetted for paludiculture. Nutr. Cycl. Agroecosyst. 2019, 115, 57–67. [Google Scholar] [CrossRef]
- Gao, W.F.; Yao, Y.L.; Liang, H.; Song, L.Q.; Sheng, H.C.; Cai, T.J.; Gao, D.W. Emissions of nitrous oxide from continuous permafrost region in the Daxing’an Mountains, Northeast China. Atmos. Environ. 2019, 198, 34–45. [Google Scholar] [CrossRef]
- Sheppard, L.; Leith, L.; Leeson, S.; van Dijk, N.; Field, C.; Levy, P. Fate of N in a peatland, Whim bog immobilisation in the vegetation and peat, leakage into pore water and losses as N2O depend on the form of N. Biogeosciences 2013, 10, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Masta, M.; Espenberg, M.; Gadegaonkar, S.S.; Pärn, J.; Sepp, H.; Kirsimäe, K.; Sgouridis, F.; Müller, C.; Mander, Ü. Integrated isotope and microbiome analysis indicates dominance of denitrification in N2O production after rewetting of drained fen peat. Biogeochemistry 2022, 161, 119–136. [Google Scholar] [CrossRef]
Treatment | Variable | Equation | R2 | p |
---|---|---|---|---|
CK | T | F = 0.252 e0.145T | 0.288 | 0.015 * |
WT | F = 4.545 − 0.875 WT | 0.492 | 0.001 ** | |
N5 | T | F = 0.118e0.16T | 0.34 | 0.007 ** |
WT | F = 2.031 − 0.738 WT | 0.786 | 0.000 ** | |
N10 | T | F = 0.1 e0.173T | 0.343 | 0.007 ** |
WT | F = 3.35 − 0.62 WT | 0.543 | 0.000 ** |
Treatment | Variable | Equation | R2 | p |
---|---|---|---|---|
CK | T | F = −71.108 + 4.35T | 0.447 | 0.001 ** |
NO3− -N | F = −85.483 + 46.561ln(NO3− -N) | 0.651 | 0.000 ** | |
NH4+ -N | F = −107.521 + 46.275ln(NH4+ -N) | 0.528 | 0.000 ** | |
N5 | T | Log10(F + 30) = 0.365e0.068T | 0.211 | 0.03 * |
NO3− -N | Log10(F + 30) = −0.617 + 0.926ln(NO3− -N) | 0.47 | 0.001 ** | |
NH4+ -N | Log10(F + 30) = −1.051 + 0.945ln(NH4+ -N) | 0.285 | 0.015 * | |
N10 | T | Log10(F + 30) = 1.409e0.013T | 0.03 | 0.464 |
NO3− -N | 0.354 | 0.006 ** | ||
NH4+ -N | 0.265 | 0.020 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Zhu, Z.; Xue, J.; Wang, C.; Sun, X. Methane and Nitrous Oxide Emissions from a Temperate Peatland under Simulated Enhanced Nitrogen Deposition. Sustainability 2023, 15, 1010. https://doi.org/10.3390/su15021010
Meng X, Zhu Z, Xue J, Wang C, Sun X. Methane and Nitrous Oxide Emissions from a Temperate Peatland under Simulated Enhanced Nitrogen Deposition. Sustainability. 2023; 15(2):1010. https://doi.org/10.3390/su15021010
Chicago/Turabian StyleMeng, Xue, Zhiguo Zhu, Jing Xue, Chunguang Wang, and Xiaoxin Sun. 2023. "Methane and Nitrous Oxide Emissions from a Temperate Peatland under Simulated Enhanced Nitrogen Deposition" Sustainability 15, no. 2: 1010. https://doi.org/10.3390/su15021010
APA StyleMeng, X., Zhu, Z., Xue, J., Wang, C., & Sun, X. (2023). Methane and Nitrous Oxide Emissions from a Temperate Peatland under Simulated Enhanced Nitrogen Deposition. Sustainability, 15(2), 1010. https://doi.org/10.3390/su15021010