A Comprehensive Study of the Impact of Waste Fires on the Environment and Health
Abstract
:1. Introduction
The Previous Review Works
2. Some Major Impacts of Waste Fire on Environment and Human Health
2.1. Air Pollution
2.2. Soil Pollution
2.3. Water Pollution
2.4. Impacts on Human Health
2.5. Impacts on Social Economy
3. Safety Measures to Mitigate Waste Fires
- Design and layout of the waste management facility
- Appropriate organization and planning
- Reception of garbage products
- Storage and handling of waste products
- Proper action during fire incidents
- Adequate action plan after a fire outbreak
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Page, J.; Whaley, P.; Bellingham, M.; Birnbaum, L.S.; Cavoski, A.; Fetherston Dilke, D.; Garside, R.; Harrad, S.; Kelly, F.; Kortenkamp, A.; et al. A New Consensus on Reconciling Fire Safety with Environmental & Health Impacts of Chemical Flame Retardants. Environ. Int. 2023, 173, 107782. [Google Scholar] [CrossRef]
- Künzli, N.; Avol, E.; Wu, J.; Gauderman, W.J.; Rappaport, E.; Millstein, J.; Bennion, J.; McConnell, R.; Gilliland, F.D.; Berhane, K.; et al. Health Effects of the 2003 Southern California Wildfires on Children. Am. J. Respir. Crit. Care Med. 2006, 174, 1221–1228. [Google Scholar] [CrossRef]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical Review of Health Impacts of Wildfire Smoke Exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef]
- Huttunen, K.; Siponen, T.; Salonen, I.; Yli-Tuomi, T.; Aurela, M.; Dufva, H.; Hillamo, R.; Linkola, E.; Pekkanen, J.; Pennanen, A.; et al. Low-Level Exposure to Ambient Particulate Matter Is Associated with Systemic Inflammation in Ischemic Heart Disease Patients. Environ. Res. 2012, 116, 44–51. [Google Scholar] [CrossRef]
- Pace, A.; Villamediana, P.; Rezamand, P.; Skibiel, A.L. Effects of Wildfire Smoke PM2.5 on Indicators of Inflammation, Health, and Metabolism of Preweaned Holstein Heifers. J. Anim. Sci. 2023, 101, skad246. [Google Scholar] [CrossRef]
- Fayad, M.A.; AL-Ogaidi, B.R.; Abood, M.K.; AL-Salihi, H.A. Influence of Post-Injection Strategies and CeO2 Nanoparticles Additives in the C30D Blends and Diesel on Engine Performance, NOX Emissions, and PM Characteristics in Diesel Engine. Part. Sci. Technol. 2021, 40, 824–837. [Google Scholar] [CrossRef]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; Defries, R.S.; Kinney, P.; Bowman, D.M.J.S.; Brauer, M. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Lonnermark, A.; Hogland, W. Safety at waste and recycling industry: Detection and mitigation of waste fire accidents. Waste Manag. 2022, 141, 271–281. [Google Scholar] [CrossRef]
- Mikalsen, R.F.; Glansberg, K.; Storesund, K.; Ranneklev, S. New Report: Fires in Waste Facilities. 2019. RISE-Rapport 2019:61. Available online: https://risefr.com/about-rise-fire-research/news?articleID=118 (accessed on 20 February 2023).
- Ibrahim, M.A.; Alriksson, S.; Kaczala, F.; Hogland, W. Fires at storage sites of organic materials, waste fuels and recyclables. Waste Manag. Resour. 2013, 31, 937–945. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop Residue Burning in India: Policy Challenges and Potential Solutions. Int. J. Environ. Res. Public Health 2019, 16, 832. [Google Scholar] [CrossRef]
- Merry, S.M.; Kavazanjian, E.; Fritz, W.U. Reconnaissance of the July 10, 2000, Payatas Landfill Failure. J. Perform. Constr. Facil. 2005, 19, 100–107. [Google Scholar] [CrossRef]
- Lavigne, F.; Wassmer, P.; Gomez, C.; Davies, T.A.; Sri Hadmoko, D.; Iskandarsyah, T.Y.W.M.; Gaillard, J.; Fort, M.; Texier, P.; Boun Heng, M.; et al. The 21 February 2005, Catastrophic Waste Avalanche at Leuwigajah Dumpsite, Bandung, Indonesia. Geoenviron. Disasters 2014, 1, 10. [Google Scholar] [CrossRef]
- Xu, Q.; Peng, D.; Li, W.; Dong, X.; Hu, W.; Tang, M.; Liu, F. The Catastrophic Landfill Flowslide at Hongao Dumpsite on 20 December 2015 in Shenzhen, China. Nat. Hazards Earth Syst. Sci. 2017, 17, 277–290. [Google Scholar] [CrossRef]
- Cummings, J. Trash Talk: An Encyclopedia of Garbage and Recycling around the World. Ref. Rev. 2016, 30, 35–36. [Google Scholar] [CrossRef]
- dos Muchangos, L.S.; Tokai, A. Greenhouse Gas Emission Analysis of Upgrading from an Open Dump to a Semi-Aerobic Landfill in Mozambique—The Case of Hulene Dumpsite. Sci. Afr. 2020, 10, e00638. [Google Scholar] [CrossRef]
- Angmo, S.; Kharayat, Y.; Shah, S. Assessment of Contamination Potential in Okhla Landfill, New Delhi by Using Leachate Pollution Index. Curr. World Environ. 2023, 18, 116–132. [Google Scholar] [CrossRef]
- Siriwardana, C.S.A.; Jayasiri, G.P.; Hettiarachchi, S.S.L. Investigation of Efficiency and Effectiveness of the Existing Disaster Management Frameworks in Sri Lanka. Procedia Eng. 2018, 212, 1091–1098. [Google Scholar] [CrossRef]
- Masi, C.; Tebiso, A.; Selva Kumar, K.V. Isolation and Characterization of Potential Multiple Extracellular Enzyme-Producing Bacteria from Waste Dumping Area in Addis Ababa. Heliyon 2023, 9, e12645. [Google Scholar] [CrossRef]
- Jakhar, R.; Sachar, P. A Study and Analysis on Waste Fires in India and Their Corresponding Impacts on Environment and Human Health. Int. J. Recent Technol. Eng. (IJRTE) 2023, 12, 110–120. [Google Scholar] [CrossRef]
- Jethva, H.; Torres, O.; Field, R.D.; Lyapustin, A.; Gautam, R.; Kayetha, V. Connecting Crop Productivity, Residue Fires, and Air Quality over Northern India. Sci. Rep. 2019, 9, 16594. [Google Scholar] [CrossRef]
- Demirbas, A. Waste Management, Waste Resource Facilities and Waste Conversion Processes. Energy Convers. Manag. 2011, 52, 1280–1287. [Google Scholar] [CrossRef]
- Mikalsen, R.F.; Lönnermark, A.; Glansberg, K.; McNamee, M.; Storesund, K. Fires in Waste Facilities: Challenges and Solutions from a Scandinavian Perspective. Fire Saf. J. 2021, 120, 103023. [Google Scholar] [CrossRef]
- Allen, A.; Voiland, A. NASA Earth Observatory, Haze Blankets Northern India. 2017. Available online: https://earthobservatory.nasa.gov/images/91240/haze-blankets-northern-india (accessed on 28 February 2023).
- Chen, D.M.-C.; Bodirsky, B.L.; Krueger, T.; Mishra, A.; Popp, A. The World’s Growing Municipal Solid Waste: Trends and Impacts. Environ. Res. Lett. 2020, 15, 074021. [Google Scholar] [CrossRef]
- Wilson, D.C.; Velis, C.A. Waste Management—Still a Global Challenge in the 21st Century: An Evidence-Based Call for Action. Waste Manag. Res. J. A Sustain. Circ. Econ. 2015, 33, 1049–1051. [Google Scholar] [CrossRef]
- Battiston, E.; Vianello, C.; Rebuffi, G.; Mocellin, P. Accident Investigation of a Real-Case Fire in a Waste Disposal Facility Through Numerical Simulation. Chem. Eng. Trans. 2022, 91, 565–570. [Google Scholar] [CrossRef]
- Savoshinsky, O.P.; Zakharova, A.A.; Pak, A.V. Fire Safety Management in Transportation of Municipal Wastes with the Use of Geographic Information Systems. In Proceedings of the 2018 IEEE International Conference “Management of Municipal Waste as an Important Factor of Sustainable Urban Development” (WASTE), St. Petersburg, Russia, 4–6 October 2018; pp. 86–88. [Google Scholar] [CrossRef]
- Zybina, O.A.; Zorde, E.S.; Savelyev, D.I. Fire Safety of Municipal Solid Waste Land Fills. In Proceedings of the 2018 IEEE International Conference “Management of Municipal Waste as an Important Factor of Sustainable Urban Development” (WASTE), St. Petersburg, Russia, 4–6 October 2018; pp. 89–91. [Google Scholar] [CrossRef]
- Rykała, W.; Fabiańska, M.J.; Dąbrowska, D. The Influence of a Fire at an Illegal Landfill in Southern Poland on the Formation of Toxic Compounds and Their Impact on the Natural Environment. Int. J. Environ. Res. Public Health 2022, 19, 13613. [Google Scholar] [CrossRef]
- Aderemi, A.; Otitoloju, A. An assessment of landfill fires and their potential health effects—A case study of a municipal solid waste landfill in Lagos, Nigeria. Int. J. Environ. Prot. 2012, 2, 22–26. [Google Scholar]
- Ichinose, D.; Yamamoto, M. On the relationship between the provision of waste management service and illegal dumping. Resour. Energy Econ. 2010, 33, 79–93. [Google Scholar] [CrossRef]
- Øygard, J.; Mage, A.; Gjengedal, E.; Svane, T. Effect of an uncontrolled fire and the subsequent fire fight on the chemical composition of landfill leachate. Waste Manag. 2005, 25, 712–718. [Google Scholar] [CrossRef]
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An Overview of the Environmental Pollution and Health Effects Associated with Waste Landfilling and Open Dumping. Environ. Sci. Pollut. Res. 2022, 29, 58514–58536. [Google Scholar] [CrossRef]
- Fayad, M.A.; Alani, W.K.; Dhahad, H.A.; Zheng, J. Diminution of air pollution from NOX and smoke/soot emitted from alcohols/diesel blends in diesel engine and influence of the exhaust gas recirculation (EGR). J. Environ. Eng. Landsc. Manag. 2023, 31, 103–112. [Google Scholar] [CrossRef]
- Dhahad, H.A.; Fayad, M.A. Role of Different Antioxidants Additions to Renewable Fuels on NOX Emissions Reduction and Smoke Number in Direct Injection Diesel Engine. Fuel 2020, 279, 118384. [Google Scholar] [CrossRef]
- Oleniacz, R.; Gorzelnik, T.; Grzesik, K. Transboundary air pollution caused by waste fires in Poland. In Proceedings of the XIIth International Scientific Conference Air Protection in Theory and Practice, Zakopane, Poland, 18–21 October 2022; pp. 45–47. [Google Scholar]
- Dhahad, H.A.; Fayad, M.A.; Chaichan, M.T.; Abdulhady Jaber, A.; Megaritis, T. Influence of Fuel Injection Timing Strategies on Performance, Combustion, Emissions and Particulate Matter Characteristics Fueled with Rapeseed Methyl Ester in Modern Diesel Engine. Fuel 2021, 306, 121589. [Google Scholar] [CrossRef]
- Molina, M.J.; Molina, L.T. Megacities and Atmospheric Pollution. J. Air Waste Manag. Assoc. 2004, 54, 644–680. [Google Scholar] [CrossRef]
- Samet, J.M.; Chung, Y.S. Air Quality, Atmosphere, and Health. Air Qual. Atmos. Health 2008, 1, 1–2. [Google Scholar] [CrossRef]
- Martin, K.L.; Hanigan, I.C.; Morgan, G.G.; Henderson, S.B.; Johnston, F.H. Air Pollution from Bushfires and Their Association with Hospital Admissions in Sydney, Newcastle and Wollongong, Australia 1994–2007. Aust. N. Z. J. Public Health 2013, 37, 238–243. [Google Scholar] [CrossRef]
- Arghya Sardar, P.R. SO2 Emission Control and Finding a Way Out to Produce Sulphuric Acid from Industrial SO2 Emission. J. Chem. Eng. Process Technol. 2015, 6. [Google Scholar] [CrossRef]
- Maciejczyk, P.; Chen, L.-C.; Thurston, G. The Role of Fossil Fuel Combustion Metals in PM2.5 Air Pollution Health Associations. Atmosphere 2021, 12, 1086. [Google Scholar] [CrossRef]
- Jia, L.; Cheng, P.; Yu, Y.; Chen, S.; Wang, C.; He, L.; Nie, H.; Wang, J.; Zhang, J.; Fan, B.; et al. Regeneration Mechanism of a Novel High-Performance Biochar Mercury Adsorbent Directionally Modified by Multimetal Multilayer Loading. J. Environ. Manag. 2023, 326, 116790. [Google Scholar] [CrossRef]
- Wisconsin Department of Natural Resources. Environmental and Health Impacts of Open Burning. Available online: https://dnr.wisconsin.gov/topic/OpenBurning/Impacts.html (accessed on 25 March 2023).
- Aqeel, M.; Maah, M.J.; Yusoff, I. Soil Contamination, Risk Assessment and Remediation. Environ. Risk Assess. Soil Contam. 2014. [Google Scholar] [CrossRef]
- Moeckel, C.; Breivik, K.; Nøst, T.H.; Sankoh, A.; Jones, K.C.; Sweetman, A. Soil Pollution at a Major West African E-Waste Recycling Site: Contamination Pathways and Implications for Potential Mitigation Strategies. Environ. Int. 2020, 137, 105563. [Google Scholar] [CrossRef]
- Campos, I.; Abrantes, N.; Pereira, P.; Micaelo, A.C.; Vale, C.; Keizer, J.J. Forest fires as potential triggers for production and mobilization of polycyclic aromatic hydrocarbons to the terrestrial ecosystem. Land Degrad. Dev. 2019, 30, 2360–2370. [Google Scholar] [CrossRef]
- Campos, I.; Abrantes, N.; Vidal, T.; Bastos, A.C.; Goncalves, F.; Keizer, J.J. Assessment of the toxicity of ash-loaded runoff from a recently burnt eucalypt plantation. Eur. J. For. Res. 2012, 131, 1889–1903. [Google Scholar] [CrossRef]
- Kim, E.J.; Oh, J.E.; Chang, Y.S. Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Sci. Total Environ. 2003, 311, 177–189. [Google Scholar] [CrossRef]
- Bundt, M.; Krauss, M.; Blaser, P.; Wilcke, W. Forest fertilization with wood ash: Effect on the distribution and storage of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). J. Environ. Qual. 2001, 30, 1296–1304. [Google Scholar] [CrossRef]
- Raza Altaf, A.; Teng, H.; Saleem, M.; Raza Ahmad, H.; Adil, M.; Shahzad, K. Associative Interplay of Pseudomonas Gessardii BLP141 and Pressmud Ameliorated Growth, Physiology, Yield, and Pb-Toxicity in Sunflower. Bioremediat. J. 2020, 25, 178–188. [Google Scholar] [CrossRef]
- Chattha, M.U.; Hassan, M.U.; Barbanti, L.; Chattha, M.B.; Khan, I.; Usman, M.; Ali, A.; Nawaz, M. Composted Sugarcane By-Product Press Mud Cake Supports Wheat Growth and Improves Soil Properties. Int. J. Plant Prod. 2019, 13, 241–249. [Google Scholar] [CrossRef]
- The Chemical Nature and Properties of Soil Contaminants. Available online: https://www.fao.org/3/cb4894en/online/src/html/chapter-02-2.html (accessed on 26 March 2023).
- Fernandez-Marcos, M.L. Potentially Toxic Substances and Associated Risks in Soils Affected by Wildfires: A Review. Toxics 2022, 10, 31. [Google Scholar] [CrossRef]
- Swartjes, F.A. Dealing with Contaminated Sites; Swartjes, F.A., Ed.; Springer: Dordrecht, The Netherlands, 2011; Available online: https://link.springer.com/book/10.1007/978-90-481-9757-6 (accessed on 26 March 2023).
- Karlsson, R. USN Open Archive: Water Chemical Effects of Forest-Fire on Lakes. Available online: https://openarchive.usn.no/usn-xmlui/handle/11250/2438914 (accessed on 26 March 2023).
- How Water Pollution Is the Reason Behind Burning Lakes. Available online: https://www.wateronline.com/doc/how-water-pollution-is-the-reason-behind-burning-lakes-0001 (accessed on 26 March 2023).
- Government Newsletter. Ground Water Issue. U.S. Environmental Protection Agency, Technology Innovation Office, Office of Solid Waste and Emergency Response, Washington, DC 20460. EPA/540/S-92/001. Remediat. J. 1992, 3, 136–137. [Google Scholar] [CrossRef]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Parris, K. Impact of Agriculture on Water Pollution in OECD Countries: Recent Trends and Future Prospects. Int. J. Water Resour. Dev. 2011, 27, 33–52. [Google Scholar] [CrossRef]
- Masi, F.; Rizzo, A.; Regelsberger, M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manag. 2017, 216, 275–284. [Google Scholar] [CrossRef]
- Bihałowicz, J.S.; Rogula-Kozłowska, W.; Krasuski, A. Contribution of Landfill Fires to Air Pollution—An Assessment Methodology. Waste Manag. 2021, 125, 182–191. [Google Scholar] [CrossRef]
- Kunii, O.; Kanagawa, S.; Yajima, I.; Hisamatsu, Y.; Yamamura, S.; Amagai, T.; Ismail, I.T.S. The 1997 Haze Disaster in Indonesia: Its Air Quality and Health Effects. Arch. Environ. Health Int. J. 2002, 57, 16–22. [Google Scholar] [CrossRef]
- Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A Systematic Review of the Physical Health Impacts from Non-Occupational Exposure to Wildfire Smoke. Environ. Res. 2015, 136, 120–132. [Google Scholar] [CrossRef]
- Caamano-Isorna, F.; Figueiras, A.; Sastre, I.; Montes-Martínez, A.; Taracido, M.; Piñeiro-Lamas, M. Respiratory and Mental Health Effects of Wildfires: An Ecological Study in Galician Municipalities (North-West Spain). Environ. Health 2011, 10, 48. [Google Scholar] [CrossRef]
- Walosik, A.; Walosik, A.; Żeber-Dzikowska, I.; Pawlas, K.; Szajner, J. Municipal Waste and Related Health Risks. J. Elem. 2021, 26, 572–582. [Google Scholar] [CrossRef]
- Gajski, G.; Oreščanin, V.; Garaj-Vrhovac, V. Chemical Composition and Genotoxicity Assessment of Sanitary Landfill Leachate from Rovinj, Croatia. Ecotoxicol. Environ. Saf. 2012, 78, 253–259. [Google Scholar] [CrossRef]
- Kumari, P.; Gupta, N.C.; Kaur, A. A Review of Groundwater Pollution Potential Threats from Municipal Solid Waste Landfill Sites: Assessing the Impact on Human Health. Avicenna J. Environ. Health Eng. 2017, 4, 11525. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mukhopadhyay, S.; Hashim, M.A.; Sen Gupta, B. Contemporary Environmental Issues of Landfill Leachate: Assessment and Remedies. Crit. Rev. Environ. Sci. Technol. 2014, 45, 472–590. [Google Scholar] [CrossRef]
- Zhou, S.; Luoma, S.E.; Armour, G.E.; Thakkar, E.; Mackay, T.F.C.; Anholt, R.R.H. A Drosophila Model for Toxicogenomics: Genetic Variation in Susceptibility to Heavy Metal Exposure. PLoS Genet. 2017, 13, e1006907. [Google Scholar] [CrossRef]
- Lassman, W.; Ford, B.; Gan, R.W.; Pfister, G.; Magzamen, S.; Fischer, E.V.; Pierce, J.R. Spatial and Temporal Estimates of Population Exposure to Wildfire Smoke during the Washington State 2012 Wildfire Season Using Blended Model, Satellite, and in Situ Data. GeoHealth 2017, 1, 106–121. [Google Scholar] [CrossRef]
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef]
- Bing, X.; Bloemhof, J.M.; Ramos, T.R.P.; Barbosa-Povoa, A.P.; Wong, C.Y.; van der Vorst, J.G.A.J. Research Challenges in Municipal Solid Waste Logistics Management. Waste Manag. 2016, 48, 584–592. [Google Scholar] [CrossRef]
- The World Bank. What a Waste: A Global Review of Solid Waste Management; The World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Wiedinmyer, C.; Yokelson, R.J.; Gullett, B.K. Global Emissions of Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning of Domestic Waste. Environ. Sci. Technol. 2014, 48, 9523–9530. [Google Scholar] [CrossRef]
- Morales, R.G.E.; Toro, A.R.; Morales, L.; Leiva, G.M.A. Landfill Fire and Airborne Aerosols in a Large City: Lessons Learned and Future Needs. Air Qual. Atmos. Health 2017, 11, 111–121. [Google Scholar] [CrossRef]
- Waste Legislation and Fire Prevention Plans—FEP|NFCC CPO. Available online: https://www.ukfrs.com/guidance/search/waste-legislation-and-fire-prevention-plans (accessed on 24 March 2023).
- Aviva. Control and Management of Combustible Waste Materials. Available online: https://static.aviva.io/content/dam/document-library/risk-solutions/aviva_control_and_management_of_combustible_waste_materials_lps.pdf (accessed on 24 March 2023).
- Neger, C.; Rosas-Paz, L.D. A Characterization of Fire-Management Research: A Bibliometric Review of Global Networks and Themes. Fire 2022, 5, 89. [Google Scholar] [CrossRef]
- Environmental Services and Regulation. Guideline—Prevention of Fires in Waste Stockpiles. Available online: https://environment.des.qld.gov.au/__data/assets/pdf_file/0024/222954/cm-gl-waste-stockpile-fire-external.pdf (accessed on 24 March 2023).
- Mazzucco, W.; Costantino, C.; Restivo, V.; Alba, D.; Marotta, C.; Tavormina, E.; Cernigliaro, A.; Macaluso, M.; Cusimano, R.; Grammauta, R.; et al. The Management of Health Hazards Related to Municipal Solid Waste on Fire in Europe: An Environmental Justice Issue? Int. J. Environ. Res. Public Health 2020, 17, 6617. [Google Scholar] [CrossRef]
- Alzamora, B.R.; de Barros, R.T. Review of Municipal Waste Management Charging Methods in Different Countries. Waste Manag. 2020, 115, 47–55. [Google Scholar] [CrossRef]
- Chang, N.-B.; Pires, A.; Martinho, G. Empowering Systems Analysis for Solid Waste Management: Challenges, Trends, and Perspectives. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1449–1530. [Google Scholar] [CrossRef]
- US EPA. Support Center for Regulatory Atmospheric Modeling (SCRAM). Available online: https://www.epa.gov/scram (accessed on 24 March 2023).
- Tong, Y.D.; Huynh, T.D.X.; Khong, T.D. Understanding the Role of Informal Sector for Sustainable Development of Municipal Solid Waste Management System: A Case Study in Vietnam. Waste Manag. 2021, 124, 118–127. [Google Scholar] [CrossRef]
- Teng, H.; Altaf, A.R. Elemental Mercury (Hg0) Emission, Hazards, and Control: A Brief Review. J. Hazard. Mater. Adv. 2022, 5, 100049. [Google Scholar] [CrossRef]
- Pivato, A. Landfill Liner Failure: An Open Question for Landfill Risk Analysis. J. Environ. Prot. 2011, 2, 287–297. [Google Scholar] [CrossRef]
- Farahani, V.J.; Soleimanian, E.; Pirhadi, M.; Sioutas, C. Long-Term Trends in Concentrations and Sources of PM2. 5–Bound Metals and Elements in Central Los Angeles. Atmos. Environ. 2021, 253, 118361. [Google Scholar] [CrossRef]
- Jakhar, R.; Singh, G.; Raj, R.; Kumari, K.; Sachar, P.; Prasad, P.S. Different Applications of Artificial Intelligence to Combat Climate Change Issues. Int. J. Adv. Trends Comput. Sci. Eng. 2022, 11, 58–61. [Google Scholar] [CrossRef]
- Huang, F.-K.; Wang, G.S.; Tsai, Y.-L. Rainfall Reliability Evaluation for Stability of Municipal Solid Waste Landfills on Slope. Math. Probl. Eng. 2013, 2013, 653282. [Google Scholar] [CrossRef]
- Jahanfar, A.; Amirmojahedi, M.; Gharabaghi, B.; Dubey, B.; McBean, E.; Kumar, D. A Novel Risk Assessment Method for Landfill Slope Failure: Case Study Application for Bhalswa Dumpsite, India. Waste Manag. Res. J. Sustain. Circ. Econ. 2017, 35, 220–227. [Google Scholar] [CrossRef]
Year/Month | Area, Country | Name of Dumpsite | Causalities |
---|---|---|---|
2000, July | Metropolitan Manila, Philippines | Payatas dumpsite | 200 [12] |
2005, February | Bandung City, Indonesia | Leuwigajah dumpsite | 143 [13] |
2015, December | Shenzhen, China | Hongao dumpsite | 77 [14] |
2016, April | Guatemala City, Guatemala | Guatemala dumpsite | 24 [15] |
2018, March | Maputo City, Mozambique | Hulene dumpsite | 16 [16] |
2017, September | Metropolitan Delhi, India | Okhla landfill | 2 [17] |
2017, April | Metropolitan Colombo, Sri Lanka | Meethotamulla dumpsite | 34 [18] |
2017, March | Addis Ababa, Ethiopia | Qoshe dumpsite | 113 [19] |
Course of Action | Recommended Measures |
---|---|
Design of waste management |
|
Organization and plans |
|
Waste reception |
|
Storage and handling of waste |
|
During fire outbreaks |
|
After fire incident |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakhar, R.; Samek, L.; Styszko, K. A Comprehensive Study of the Impact of Waste Fires on the Environment and Health. Sustainability 2023, 15, 14241. https://doi.org/10.3390/su151914241
Jakhar R, Samek L, Styszko K. A Comprehensive Study of the Impact of Waste Fires on the Environment and Health. Sustainability. 2023; 15(19):14241. https://doi.org/10.3390/su151914241
Chicago/Turabian StyleJakhar, Rakshit, Lucyna Samek, and Katarzyna Styszko. 2023. "A Comprehensive Study of the Impact of Waste Fires on the Environment and Health" Sustainability 15, no. 19: 14241. https://doi.org/10.3390/su151914241
APA StyleJakhar, R., Samek, L., & Styszko, K. (2023). A Comprehensive Study of the Impact of Waste Fires on the Environment and Health. Sustainability, 15(19), 14241. https://doi.org/10.3390/su151914241