Rationalizing Herbicide Use in Maize within the Framework of Climatic Change and Extreme Hydrometeorological Phenomena
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meteorological Conditions
2.2. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Xue, Q.; Jessup, K.; Hao, B.; Hou, X.; Marek, T.; Xu, W.; Evett, S.; O’Shaughnessy, S.; Brauer, D. Yield and water use of drought-tolerant maize hybrids in a semiarid environment. Field Crops Res. 2018, 216, 1–9. [Google Scholar] [CrossRef]
- FAOSTAT. FAOSTAT Data. 2023. Available online: www.faostat.fao.org (accessed on 6 September 2023).
- Brankov, M.; Simic, M.; Mesarovic, J.; Kresovic, B.; Dragicevic, V. Integrated effects of herbicides and foliar fertilizer on corn inbred line. Chil. J. Agric. Res. 2020, 80, 50–60. [Google Scholar] [CrossRef]
- Imoloame, E. Evaluation of herbicide mixtures and manual weed control method in maize (Zea mays L.) production in the Southern Guinea agro-ecology of Nigeria. Cogent Food Agric. 2017, 3, 1375378. [Google Scholar] [CrossRef]
- Petrović, G.; Ivanović, T.; Knežević, D.; Radosavac, A.; Obhođaš, I.; Brzaković, T.; Golić, Z.; Dragičević Radičević, T. Assessment of climate change impact on maize production in Serbia. Atmosphere 2023, 14, 110. [Google Scholar] [CrossRef]
- Irmak, S.; Mohammed, A.; Kranz, W.; Yonts, C.; van Donk, S. Irrigation-Yield Production Functions and Irrigation Water Use Efficiency Response of Drought-Tolerant and Non-Drought-Tolerant Maize Hybrids under Different Irrigation Levels, Population Densities, and Environments. Sustainability 2020, 12, 358. [Google Scholar] [CrossRef]
- Badr, A.; El-Shazly, H.; Tarawneh, R.; Börner, A. Screening for Drought Tolerance in Maize (Zea mays L.) Germplasm Using Germination and Seedling Traits under Simulated Drought Conditions. Plants 2020, 9, 565. [Google Scholar] [CrossRef]
- Chipomho, J.; Mupeti, S.; Chipomho, C.; Mashavakure, N.; Mashingaidze, A. Evaluation of a pre-formulated post-emergence herbicide mixture of topramezone and dicamba on annual weeds and Bermuda grass in maize in a sub-tropical agro-ecology. Heliyon 2019, 5, e01712. [Google Scholar] [CrossRef]
- Gao, J.; Nuyttens, D.; Lootens, P.; He, Y.; Pieters, J. Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery. Biosyst. Eng. 2018, 170, 39–50. [Google Scholar] [CrossRef]
- Tagour, R.; Mosaad, I. Effect of the foliar enrichment and herbicides on maize and associated weeds irrigated with drainage water. Ann. Agric. Sci. 2017, 62, 183–192. [Google Scholar] [CrossRef]
- Rai, A.; Mahata, D.; Lepcha, E.; Nandi, K.; Mukherjee, P.K. A Review on Management of Weeds in Maize (Zea mays L.). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2906–2922. [Google Scholar] [CrossRef]
- Bartucca, M.; Di Michele, A.; Del Buono, D. Interference of three herbicides on iron acquisition in maize plants. Chemosphere 2018, 206, 424–431. [Google Scholar] [CrossRef]
- Travlos, I.; Apostolidis, V. Efficacy of the Herbicide Lancelot 450 WG (Aminopyralid + Florasulam) on Broadleaf and Invasive Weeds and Effects on Yield and Quality Parameters of Maize. Agriculture 2017, 7, 82. [Google Scholar] [CrossRef]
- Idziak, R.; Woznica, Z. Efficacy of Reduced Rates of Soil-Applied Dimethenamid-P and Pendimethalin Mixture Followed by Postemergence Herbicides in Maize. Agriculture 2020, 10, 163. [Google Scholar] [CrossRef]
- Karkanis, A.; Athanasiadou, D.; Giannoulis, K.; Karanasou, K.; Zografos, S.; Souipas, S.; Bartzialis, D.; Danalatos, N. Johnsongrass (Sorghum halepense (L.) Pers.) Interference, Control and Recovery under Different Management Practices and its Effects on the Grain Yield and Quality of Maize Crop. Agronomy 2020, 10, 266. [Google Scholar] [CrossRef]
- Pannacci, E.; Onofri, A. Alternatives to terbuthylazine for chemical weed control in maize. Commun. Biometry Crop Sci. 2016, 11, 51–63. [Google Scholar]
- Lehoczky, É.; Marton, L.; Nagy, P. Competition for nutrients between cold-tolerant maize and weeds. Commun. Soil Sci. Plant Anal. 2013, 44, 526–534. [Google Scholar] [CrossRef]
- Meseldžija, M.; Rajković, M.; Dudić, M.; Vranešević, M.; Bezdan, A.; Jurišić, A.; Ljevnaić-Mašić, B. Economic Feasibility of Chemical Weed Control in Soybean Production in Serbia. Agronomy 2020, 10, 291. [Google Scholar] [CrossRef]
- Jones, R.R.; Medd, R.W. Economic Thresholds and the Case for Longer Term Approaches to Population Management of Weeds. Weed Technol. 2000, 14, 337–350. Available online: http://www.jstor.org/stable/3988840 (accessed on 31 July 2023). [CrossRef]
- Galon, L.; Holz, C.M.; Forte, C.T.; Nonemacher, F.; Menin Basso, F.J.; Agazzi, L.R.; Santin, C.O.; Winter, F.L.; Toni, J.R.; Perin, G.F. Competitive interaction and economic injury level of Urochloa plantaginea in corn hybrids. Arq. Do Inst. Biológico 2019, 86, e0182019. [Google Scholar] [CrossRef]
- Meulen, A.; Chauhan, B.S. A review of weed management in wheat using crop competition. Crop Prot. 2017, 95, 38–44. [Google Scholar] [CrossRef]
- Bekavac, G.; Purar, B.; Jocković, Đ.; Stojaković, M.; Ivanović, M.; Malidža, G.; Đalović, I. Proizvodnja kukuruza u uslovima globalnih klimatskih promena. Ratar. I Povrt. 2010, 47, 443–450. [Google Scholar]
- Pavlov, J.; Delić, N.; Stevanović, M.; Čamdžija, Z.; Grčić, N.; Crevar, M. Grain yield of ZP maize hybrids in the maize growing areas in Serbija. In Proceedings of the 46th Croatian and 6th International Symposium on Agriculture, University of Zagreb, Faculty of Agriculture, Opatija, Croatia, 14–18 February 2011; Pspišil, M., Ed.; pp. 395–398. [Google Scholar]
- Madić, M.; Tomić, D.; Paunović, A.; Stevović, V.; Đurović, D. Prinos zrna hibrida kukuruza različitih FAO grupa zrenja. In Proceedings of the XXVI Savetovanje o Biotehnologiji sa Međunarodnim Učešćem (Zbornik Radova), Univerzitet u Kragujevcu, Agronomski Fakultet u Čačku, Čačak, Serbia, 12–13 March 2021; pp. 93–100. [Google Scholar]
- Landau, C.A.; Hager, A.G.; Williams, M.M. Diminishing weed control exacerbates maize yield loss to adverse weather. Glob. Chang. Biol. 2021, 27, 6156–6165. [Google Scholar] [CrossRef]
- Hayhoe, K.; Wuebbles, D.J.; Easterling, D.R.; Fahey, D.W.; Doherty, S.; Kossin, J.; Sweet, W.; Vose, R.; Wehner, M. Our changing climate. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; US Global Change Research Program: Washington, DC, USA, 2018; pp. 72–144. [Google Scholar] [CrossRef]
- Sreekanth, D.; Pawar, D.V.; Mishra, J.S.; Naidu, V.S.G.R. Climate change impacts on crop--weed interaction and herbicide efficacy. Curr. Sci. 2023, 124, 686–692. [Google Scholar]
- Jugulam, M.; Varanasi, A.; Varanasi, V.; Prasad, P.V.V. Climate change influence on herbicide efficacy and weed management. In Food Security and Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Ebert, A.W., Hunter, D., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 433–448. [Google Scholar] [CrossRef]
- Kumar, V.; Kumari, A.; Price, A.J.; Bana, R.S.; Singh, V.; Bamboriya, S.D. Impact of futuristic climate variables on weed biology and herbicidal efficacy: A Review. Agronomy 2023, 13, 559. [Google Scholar] [CrossRef]
- Amare, T. Review on Impact of Climate Change on Weed and Their Management. Am. J. Biol. Environ. Stat. 2016, 2, 21–27. [Google Scholar] [CrossRef]
- Varanasi, A.; Prasad, P.V.V.; Jugulam, M. Impact of Climate Change Factors on Weeds and Herbicide Efficacy. Adv. Agron. 2016, 135, 107–146. [Google Scholar] [CrossRef]
- Filipović, M.; Jovanović, Ž.; Tolimir, M. Pravci selekcije novih ZP hibrida. In Proceeding of the XX Savetovanje o Biotehnologiji sa Međunarodnim Učešćem (Zbornik Radova), Univerzitet u Kragujevcu, Agronomski Fakultet, Čačak, Serbia, 13–14 March 2015; pp. 7–15. [Google Scholar]
- EPPO/OEPP Standards. Guidelines for the efficacy evaluation of plant protection products. Des. Anal. Effic. Eval. Trials 2012, 42, 367–381. [Google Scholar] [CrossRef]
- EPPO/OEPP Standards. Guidelines for the efficacy evaluation of plant protection products. PP1/050(3). Weeds Maize 2007, 37, 40–43. [Google Scholar]
- Janji’c, V. Herbicidi; Nauˇcna Knjiga: Beograd, Serbia, 1985; pp. 1–589. [Google Scholar]
- Song, L.; Jin, J.; He, J. Effects of Severe Water Stress on Maize Growth Processes in the Field. Sustainability 2019, 11, 5086. [Google Scholar] [CrossRef]
- Nie, T.; Gong, Z.; Zhang, Z.; Wang, T.; Sun, N.; Tang, Y.; Chen, P.; Li, T.; Yin, S.; Zhang, M.; et al. Irrigation Scheduling for Maize under Different Hydrological Years in Heilongjiang Province, China. Plants 2023, 12, 1676. [Google Scholar] [CrossRef]
- Republički Hidrometeorološki Zavod Srbije. Available online: https://www.hidmet.gov.rs/ (accessed on 28 July 2023).
- Coble, H.D. Implementation of Economic Thresholds for Weeds in Soybean. In Pest Management in Soybean; Copping, L.G., Green, M.B., Rees, R.T., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 308–316. ISBN 978-1-85166-874-8. [Google Scholar]
- Riley, D. Economic Injury (EIL) and Economic Threshold (ET) Concepts in Pest Management; University of Georgia: Tiffon, GA, USA, 2009. [Google Scholar]
- Hock, S.; Knezevic, S.; Martin, A.; Lindquist, J. Soybean row spacing and weed emergence time influence weed competitiveness and competitive indices. Weed Sci. 2006, 54, 38–46. [Google Scholar] [CrossRef]
- Anwar, M.P.; Islam, A.K.M.M.; Yeasmin, S.; Rashid, M.H.; Juraimi, A.S.; Ahmed, S.; Shrestha, A. Weeds and Their Responses to Management Efforts in A Changing Climate. Agronomy 2021, 11, 1921. [Google Scholar] [CrossRef]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Kovačević, D. Njivski Korovi—Biologija i Suzbijanje; Univerzitet u Beogradu, Poljoprivredni Fakultet—Zemun: Beograd, Serbia, 2008; pp. 1–520. ISBN 978-86-7834-034-5. [Google Scholar]
- Simić, M.; Spasojević, I.; Kovačević, D.; Brankov, M.; Dragičević, V. Crop rotation influence on annual and perennial weed control and maize productivity. Rom. Agric. Res. 2016, 33, 125–133. [Google Scholar]
- Rajković, M.; Malidža, G.; Tomaš Simin, M.; Milić, D.; Glavaš-Trbić, D.; Meseldžija, M.; Vrbničanin, S. Sustainable Organic Corn Production with the Use of Flame Weeding as the Most Sustainable Economical Solution. Sustainability 2021, 13, 572. [Google Scholar] [CrossRef]
- Alptekin, H.; Ozkan, A.; Gurbuz, R.; Kulak, M. Management of weeds in maize by sequential or individual applications of pre- and post-emergence herbicides. Agriculture 2023, 13, 421. [Google Scholar] [CrossRef]
- Grzanka, M.; Sobiech, Ł.; Idziak, R.; Skrzypczak, G. Effect of the Time of Herbicide Application and the Properties of the Spray Solution on the Efficacy of Weed Control in Maize (Zea mays L.) Cultivation. Agriculture 2022, 12, 353. [Google Scholar] [CrossRef]
- Brankov, M.; Simić, M.; Dragičević, V. The influence of maize—Winter wheat rotation and pre-emergence herbicides on weeds and maize productivity. Crop Prot. 2021, 143, 105558. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Prabhjyot-Kaur Mahajan, G.; Randhawa, R.J.; Singh, H.; Kang, M.S. Global warming and its possible impact on agriculture in India. Adv. Agron. 2014, 123, 65–121. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. Online. Tuesday, 1 August 2023. Available online: www.weedscience.org (accessed on 1 August 2023).
- Zimdahl, R.L. Weed–Crop Competition: A Review, 2nd ed.; Blackwell Publishing: Ames, IA, USA, 2004; 220p. [Google Scholar]
- Damalas, C.A.; Koutroubas, S.D. Weed Competition Effects on Growth and Yield of Spring-Sown White Lupine. Horticulturae 2022, 8, 430. [Google Scholar] [CrossRef]
Variants | Preparation | Active Ingredient (AI) | Applied Doses | Time of Application |
---|---|---|---|---|
1 | Control | - | - | - |
2 | Tvister | mesotrione (50 g/L) + terbuthylazine (125 g/L) | 2.3 L/ha | post-em |
3 | Zeazin + Intermezzo | terbuthylazine (500 g/L) + mesotrione (480 g/L) | 0.6 + 0.25 L/ha | pre-em post-em |
4 | Zeazin + Colosseum | terbuthylazine (500 g/L) + dicamba (578 g/L) | 0.6 + 0.6 L/ha | pre-em post-em |
Year | Water Deficit (mm) | Excess Water (mm) | ||
---|---|---|---|---|
Vegetative Season | Off-Vegetative Season | Vegetative Season | Off-Vegetative Season | |
2017 | 262 | 0 | 0 | 48 |
2018 | 195 | 0 | 0 | 149 |
First Assessment | |||||||
---|---|---|---|---|---|---|---|
Weed Species | 1 | 2 | 3 | 4 | |||
No m−2 | No m−2 | Ce (%) | No m−2 | Ce (%) | No m−2 | Ce (%) | |
Abutilon theophrasti | 1.50 | 0 | 100 | 0 | 100 | 0 | 100 |
Amaranthus retroflexus | 6.50 | 0 | 100 | 0 | 100 | 0 | 100 |
Ambrosia artemisiifolia | 17.00 | 1.25 | 92.64 | 3.50 | 88.23 | 0 | 100 |
Chenopodium album | 13.25 | 1.75 | 86.79 | 2.00 | 84.90 | 1.50 | 88.67 |
Chenopodium hybridum | 3.75 | 0.50 | 86.67 | 0 | 100 | 0 | 100 |
Cirsium arvense | 1.25 | 0 | 100 | 0.50 | 60.00 | 0 | 100 |
Convolvulus arvensis | 1.75 | 0.75 | 57.14 | 1.00 | 42.85 | 1.00 | 42.85 |
Datura stramonium | 5.25 | 0.50 | 90.47 | 0 | 100 | 0 | 100 |
Setaria glauca | 2.75 | 0 | 100 | 0 | 100 | 1.00 | 100 |
Solanum nigrum | 8.75 | 0 | 100 | 0 | 100 | 1.00 | 100 |
Sorghum halepense (s) | 3.50 | 0 | 100 | 0 | 100 | 1.00 | 71.42 |
Veronica persicaria | 1.25 | 0 | 100 | 0 | 100 | 0 | 100 |
Xanthium strumarium | 6.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Total number of weeds | 73.25 | 4.75 | 7.00 | 5.50 | |||
Total efficacy | - | 93.51% | 90.44% | 92.49% | |||
Phytotoxicity | - | 1 | 1 | 1 | |||
Second Assessment | |||||||
Weed species | 1 | 2 | 3 | 4 | |||
No m−2 | No m−2 | Ce (%) | No m−2 | Ce (%) | No m−2 | Ce (%) | |
Abutilon theophrasti | 1.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Amaranthus retroflexus | 5.50 | 0 | 100 | 0 | 100 | 0 | 100 |
Ambrosia artemisiifolia | 13.25 | 0 | 100 | 0.50 | 96.22 | 0 | 100 |
Chenopodium album | 10.75 | 1.50 | 86.04 | 0.50 | 95.34 | 0 | 100 |
Chenopodium hybridum | 2.00 | 0 | 100 | 0 | 100 | 0 | 100 |
Cirsium arvense | 1.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Convolvulus arvensis | 1.75 | 0.25 | 85.71 | 0 | 100 | 0 | 100 |
Datura stramonium | 6.00 | 0 | 100 | 0 | 100 | 0 | 100 |
Setaria glauca | 10.25 | 0 | 100 | 0 | 100 | 1.00 | 90.24 |
Solanum nigrum | 2.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Sorghum halepense | 3.50 | 0 | 100 | 0 | 100 | 1.00 | 71.42 |
Veronica persicaria | 1.25 | 0 | 100 | 0 | 100 | 0 | 100 |
Xanthium strumarium | 10.00 | 0 | 100 | 0 | 100 | 0 | 100 |
Total number of weeds | 61.50 | 1.75 | 1.00 | 2.00 | |||
Total efficacy | - | 97.15% | 98.37% | 96.74% | |||
Phytotoxicity | - | 1 | 1 | 1 |
First Assessment | |||||||
---|---|---|---|---|---|---|---|
Weed Species | 1 | 2 | 3 | 4 | |||
No m−2 | No m−2 | Ce (%) | No m−2 | Ce (%) | No m−2 | Ce (%) | |
Abutilon theophrasti | 3.50 | 0 | 100 | 0 | 100 | 0 | 100 |
Amaranthus retroflexus | 7.25 | 0 | 100 | 0 | 100 | 0 | 100 |
Ambrosia artemisiifolia | 16.25 | 1.50 | 90.76 | 1.00 | 93.84 | 0 | 100 |
Chenopodium album | 18.75 | 2.00 | 89.33 | 2.50 | 86.66 | 0 | 100 |
Chenopodium hybridum | 3.25 | 0.50 | 84.61 | 0 | 100 | 0 | 100 |
Cirsium arvense | 1.25 | 0 | 100 | 0.50 | 60.00 | 0 | 100 |
Convolvulus arvensis | 2.00 | 0.50 | 75.00 | 0.75 | 62.50 | 0 | 100 |
Datura stramonium | 7.75 | 0 | 100 | 0 | 100 | 1.00 | 87.09 |
Setaria glauca | 1.50 | 0 | 100 | 0 | 100 | 0 | 100 |
Solanum nigrum | 12.50 | 0 | 100 | 0 | 100 | 2.00 | 84.00 |
Sorghum halepense (s) | 4.50 | 0 | 100 | 0 | 100 | 0 | 100 |
Veronica persicaria | 1.25 | 0 | 100 | 0 | 100 | 0 | 100 |
Xanthium strumarium | 8.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Total number of weeds | 88.50 | 4.50 | 4.75 | 3.00 | |||
Total efficacy | - | 94.91% | 94.63% | 96.61% | |||
Phytotoxicity | - | 1 | 1 | 1 | |||
Second Assessment | |||||||
Weed species | 1 | 2 | 3 | 4 | |||
No m−2 | No m−2 | Ce (%) | No m−2 | Ce (%) | No m−2 | Ce (%) | |
Abutilon theophrasti | 4.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Amaranthus retroflexus | 6.25 | 0 | 100 | 0 | 100 | 0 | 100 |
Ambrosia artemisiifolia | 15.25 | 0.50 | 96.72 | 0.50 | 96.72 | 0 | 100 |
Chenopodium album | 11.50 | 1.50 | 86.95 | 0.50 | 95.65 | 0 | 100 |
Chenopodium hybridum | 3.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Cirsium arvense | 1.00 | 0 | 100 | 0 | 100 | 0 | 100 |
Convolvulus arvensis | 1.00 | 0.25 | 75.00 | 0.50 | 50.00 | 0 | 100 |
Datura stramonium | 6.00 | 0 | 100 | 0 | 100 | 1.00 | 83.33 |
Setaria glauca | 7.25 | 0 | 100 | 0 | 100 | 0.50 | 100 |
Solanum nigrum | 2.75 | 0 | 100 | 0 | 100 | 0.75 | 72.72 |
Sorghum halepense (s) | 3.25 | 0 | 100 | 0.25 | 92.30 | 0.25 | 92.30 |
Veronica persicaria | 0.25 | 0 | 100 | 0 | 100 | 0 | 100 |
Xanthium strumarium | 10.25 | 0 | 100 | 0.75 | 92.68 | 0 | 100 |
Total number of weeds | 73.25 | 2.25 | 2.50 | 2.50 | |||
Total efficacy | - | 96.92% | 96.58% | 96.58% | |||
Phytotoxicity | - | 1 | 1 | 1 |
First Assessment | |||||||
---|---|---|---|---|---|---|---|
Weed Species | 1 | 2 | 3 | 4 | |||
No m−2 | No m−2 | Ce (%) | No m−2 | Ce (%) | No m−2 | Ce (%) | |
9.00 | 0.75 | 91.66 | 0 | 100 | 0 | 100 | |
Amaranthus retroflexus | 1.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Ambrosia artemisiifolia | 11.50 | 1.00 | 91.30 | 2.50 | 78.26 | 1.25 | 89.13 |
Chenopodium album | 9.25 | 0.50 | 94.59 | 2.50 | 72.97 | 1.50 | 83.78 |
Chenopodium hybridum | 10.50 | 0 | 100 | 0 | 100 | 1.00 | 90.47 |
Cirsium arvense | 0.75 | 0.25 | 66.66 | 0.25 | 66.66 | 0.25 | 66.66 |
Convolvulus arvensis | 0.75 | 0.25 | 66.66 | 0 | 100 | 0.25 | 66.66 |
Datura stramonium | 13.75 | 0 | 100 | 0 | 100 | 1.00 | 92.72 |
Setaria glauca | 3.75 | 0 | 100 | 0 | 100 | 0.25 | 93.33 |
Solanum nigrum | 16.50 | 1.25 | 92.42 | 0.25 | 98.48 | 0.50 | 96.96 |
Sorghum halepense (s) | 4.00 | 0 | 100 | 0 | 100 | 0.25 | 93.75 |
Veronica persicaria | 0.50 | 0 | 100 | 0 | 100 | 0 | 100 |
Xanthium strumarium | 3.75 | 0.25 | 93.33 | 0 | 100 | 0 | 100 |
Total number of weeds | 85.75 | 4.25 | 5.50 | 6.25 | |||
Total efficacy | - | 95.04% | 93.58% | 92.71% | |||
Phytotoxicity | - | 1 | 1 | 1 | |||
Second Assessment | |||||||
Weed species | 1 | 2 | 3 | 4 | |||
No m−2 | No m−2 | Ce (%) | No m−2 | Ce (%) | No m−2 | Ce (%) | |
Abutilon theophrasti | 4.00 | 0 | 100 | 0 | 100 | 0 | 100 |
Amaranthus retroflexus | 9.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Ambrosia artemisiifolia | 3.50 | 0 | 100 | 0 | 100 | 0 | 100 |
Chenopodium album | 9.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Chenopodium hybridum | 11.5 | 0 | 100 | 0 | 100 | 0 | 100 |
Cirsium arvense | 4.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Convolvulus arvensis | 0.50 | 0.25 | 50.00 | 0 | 100 | 0.25 | 50.00 |
Datura stramonium | 11.00 | 0.25 | 97.72 | 0.50 | 95.45 | 1.00 | 90.90 |
Setaria glauca | 18.50 | 2.25 | 87.83 | 3.25 | 82.43 | 2.75 | 85.13 |
Solanum nigrum | 10.00 | 0 | 100 | 1.00 | 90.00 | 2.00 | 80.00 |
Sorghum halepense (s) | 5.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Veronica persicaria | 3.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Xanthium strumarium | 1.00 | 0 | 100 | 0 | 100 | 0 | 100 |
Total number of weeds | 93.75 | 2.75 | 4.75 | 6.00 | |||
Total efficacy | - | 97.06% | 94.93% | 93.60% | |||
Phytotoxicity | - | 1 | 1 | 1 |
First Assessment | |||||||
---|---|---|---|---|---|---|---|
Weed Species | 1 | 2 | 3 | 4 | |||
No m−2 | No m−2 | Ce (%) | No m−2 | Ce (%) | No m−2 | Ce (%) | |
Abutilon theophrasti | 16.25 | 0 | 100 | 0 | 100 | 0 | 100 |
Amaranthus retroflexus | 6.50 | 0 | 100 | 0 | 100 | 0 | 100 |
Ambrosia artemisiifolia | 11.50 | 2.00 | 82.60 | 0 | 100 | 0 | 100 |
Chenopodium album | 13.75 | 2.50 | 81.81 | 3.50 | 74.54 | 2.75 | 80.00 |
Chenopodium hybridum | 18.50 | 0 | 100 | 0 | 100 | 0 | 100 |
Cirsium arvense | 1.50 | 0 | 100 | 0.50 | 66.66 | 0 | 100 |
Convolvulus arvensis | 0.50 | 0 | 100 | 0 | 100 | 0 | 100 |
Datura stramonium | 19.25 | 0 | 100 | 1.75 | 90.90 | 1.50 | 92.20 |
Setaria glauca | 3.00 | 0 | 100 | 0 | 100 | 0 | 100 |
Solanum nigrum | 14.25 | 0 | 100 | 0 | 100 | 1.00 | 92.98 |
Sorghum halepense (s) | 1.50 | 0 | 100 | 0 | 100 | 0 | 100 |
Veronica persicaria | 0.25 | 0 | 100 | 0 | 100 | 0 | 100 |
Xanthium strumarium | 3.75 | 0 | 100 | 0 | 100 | 0.25 | 93.33 |
Total number of weeds | 110.50 | 4.50 | 5.75 | 5.50 | |||
Total efficacy | 95.92% | 94.79% | 95.02% | ||||
Phytotoxicity | - | 1 | 1 | 1 | |||
Second Assessment | |||||||
Weed species | 1 | 2 | 3 | 4 | |||
No m−2 | No m−2 | Ce (%) | No m−2 | Ce (%) | No m−2 | Ce (%) | |
Abutilon theophrasti | 21.75 | 0.50 | 97.70 | 0.50 | 97.70 | 0.75 | 96.55 |
Amaranthus retroflexus | 10.50 | 0 | 100 | 0 | 100 | 0 | 100 |
Ambrosia artemisiifolia | 13.75 | 0.50 | 96.36 | 1.00 | 92.72 | 0.25 | 98.18 |
Chenopodium album | 18.25 | 1.00 | 94.52 | 0.75 | 95.89 | 1.00 | 94.52 |
Chenopodium hybridum | 21.25 | 1.25 | 94.11 | 1.75 | 91.76 | 1.25 | 94.11 |
Cirsium arvense | 0.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Convolvulus arvensis | 0.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Datura stramonium | 21.50 | 1.00 | 95.34 | 1.00 | 95.34 | 1.25 | 94.18 |
Setaria glauca | 17.25 | 0.25 | 98.55 | 0.25 | 98.55 | 0.50 | 97.10 |
Solanum nigrum | 3.50 | 0 | 100 | 0 | 100 | 0.50 | 85.71 |
Sorghum halepense (s) | 1.00 | 0 | 100 | 0 | 100 | 0.25 | 75.00 |
Veronica persicaria | 0.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Xanthium strumarium | 2.75 | 0 | 100 | 0 | 100 | 0 | 100 |
Total number of weeds | 133.75 | 4.50 | 5.25 | 5.75 | |||
Total efficacy | 96.63% | 96.07% | 95.70% | ||||
Phytotoxicity | - | 1 | 1 | 1 |
The First Location | The Second Location | ||||||
---|---|---|---|---|---|---|---|
Weed Species | Average | CI | CL | Weed Species | Average | CI | CL |
Ambrosia artemisiifolia | 3.03 | 10 | 30.30 | Ambrosia artemisiifolia | 3.15 | 10 | 31.50 |
Chenopodium album | 2.40 | 7.94 | 19.06 | Chenopodium album | 3.02 | 9.60 | 28.99 |
Xanthium strumarium | 1.67 | 5.54 | 9.25 | Xanthium strumarium | 1.90 | 6.03 | 11.46 |
Amaranthus retroflexus | 1.20 | 3.97 | 4.76 | Solanum nigrum | 1.52 | 4.84 | 7.36 |
Solanum nigrum | 1.15 | 3.80 | 4.37 | Datura stramonium | 1.37 | 4.38 | 6.00 |
Datura stramonium | 1.12 | 3.72 | 4.17 | Amaranthus retroflexus | 1.35 | 4.29 | 5.79 |
Chenopodium hybridum | 0.57 | 1.90 | 1.08 | Abutilon theophrasti | 0.82 | 2.62 | 2.15 |
Convolvulus arvensis | 0.35 | 1.16 | 0.41 | Chenopodium hybridum | 0.70 | 2.22 | 1.55 |
Abutilon theophrasti | 0.32 | 1.07 | 0.34 | Convolvulus arvensis | 0.30 | 0.95 | 0.28 |
Cirsium arvense | 0.30 | 1.00 | 0.30 | Cirsium arvense | 0.22 | 0.71 | 0.16 |
Veronica persicaria | 0.20 | 0.83 | 0.17 | Veronica persicaria | 0.15 | 0.48 | 0.072 |
The First Location | The Second Location | ||||||
---|---|---|---|---|---|---|---|
Weed Species | Average | CI | CL | Weed Species | Average | CI | CL |
Solanum nigrum | 2.65 | 10 | 26.50 | Datura stramonium | 4.07 | 10 | 40.70 |
Datura stramonium | 2.47 | 9.34 | 23.07 | Chenopodium hybridum | 3.97 | 9.75 | 38.71 |
Chenopodium hybridum | 2.20 | 8.30 | 18.26 | Abutilon theophrasti | 3.80 | 9.33 | 35.45 |
Chenopodium album | 1.90 | 7.17 | 13.62 | Chenopodium album | 3.20 | 7.86 | 25.15 |
Ambrosia artemisiifolia | 1.50 | 5.66 | 8.49 | Ambrosia artemisiifolia | 2.52 | 6.20 | 15.62 |
Abutilon theophrasti | 1.20 | 4.53 | 5.44 | Solanum nigrum | 1.77 | 4.35 | 7.70 |
Amaranthus retroflexus | 1.15 | 4.34 | 4.99 | Amaranthus retroflexus | 1.70 | 4.17 | 7.09 |
Cirsium arvense | 0.55 | 2.08 | 1.14 | Xanthium strumarium | 0.65 | 1.60 | 1.04 |
Xanthium strumarium | 0.47 | 1.79 | 0.84 | Cirsium arvense | 0.22 | 0.55 | 0.12 |
Veronica persicaria | 0.42 | 1.60 | 0.67 | Convolvulus arvensis | 0.12 | 0.30 | 0.036 |
Convolvulus arvensis | 0.12 | 0.47 | 0.056 | Veronica persicaria | 0.10 | 0.25 | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begović, R.; Dudić, M.; Meseldžija, M.; Vranešević, M.; Jurišić, A. Rationalizing Herbicide Use in Maize within the Framework of Climatic Change and Extreme Hydrometeorological Phenomena. Sustainability 2023, 15, 14444. https://doi.org/10.3390/su151914444
Begović R, Dudić M, Meseldžija M, Vranešević M, Jurišić A. Rationalizing Herbicide Use in Maize within the Framework of Climatic Change and Extreme Hydrometeorological Phenomena. Sustainability. 2023; 15(19):14444. https://doi.org/10.3390/su151914444
Chicago/Turabian StyleBegović, Radovan, Milica Dudić, Maja Meseldžija, Milica Vranešević, and Aleksandar Jurišić. 2023. "Rationalizing Herbicide Use in Maize within the Framework of Climatic Change and Extreme Hydrometeorological Phenomena" Sustainability 15, no. 19: 14444. https://doi.org/10.3390/su151914444
APA StyleBegović, R., Dudić, M., Meseldžija, M., Vranešević, M., & Jurišić, A. (2023). Rationalizing Herbicide Use in Maize within the Framework of Climatic Change and Extreme Hydrometeorological Phenomena. Sustainability, 15(19), 14444. https://doi.org/10.3390/su151914444