Determination and Evaluation of Landslide-Prone Regions of Isparta (Turkey): An Urban Planning View
Abstract
:1. Introduction
2. Materials and Method
2.1. The Methodology of the Study
2.2. The Study Area
2.3. The Data and the Spatial Analysis
2.3.1. Geological Setting
2.3.2. Seismicity—Fault Lines and Past Earthquake Events
2.3.3. Slope and Aspect
2.3.4. Water Sources
2.3.5. Landslide Inventory
2.3.6. Land Use
3. Results
3.1. Landslide-Prone Regions in Isparta
3.2. First Landslide-Prone Region
3.3. Second Landslide-Prone Region
3.4. Third Landslide-Prone Region
3.5. Fourth Landslide-Prone Region
3.6. Fifth Landslide-Prone Region
4. Discussion
Comparison of Upper-Scale Spatial Plan Land Use Decisions and Landslide-Prone Regions of Isparta
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruden, D.M. A simple definition of a landslide. Bull. Int. Assoc. Eng. Geol. 1991, 43, 27–29. [Google Scholar] [CrossRef]
- Sunbul, F.; Sunbul Guner, A.B. Sonlu Elemanlar Yöntemi ile Deprem Bağlı Heyelan Tehlike Modellemesi. Beykent Üniv. Fen Mühendislik Bilim. Dergisi. 2021, 13, 5–14. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope movement types and processes. In Special Report 176: Landslides: Analysis and Control; Schuster, R.L., Krizek, R.J., Eds.; TRB, National Research Council: Washington, DC, USA, 1978; pp. 11–33. [Google Scholar]
- Melillo, M.; Gariano, S.L.; Peruccacci, S.; Sarro, R.; Mateos, R.M.; Brunetti, M.T. Rainfall and rockfalls in the Canary Islands: Assessing a seasonal link. Nat. Hazards Earth Syst. Sci. 2020, 20, 2307–2317. [Google Scholar] [CrossRef]
- Aydın, M.C.; Birincioğlu, E.S.; Büyüksaraç, A. Landslide Susceptibility Mapping in Bitlis Province using GIS-based AHP method. Turk. J. Remote Sens. GIS 2022, 3, 160–171. [Google Scholar] [CrossRef]
- Thein, K.S.M.; Nagai, M.; Nakamura, T.; Phienwej, N.; Pal, I. Assessment of the Impacts of Urbanization on Landslide Susceptibility in Hakha City, A Mountainous Region of Western Myanmar. Land 2023, 12, 1036. [Google Scholar] [CrossRef]
- Holcombe, L.; Beesley, M.; Vardanega, P.; Sorbie, R. Urbanisation and landslides: Hazard drivers and better practices. Proc. ICE Civ. Eng. 2016, 169, 137–144. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Perera, E.N.C.; Jayawardana, D.T.; Ranagalage, M.; Dissanayake, D.M.S.L.B.; Wijenayaka, H.M.D.S. Introduce a framework for landslide risk assessment using geospatial analysis: A case study from Kegalle District, Sri Lanka. Model. Earth Syst. Environ. 2020, 6, 2415–2431. [Google Scholar] [CrossRef]
- The World Bank the Global Landslide Hazard Map Final Project Report, 26 June 2020. Ove Arup & Partners International Ltd. UK. Available online: https://datacatalog.worldbank.org/search/dataset/0037584/Global-landslide-hazard-map (accessed on 14 June 2023).
- UNDRR. 2023. Available online: https://www.undrr.org/terminology/hazard (accessed on 10 June 2023).
- Mateos, R.M.; Quental, L.; Herrera, G.; Kopacková, V.; Vinielles, J.; Mafftei, R.; Sarro, R.; Jemec, M.; Béjar, M.; Kułak, M.; et al. U-Geohaz—“Geohazard Impact Assessment for Urban Areas”: Improving the Integration of Geohazards into Urban Management and Planning to Increase Urban Resilience (Deliverable D 5.1) (UCPM-2017-PP-AG-783169); Grant Agreement No. 783169. (Project Report); IGME-SPAIN: Madrid, Spain, 2018. [Google Scholar]
- Mateos, R.M.; López-Vinielles, J.; Poyiadji, E.; Tsagkas, D.; Sheehy, M.; Hadjicharalambous, K.; Liščák, P.; Podolski, L.; Laskowicz, I.; Iadanza, C.; et al. Integration of landslide hazard into urban planning across Europe. Landsc. Urban Plan. 2020, 196, 103740. [Google Scholar] [CrossRef]
- Haque, U.; Blum, P.; da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.P.; Auflič, M.J.; Andres, N.; Poyiadji, E.; et al. Fatal landslides in Europe. Landslides 2016, 13, 1545–1554. [Google Scholar] [CrossRef]
- Gelişli, K. Jeofizik Yötemlerle Heyelan Araştırmaları. Uygulamalı Yer Bilim. Derg. 2018, 17, 115–126. [Google Scholar] [CrossRef]
- AFAD. 2020 Yılı Doğa Kaynaklı Olay İstatistikleri. 2021. Available online: https://www.afad.gov.tr/kurumlar/afad.gov.tr/e_Kutuphane/Istatistikler/2020yilidogakaynakliolayistatistikleri.pdf (accessed on 15 May 2023).
- Fidan, S.; Görüm, T. Türkiye’de ölümcül heyelanların dağılım karakteristikleri ve ulusal ölçekte öncelikli alanların belirlenmesi. Türk Coğrafya Derg. 2020, 74, 123–134. [Google Scholar] [CrossRef]
- Vojtekova, J.; Vojtek, M. Assessment of landslide susceptibility at a local spatial scale applying the multi-criteria analysis and GIS: A case study from Slovakia. Geomatics. Nat. Hazards Risk 2020, 11, 131–148. [Google Scholar] [CrossRef]
- Ösna, T.; Akaçapınar Sezer, E.; Akgün, A. GeoFIS: Heyelan Duyarlılık Haritaları için Kolay Kullanımlı Bir Yazılım. In Proceedings of the ELECO 2012 Elektrik-Elektronik ve Bilgisayara Mühendisliği Sempozyumu, Bursa, Turkey, 29 November–1 December 2012; pp. 603–607. [Google Scholar]
- Basara, A.C.; Tabar, M.E.; Sisman, Y. Landslide Susceptibility Mapping of Samsun (Turkey) Province Using Frequency Ratio and AHP Methods. Turk. J. Geogr. Inf. Syst. 2020, 3, 24–30. [Google Scholar]
- Alptekin, A.; Yakar, M. Heyelan bölgesinin İHA kullanarak modellenmesi. Türkiye İnsansız Hava Araçları Dergisi. 2020, 2, 17–21. [Google Scholar]
- Sarro, R.; Riquelme, A.; García-Davalillo, J.; Mateos, R.; Tomás, R.; Pastor, J.; Cano, M.; Herrera, G. Rockfall Simulation Based on UAV Photogrammetry Data Obtained during an Emergency Declaration: Application at a Cultural Heritage Site. Remote Sens. 2018, 10, 1923. [Google Scholar] [CrossRef]
- Turnet, D.; Lucieer, A.; De Jong, S.M. Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2015, 7, 1736–1757. [Google Scholar] [CrossRef]
- Zhang, X.; Krabbenhoft, K.; Sheng, D.; Li, W. Numerical simulation of a flow-like landslide using the particle finite element method. Comput. Mech. 2015, 55, 167–177. [Google Scholar] [CrossRef]
- Becker, P.A.; Idelsohn, S.R. A multiresolution strategy for solving landslides using the Particle Finite Element Method. Acta Geotech. 2016, 11, 643–657. [Google Scholar] [CrossRef]
- Yuceses, O.; Erenoğlu, R.C.; Erenoğlu, O. GPS/GNSS Verileriyle Heyelanların CBS Ortamında Üç Boyutlu Modellenmesi ve Analizi. 6. In Proceedings of the Uzaktan Algılama-CBS Sempozyumu (UZAL-CBS 2016), Adana, Turkey, 5–7 October 2016; pp. 213–221. [Google Scholar]
- Peng, C.; Li, S.; Wu, W.; An, H.; Chen, X.; Ouyang, C.; Tang, H. On three-dimensional SPH modelling of large-scale landslides. Can. Geotech. J. 2022, 59, 24–39. [Google Scholar] [CrossRef]
- Montrasio, L.; Schiliro, L.; Terrone, A. Physical and numerical modelling of shallow landslides. Landslides 2015, 13, 873–883. [Google Scholar] [CrossRef]
- Cascini, L.; Bonnard, C.; Corominas, J.; Jibson, R.; Montero-Olarte, J. Landslide hazard and risk zoning for urban planning and development. In Landslide Risk Management; Hungr, O., Fell, R., Couture, R., Eberhardt, E., Eds.; Taylor and Francis: London, UK, 2005; pp. 199–235. [Google Scholar]
- Hamza, T.; Raghuvanshi, T.K. GIS based landslide hazard evaluation and zonation—A case from Jeldu District, Central Ethiopia. J. King Saud Univ. Sci. 2017, 29, 151–165. [Google Scholar] [CrossRef]
- Bucała-Hrabia, A.; Kijowska-Strugała, M.; Śleszyński, P.; Rączkowska, Z.; Izdebski, W.; Malinowski, Z. Evaluating the use of the landslide database in spatial planning in mountain communes (the Polish Carpathians). Land Use Policy 2022, 112, 105842. [Google Scholar] [CrossRef]
- Mrozek, T.; Laskowicz, I. Landslide Risk Reduction in Poland: From Landslide Inventory to Improved Mitigation and Landuse Practice in Endangered Areas. In Landslide Science for a Safer Geoenvironment; Sassa, K., Canuti, P., Yin, Y., Eds.; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Eren, Ş.G. Tokyo: Solaris—Güneş İmparatorluğu’nun Dirençli, Kırılgan ve Tehlikeli Kenti. İdealkent 2019, 10, 907–941. [Google Scholar] [CrossRef]
- Duman, T.Y.; Çan, T.; Emre, Ö. 1/1.500.000 ölçekli Türkiye Heyelan Envanteri Haritası; Özel Yayınlar Serisi-27. Maden Tetkik ve Arama Genel Müdürlüğü: Ankara, Türkiye, 2011. [Google Scholar]
- IRAP. Provincial Disaster Risk Plan by the Disaster and Emergency Management Presidency. 2021. Available online: https://isparta.afad.gov.tr/kurumlar/isparta.afad/ispartairap/isparta_irap_.pdf (accessed on 9 June 2023).
- Görüm, T.; Fidan, S. Spatiotemporal variations of fatal landslides in Turkey. Landslides 2021, 18, 1691–1705. [Google Scholar] [CrossRef]
- Isparta Provincial Directorate of Agriculture and Forestry. Briefing Notes. 2019. Available online: https://isparta.tarimorman.gov.tr/Belgeler/Koordinasyon%20ve%20Tar%C4%B1msal%20Veriler/Brifingler/2019%20y%C4%B1l%C4%B1%20Brifing.pdf (accessed on 9 June 2023).
- TUIK. Yıllara göre İl Nüfusları. 2023. Available online: https://data.tuik.gov.tr/Bulten/Index?p=49685 (accessed on 10 June 2023).
- Sargın, S. Isparta Yöresinde Fiziki Çevre Faktörlerinin Yerleşme Birimleri Üzerindeki Etkisi. Doğu Coğrafya Derg. 2004, 9, 369–388. [Google Scholar]
- Hepdeniz, K.; Soyaslan, İ.İ. CBS ve Frekans Oranı Yöntemi Kullanılarak Isparta-Burdur Dağ Yolu Heyelan Duyarlılığının Değerlendirilmesi. MAKÜ FEBED. 2018. Available online: http://dergipark.gov.tr/makufebed (accessed on 15 May 2023).
- Delikanlı, M. (Jeoloji Mühendisliği Anabilim Dalı, Fen Bilimleri Enstitüsü, Selçuk Üniversitesi, Konya, Türkiye) Coğrafi Bilgi Sistemi İle Yaka (Gelendost, Isparta) Bölgesinin Heyelan Duyarlılık İncelemesi. Unpublished Mater Thesis. 2010. [Google Scholar]
- Available online: https://www.takvim.com.tr/tarihtebugun/2026/07/13/11 (accessed on 22 February 2023).
- Available online: http://www.isparta.gov.tr/guneyce-koyu-afet-konutlari-teslim-edildi (accessed on 22 February 2023).
- Available online: https://www.dha.com.tr/yerel-haberler/isparta/egirdir/mahallelinin-heyelan-kabusu-2029652 (accessed on 22 February 2023).
- Open Topography, Copernicus GLO-30 Digital Elevation Model (COP30). Available online: https://opentopography.org/ (accessed on 17 November 2022).
- Geofabrik, Open Street Map Data. Available online: download.geofabrik.de (accessed on 17 November 2022).
- Available online: https://www.diva-gis.org/gdata (accessed on 17 November 2022).
- Akbaş, B.; Akdeniz, N.; Aksay, A.; Altun, İ.E.; Balcı, V.; Bilginer, E.; Bilgiç, T.; Duru, M.; Ercan, T.; Gedik, İ.; et al. 1:1.250.000 ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye. 2011. Available online: http://yerbilimleri.mta.gov.tr/referans.aspx (accessed on 19 July 2023).
- Emre et al. 2013. Available online: http://yerbilimleri.mta.gov.tr/home.aspx (accessed on 17 November 2022).
- Boğaziçi University Kandilli Observatory and Earthquake Research Institute Regional Earthquake-Tsunami Monitoring Center. Available online: http://www.koeri.boun.edu.tr/sismo/2/en/ (accessed on 23 February 2023).
- Corine Land Cover (CLC). 2018. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 15 May 2023).
- Lan, H.X.; Zhou, C.H.; Wang, L.J.; Zhang, H.Y.; Li, R.H. Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng. Geol. 2004, 76, 109–128. [Google Scholar] [CrossRef]
- Kiziroğlu, A.M. Türkiye’nin Nüfus Değişimine Göre İl Bazında Kentleşmesine Bir Bakış (1965–2014). Karadeniz Sos. Bilim. Dergisi. 2004, 9, 153–183. [Google Scholar]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef]
- Çellek, S. Effect of the slope angle and its classification on landslide. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 1–23. Available online: https://nhess.copernicus.org/preprints/nhess-2020-87/nhess-2020-87.pdf (accessed on 15 May 2023).
- Fernandez-Hernández, M.; Paredes, C.; Castedo, R.; Llorente, M.; de la Vega-Panizo, R. Rockfall detachment susceptibility map in El Hierro Island, Canary Islands, Spain. Nat. Hazards 2012, 64, 1247–1271. [Google Scholar] [CrossRef]
- Demir, B.G. (Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta, Türkiye). Isparta İli Mermer Sahalarının Jeolojik Özelliklerinin, Ekonomik Potansiyelinin ve Çevresel Etkilerinin Araştırılması. Unpublished Ph.D. Thesis. 2022. [Google Scholar]
- Dilek, Y.; Rowland, J.C. Evolution of a conjugate passive margin pair in Mesozoic southern Turkey. Tectonics 1993, 12, 954–970. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Kalivas, D.P.; Skilodimou, H.D. GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece. Estud. Geol. 2009, 65, 49–65. [Google Scholar] [CrossRef]
- Patil, A.S.; Bhadra, B.K.; Panhalkar, S.S.; Patil, P.T. Landslide Susceptibility Mapping Using Landslide Numerical Risk Factor Model and Landslide Inventory Prepared Through OBIA in Chenab Valley, Jammu and Kashmir (India). Nat. Hazards 2019, 99, 1345–1367. [Google Scholar] [CrossRef]
- Andersson-Sköld, Y.; Bergman, R.; Johansson, M.; Persson, E.; Nyberg, L. Landslide risk management—A brief overview and example from Sweden of current situation and climate change. Int. J. Disaster Risk Reduct. 2013, 3, 44–61. [Google Scholar] [CrossRef]
- Wood, J.L.; Harrison, S.; Reinhardt, L.; Taylor, F.E. Landslide databases for climate change detection and attribution. Geomorphology 2020, 355, 107061. [Google Scholar] [CrossRef]
- Parisi, M. Landslide mapping techniques and their use in the assessment of the landslide hazard. Phys. Chem. Earth Part C Sol. Terr. Planet. Sci. 2001, 26, 697–703. [Google Scholar] [CrossRef]
- Roccati, A.; Paliaga, G.; Luino, F.; Faccini, F.; Turconi, L. GIS-Based Landslide Susceptibility Mapping for Land Use Planning and Risk Assessment. Land 2021, 10, 162. [Google Scholar] [CrossRef]
- Glade, T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand. Catena 2003, 51, 297–314. [Google Scholar] [CrossRef]
- Galve, J.P.; Cevasco, A.; Brandolini, P.; Soldati, M. Assessment of shallow landslide risk mitigation measures based on land use planning through probabilistic modelling. Landslides 2015, 12, 101–114. [Google Scholar] [CrossRef]
Landslide Event | Date |
---|---|
Senirkent Landslide | 13 July 1995 A photograph from the news [42]. |
Damage Seventy-four people died, and 209 houses were damaged or destroyed [42]. | |
Güneyce Village Landslide | 29 December 2012 A photograph from the news [43]. |
Damage Forty-eight injuries, and 18 houses were at risk [43]. | |
Eğirdir Landslide (İmaret Neighborhood) | 2022 Photographs of the landslide area (Uluç Keçik Archive 2023). |
Damage Two hundred and ten dwellings, distributed among 14 residential blocks, were at risk. Landslides were triggered by intense precipitation and the subsequent melting of snow [44]. |
Data | Source | Type |
---|---|---|
Elevation, Slope, and Aspect | Open topography, Copernicus GLO-30 Digital Elevation Model (COP30) (https://opentopography.org/ (accessed on 17 November 2022)) [45] | Raster |
Road, waterway, and lake | Geofabrik, Open Street Map Data (download.geofabrik.de (accessed on 17 November 2022)) [46] | Line |
Political Map of Turkey | https://www.diva-gis.org/gdata (accessed on 17 November 2022) [47] | Polygon |
Lithology (Geology) | Akbaş et al., 2011 (http://yerbilimleri.mta.gov.tr/home.aspx (accessed on 17 November 2022)) [48] | Raster |
Fault | Emre et al., 2013 (http://yerbilimleri.mta.gov.tr/home.aspx (accessed on 17 November 2022) [49] | Line |
Earthquake | Boğaziçi University Kandilli Observatory and Earthquake Research Institute Regional Earthquake-Tsunami Monitoring Center (http://www.koeri.boun.edu.tr/sismo/2/en/ (accessed on 23 February 2023)) [50] | Point |
Land Use | Corine Land Cover (CLC) (2018). (https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 15 May 2023)) [51] | Raster |
Past Landslide Events | Duman et al. (2011) [34] Görüm and Fidan (2021) [36] Isparta IRAP (2021). Provincial Disaster Risk Plan by the Disaster and Emergency Management Presidency [35] | Polygon Point Point |
Slope Range | Class | Region 1 (R1) Slope (%) | Region 2 (R2) Slope (%) | Region 3 (R3) Slope (%) | Region 4 (R4) Slope (%) | Region 5 (R5) Slope (%) |
---|---|---|---|---|---|---|
0–5° | 1 | - | - | 8 | - | - |
5–10° | 2 | 48.5 | 33 | 67 | 4 | 4 |
10–20° | 3 | 48.5 | 50 | 25 | 81 | 81 |
20–30° | 4 | 3 | 17 | - | 11 | 15 |
30–40° | 5 | - | - | - | 4 | - |
Class | Direction | Region 1 (R1) Aspect (%) | Region 2 (R2) Aspect (%) | Region 3 (R3) Aspect (%) | Region 4 (R4) Aspect (%) | Region 5 (R5) Aspect (%) |
---|---|---|---|---|---|---|
1 | North | 27 | 67 | 10 | 67 | 26 |
2 | East | 30 | - | 40 | 7 | 17 |
3 | South | 37 | - | 20 | 4 | 13 |
4 | West | 6 | 33 | 30 | 22 | 44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uluç Keçik, A.; Çiftçi, C.; Eren, Ş.G.; Tepecik Diş, A.; Rizzo, A. Determination and Evaluation of Landslide-Prone Regions of Isparta (Turkey): An Urban Planning View. Sustainability 2023, 15, 14329. https://doi.org/10.3390/su151914329
Uluç Keçik A, Çiftçi C, Eren ŞG, Tepecik Diş A, Rizzo A. Determination and Evaluation of Landslide-Prone Regions of Isparta (Turkey): An Urban Planning View. Sustainability. 2023; 15(19):14329. https://doi.org/10.3390/su151914329
Chicago/Turabian StyleUluç Keçik, Aynur, Canan Çiftçi, Şirin Gülcen Eren, Aslı Tepecik Diş, and Agatino Rizzo. 2023. "Determination and Evaluation of Landslide-Prone Regions of Isparta (Turkey): An Urban Planning View" Sustainability 15, no. 19: 14329. https://doi.org/10.3390/su151914329
APA StyleUluç Keçik, A., Çiftçi, C., Eren, Ş. G., Tepecik Diş, A., & Rizzo, A. (2023). Determination and Evaluation of Landslide-Prone Regions of Isparta (Turkey): An Urban Planning View. Sustainability, 15(19), 14329. https://doi.org/10.3390/su151914329