Cattle Grazing Moderates Greenhouse Gas and Particulate Matter Emissions from California Grassland Wildfires
Abstract
:1. Introduction
1.1. Wildfires in California: Recent Trends and Impacts
1.2. Cattle Grazing, Wildfire, and the Carbon Cycle on California Rangelands
2. Materials and Methods
2.1. Greenhouse Gas and Particulate Matter Model
2.2. State-Wide Case Study
2.3. SCU Lightning Wildfire Complex Case Study
2.4. Shrub and Grass Analysis
3. Results
3.1. State-Wide Analysis
3.2. SCU Lightning Complex Wildfire
3.3. Effect of Shrub Encroachment on GHG/PM Emissions in Fire
4. Discussion
4.1. CO2 Equivalents
4.2. PM2.5
4.3. Shrub/Grass Dynamics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, A.X.; Wang, Y.; Yung, Y.L. Inducing Factors and Impacts of the October 2017 California Wildfires. Earth Space Sci. 2019, 6, 1480–1488. [Google Scholar] [CrossRef]
- Westerling, A.L. Wildfire Simulations for California’s Fourth Climate Change Assessment: Projecting Changes in Extreme Wildfire Events with a Warming Climate; State of California Energy Commission: Sacramento, CA, USA, 2018.
- Williams, A.P.; Abatzoglou, J.T.; Gershunov, A.; Guzman-Morales, J.; Bishop, D.A.; Balch, J.K.; Lettenmaier, D.P. Observed Impacts of Anthropogenic Climate Change on Wildfire in California. Earths Future 2019, 7, 892–910. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Wang, S.-Y.S.; Gillies, R.R.; Hipps, L.; Kravitz, B.; Rasch, P.J. Extreme fire season in California: A glimpse into the future? Bull. Am. Meteorol. Soc. 2015, 96, S5–S9. [Google Scholar] [CrossRef]
- Huntsinger, L.; Barry, S. Grazing in California’s Mediterranean Multi-firescapes. Front. Sustain. Food Syst. 2021, 5, 715366. [Google Scholar] [CrossRef]
- Starrs, C.F.; Butsic, V.; Stephens, C.; Stewart, W. The impact of land ownership, firefighting, and reserve status on fire probability in California. Environ. Res. Lett. 2018, 13, 034025. [Google Scholar] [CrossRef]
- California Air Resources Board (CARB). Wildfire Emission Estimates for 2020; California Air Resources Board: Sacramento, CA, USA, 2021.
- Urbanski, S. Wildland fire emissions, carbon, and climate: Emission factors. For. Ecol. Manag. 2014, 317, 51–60. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Chen, L.-W.A.; Motallebi, N. Black and Organic Carbon Emission Inventories: Review and Application to California. J. Air Waste Manag. Assoc. 2010, 60, 497–507. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Jaffe, D.A.; O’Neill, S.M.; Larkin, N.K.; Holder, A.L.; Peterson, D.L.; Halofsky, J.E.; Rappold, A.G. Wildfire and prescribed burning impacts on air quality in the United States. J. Air Waste Manag. Assoc. 2020, 70, 583–615. [Google Scholar] [CrossRef]
- Navarro, K.; Vaidyanathan, A. Notes from the Field: Understanding Smoke Exposure in Communities and Fire Camps Affected by Wildfires—California and Oregon, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1873–1875. [Google Scholar] [CrossRef]
- Shi, H.; Jiang, Z.; Zhao, B.; Li, Z.; Chen, Y.; Gu, Y.; Jiang, J.H.; Lee, M.; Liou, K.-N.; Neu, J.L.; et al. Modeling Study of the Air Quality Impact of Record-Breaking Southern California Wildfires in December 2017. J. Geophys. Res. Atmos. 2019, 124, 6554–6570. [Google Scholar] [CrossRef] [PubMed]
- Spiegal, S.; Huntsinger, L.; Hopkinson, P.; Bartolome, J.W. Range Ecosystems. In Ecosystems of California; Mooney, H., Zavaleta, E., Eds.; University of California Press: Berkeley, CA, USA, 2016; pp. 835–864. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Comstock Publishing Associates, Cornell University Press: New York, NY, USA, 1994. [Google Scholar]
- U.S. Bureau of Land Management (BLM). California Rangeland Management and Grazing. 2022. Available online: https://www.blm.gov/programs/natural-resources/rangeland-and-grazing/rangeland-health/california (accessed on 15 December 2022).
- CDFA (California Department of Food and Agriculture). Links to County Crop Reports. For Our Analysis, We Used 2017 Crop Reports. 2022. Available online: https://www.cdfa.ca.gov/exec/county/CountyCropReports.html (accessed on 30 August 2023).
- USDA National Agriculture Statistics Service. 2017 Census of Agriculture; United States Department of Agriculture: Washington, DC, USA, 2017.
- U.S. Forest Service (USFS). S_USA. Allotment: U.S. Forest Service. 2021. Available online: http://data.fs.usda.gov/geodata/edw/datasets.php (accessed on 15 July 2021).
- Barry, S. Livestock Mobility Through Integrated Beef Production-Scapes Supports Rangeland Livestock Production and Conservation. Front. Sustain. Food Syst. 2021, 4, 549359. [Google Scholar] [CrossRef]
- Saitone, T.L. Livestock and Rangeland in California. In California Agriculture: Dimensions and Issues; Martin, P.L., Goodhue, R.E., Wright, B.D., Eds.; UC Berkeley: Giannini Foundation of Agricultural Economics: Berkeley, CA, USA, 2018; Chapter 9. [Google Scholar]
- Ratcliff, F.; Rao, D.; Barry, S.; Dewees, S.; Macaulay, L.; Larsen, R.; Shapero, M.; Peterson, R.; Moritz, M.; Forero, L. Cattle grazing reduces fuel and leads to more manageable fire behavior. Calif. Agric. 2022, 76, 60–69. [Google Scholar] [CrossRef]
- Booker, K.; Huntsinger, L.; Bartolome, J.W.; Sayre, N.F.; Stewart, W. What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States? Glob. Environ. Chang. 2013, 23, 240–251. [Google Scholar] [CrossRef]
- Ma, S.; Baldocchi, D.D.; Xu, L.; Hehn, T. Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric. For. Meteorol. 2007, 147, 157–171. [Google Scholar] [CrossRef]
- Xu, L.; Baldocchi, D.D. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric. For. Meteorol. 2004, 123, 79–96. [Google Scholar] [CrossRef]
- Buckley Biggs, N.; Huntsinger, L. Managed Grazing on California Annual Rangelands in the Context of State Climate Policy. Rangel. Ecol. Manag. 2021, 76, 56–68. [Google Scholar] [CrossRef]
- Carey, C.; Gravuer, K.; Gennet, S.; Osleger, D.; Wood, S. Supporting evidence varies for rangeland management practices that seek to improve soil properties and forage production in California. Calif. Agric. 2020, 74, 101–111. [Google Scholar] [CrossRef]
- Silver, W.L.; Ryals, R.; Eviner, V. Soil Carbon Pools in California’s Annual Grassland Ecosystems. Rangel. Ecol. Manag. 2010, 63, 128–136. [Google Scholar] [CrossRef]
- Ford, L.D.; Hayes, G.F. Northern Coastal Scrub and Coastal Prairie. In Terrestrial Vegetation of California, 3rd ed.; Barbour, M., Ed.; University of California Press: Berkeley, CA, USA, 2007; pp. 180–207. [Google Scholar]
- Keeley, J.E. Fire history of the San Francisco East Bay region and implications for landscape patterns. Int. J. Wildland Fire 2005, 14, 285. [Google Scholar] [CrossRef]
- McBride, J.; Heady, H.F. Invasion of Grassland by Baccharis pilularis DC. J. Range Manag. 1968, 21, 106. [Google Scholar] [CrossRef]
- Russell, W.H.; McBride, J.R. Landscape scale vegetation-type conversion and fire hazard in the San Francisco bay area open spaces. Landsc. Urban Plan. 2003, 64, 201–208. [Google Scholar] [CrossRef]
- Bohlman, G.N.; Underwood, E.C.; Safford, H.D. Estimating Biomass in California’s Chaparral and Coastal Sage Scrub Shrublands. Madroño 2018, 65, 28–46. [Google Scholar] [CrossRef]
- Khalili, B.; Ogunseitan, O.A.; Goulden, M.L.; Allison, S.D. Interactive effects of precipitation manipulation and nitrogen addition on soil properties in California grassland and shrubland. Appl. Soil Ecol. 2016, 107, 144–153. [Google Scholar] [CrossRef]
- Stackhouse-Lawson, K.R.; Rotz, C.A.; Oltjen, J.W.; Mitloehner, F.M. Carbon footprint and ammonia emissions of California beef production systems. J. Anim. Sci. 2012, 90, 4641–4655. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; Available online: https://www.fao.org/3/i3437e/i3437e.pdf (accessed on 30 August 2023).
- California Air Resources Board (CARB). Greenhouse Gas Emission Inventory—Query Tool for Years 2000 to 2018, 13th ed.; California Air Resources Board: Sacramento, CA, USA, 2019. Available online: https://www.arb.ca.gov/app/ghg/2000_2018/ghg_sector.php (accessed on 22 July 2021).
- Bunting, S.C.; Kilgore, B.M.; Bushey, C.L. Guidelines for Prescribed Burning Sagebrush-Grass Rangelands in the Northern Great Basin; Intermountain Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture: Ogden, UT, USA, 1987.
- Kerby, J.D.; Fuhlendorf, S.D.; Engle, D.M. Landscape heterogeneity and fire behavior: Scale-dependent feedback between fire and grazing processes. Landsc. Ecol. 2007, 22, 507–516. [Google Scholar] [CrossRef]
- Launchbaugh, K.L. Targeted Grazing to Manage Wildland Fuels and Alter Fire Behaviour. In Proceedings of the 10th International Rangeland Conference, Saskatoon, SK, Canada, 17–22 July 2016; Iwaasa, A., Lardner, H.A., Schellenberg, M., Willms, W., Larson, K., Eds.; pp. 674–675. [Google Scholar]
- Taylor, C.A. Targeted Grazing to Manage Fire Risk. In Targeted Grazing: A Natural Approach to Vegetation Management and Landscape Enhancement; Launchbaugh, K.L., Ed.; American Sheep Industry Association: Denver, CO, USA, 2006; Chapter 12; pp. 107–114. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). 2019. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html (accessed on 30 August 2023).
- Intergovernmental Panel on Climate Change (IPCC). Uncertainties. IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_3_Ch3_Uncertainties.pdf (accessed on 30 August 2023).
- Uddin, M.E.; Tricarico, J.M.; Kebreab, E. Impact of nitrate and 3-nitrooxypropanol on the carbon footprints of milk from cattle produced in confined-feeding systems across regions in the United States: A life cycle analysis. J. Dairy Sci. 2022, 105, 5074–5083. [Google Scholar] [CrossRef]
- First Order Fire Effects Model (FOFEM). First Order Fire Effects Model; Version 6.7; Fire and Aviation Management Rocky Mountain Research Station, United States Forest Service: Fort Collins, CO, USA, 2020.
- Cromer, E.D. A Comparative Analysis of the Nutrient Composition and Digestibility of California Perennial and Annual Grasses at Four Stages of Growth. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, 2017. [Google Scholar]
- Friedl, A.; Padouvas, E.; Rotter, H.; Varmuza, K. Prediction of Heating Values of Biomass Fuel from Elemental Composition. Anal. Chim. Acta 2005, 544, 191–198. [Google Scholar] [CrossRef]
- Royce, L.; Cook, D.; Gardner, D.R.; Lee, S.T.; Shapero, M.; Althouse, L.; Dennis, M.; Forero, L.C.; Davy, J.S.; Rao, D.R.; et al. Seasonal Changes in Forage Nutrient and Toxicity Levels on California Central Coast Rangelands: A Preliminary Study. Grasslands 2021, 31, 15–23. [Google Scholar]
- National Research Council. Nutrient Requirements of Beef Cattle. Seventh Revised Edition: Update 2000; National Academy of Sciences: Washington, DC, USA, 2000. [Google Scholar]
- California Air Resources Board (CARB). California’s Black Carbon Emission Inventory Technical Support Document; California Air Resources Board: Sacramento, CA, USA, 2015.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org (accessed on 30 August 2023).
- ESRI. ArcGIS Desktop: Release 10.7.1.; Environmental Systems Research Institute: Redlands, CA, USA, 2021. [Google Scholar]
- CAL Fire. CAL Fire Fire Perimeters Data; CAL Fire FRAP: Sacramento, CA, USA, 2021.
- U.S. Geological Survey (USGS) Gap Analysis Project (GAP). U.S. Geological Survey–Gap Analysis Project Species Range Maps CONUS_2001: U.S. Geological Survey Data Release. 2018. Available online: https://doi.org/10.5066/F7Q81B3R (accessed on 30 August 2023).
- Bay Area Open Space Council. The Conservation Lands Network 2.0 Report; Bay Area Open Space Council: Berkeley, CA, USA, 2019; Available online: https://www.bayarealands.org/wp-content/uploads/2019/10/CLN%202.0%20Final%20Report.Web.pdf (accessed on 30 August 2023).
- Bartolome, J.; Hammond, M.; Hopkinson, P.; Ratcliff, F. 1987–2014 Residual Dry Matter Analysis Report and Updated Rangeland Monitoring Guidelines for Livestock Grazed Grasslands within Point Reyes National Seashore and Golden Gate National Recreation Area; UC Berkeley Rangeland Ecology Lab for Point Reyes National Seashore: Berkeley, CA, USA, 2015. [Google Scholar]
- Larsen, R.; Shapero, M.; Horney, M.; Althouse, L.; Meade, D.; Brown, K.; Rao, D.; Striby, K.; Rigby, C.; Jensen, K.; et al. Forage Production Report, California Central Coast, 2001–2019; University of California Agriculture and Natural Resources: Templeton, CA, USA, 2020. [Google Scholar]
- National Resources Conservation Service (NRCS). Central Coast Rangeland Coalition Indicators of Sustainable Rangeland Stewardship; National Resources Conservation Service, Hollister Service Center: Hollister, CA, USA, 2010.
- Davies, K.W.; Bates, J.D.; Svejcar, T.J.; Boyd, C.S. Effects of Long-Term Livestock Grazing on Fuel Characteristics in Rangelands: An Example from the Sagebrush Steppe. Rangel. Ecol. Manag. 2010, 63, 662–669. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects: Effects of biomass burning on climate. J. Geophys. Res. Atmos. 2014, 119, 8980–9002. [Google Scholar] [CrossRef]
- California Air Resources Board (CARB). CEPAM2019v1.03—Standard Emission Tool. 2019. Available online: https://www.arb.ca.gov/app/emsinv/fcemssumcat/fcemssumcat2016.php?_ga=2.125275138.982877380.1628635369-461986019.1627403480 (accessed on 12 August 2021).
- Williams, K.; Hobbs, R.J.; Hamburg, S.P. Invasion of an annual grassland in Northern California by Baccharis pilularis ssp. consanguinea. Oecologia 1987, 72, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Archer, S.R.; Andersen, E.M.; Predick, K.I.; Schwinning, S.; Steidl, R.J.; Woods, S.R. Woody Plant Encroachment: Causes and Consequences. In Rangeland Systems: Processes, Management and Challenges; Briske, D.D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; Chapter 2; pp. 25–84. [Google Scholar]
- Berlow, E.L.; D’Antonio, C.M.; Reynolds, S.A. Shrub Expansion in Montane Meadows: The Interaction of Local-Scale Disturbance and Site Aridity. Ecol. Appl. 2002, 12, 16. [Google Scholar] [CrossRef]
- Dull, R.A. Palynological evidence for 19th century grazing-induced vegetation change in the southern Sierra Nevada, California, USA. J. Biogeogr. 1999, 26, 899–912. [Google Scholar] [CrossRef]
- Ostoja, S.M.; Brooks, M.L.; Moore, P.E.; Berlow, E.L.; Blank, R.; Roche, J.; Chase, J.; Haultain, S. Potential environmental effects of pack stock on meadow ecosystems of the Sierra Nevada, USA. Rangel. J. 2014, 36, 411–427. [Google Scholar] [CrossRef]
- Conant, R.T.; Cerri, C.E.P.; Osborne, B.B.; Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Bruegger, R.A.; Varelas, L.A.; Howery, L.D.; Torell, L.A.; Stephenson, M.B.; Bailey, D.W. Targeted Grazing in Southern Arizona: Using Cattle to Reduce Fine Fuel Loads. Rangel. Ecol. Manag. 2016, 69, 43–51. Available online: https://frap.fire.ca.gov/mapping/gis-data/ (accessed on 13 August 2021). [CrossRef]
- Davies, K.W.; Boyd, C.S.; Bates, J.D.; Hulet, A. Dormant season grazing may decrease wildfire probability by increasing fuel moisture and reducing fuel amount and continuity. Int. J. Wildland Fire 2015, 24, 849. [Google Scholar] [CrossRef]
- Diamond, J.M.; Call, C.A.; Devoe, N. Effects of targeted cattle grazing on fire behavior of cheatgrass-dominated rangeland in the northern Great Basin, USA. Int. J. Wildland Fire 2009, 18, 944. [Google Scholar] [CrossRef]
- Launchbaugh, K.L.; Brammer, B.; Brooks, M.L.; Bunting, S.; Clark, P.; Davison, J.; Fleming, M.; Kay, R.; Pellant, M.; Pyke, D.A.; et al. Interactions among Livestock Grazing, Vegetation Type, and Fire Behavior in the Murphy Wildland Fire Complex in Idaho and Nevada, July 2007; USGS: Reston, VA, USA, 2008.
- Starns, H.D.; Fuhlendorf, S.D.; Elmore, R.D.; Twidwell, D.; Thacker, E.T.; Hovick, T.J.; Luttbeg, B. Recoupling fire and grazing reduces wildland fuel loads on rangelands. Ecosphere 2019, 10, e02578. [Google Scholar] [CrossRef]
- Aguilera, R.; Corringham, T.; Gershunov, A.; Benmarhnia, T. Wildfire smoke impacts respiratory health more than fine particles from other sources: Observational evidence from Southern California. Nat. Commun. 2021, 12, 1493. [Google Scholar] [CrossRef]
- Calkin, D.; Short, K.; Traci, M. California Wildfires. In U.S. Emergency Management in the 21st Century, 1st ed.; Rubin, C.B., Cutter, S.L., Eds.; Routledge: New York, NY, USA, 2019; pp. 155–182. [Google Scholar]
- Hurteau, M.D.; Westerling, A.L.; Wiedinmyer, C.; Bryant, B.P. Projected Effects of Climate and Development on California Wildfire Emissions through 2100. Environ. Sci. Technol. 2014, 48, 2298–2304. [Google Scholar] [CrossRef]
- Lee, C.; Schlemme, C.; Murray, J.; Unsworth, R. The cost of climate change: Ecosystem services and wildland fires. Ecol. Econ. 2015, 116, 261–269. [Google Scholar] [CrossRef]
- Reid, C.E.; Maestas, M.M. Wildfire smoke exposure under climate change: Impact on respiratory health of affected communities. Curr. Opin. Pulm. Med. 2019, 25, 179–187. [Google Scholar] [CrossRef]
- Underwood, E.C.; Hollander, A.D.; Safford, H.D.; Kim, J.B.; Srivastava, L.; Drapek, R.J. The impacts of climate change on ecosystem services in southern California. Ecosyst. Serv. 2019, 39, 101008. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; George, M. Effects of Climate Change on Range Forage Production in the San Francisco Bay Area. PLoS ONE 2013, 8, e57723. [Google Scholar] [CrossRef]
- US EPA. Chapter 5: Agriculture. Inventory of U.S. Greenhouse Gas Emissions and Sinks; United States Environmental Protection Agency: Washington, DC, USA, 2020.
Average Annual Burned Grassland | Annual Fuel Removal Rate by Cattle | Average Annual Fuel Removal in Burned Grasslands | Average CO2e Mitigated by Grazing | Average PM2.5 Mitigated by Grazing | |
---|---|---|---|---|---|
Units | ha | kg/ha | MT | MT | MT |
Central Coast | 6129 (2585) | 257 | 1408 (604) | 710.9 (305) | 9 (3.8) |
North Coast | 6863 (2638) | 504 | 3229 (1245) | 1409.4 (585.8) | 19.4 (7.6) |
Sacramento Sierra Cascade | 10,936 (5047) | 277 | 2671 (1257) | 1445 (677.9) | 17.5 (8.2) |
San Joaquin Sierra | 7266 (2822) | 660 | 4184 (1721) | 2246.9 (818.2) | 27.4 (10.7) |
South Coast | 2965 (915) | 25 | 68 (23) | 33.6 (9.6) | 0.4 (0.1) |
Southeast Interior | 1877 (516) | 17 | 29 (9) | 15.8 (4) | 0.2 (0.1) |
Total | 36,036 | NA | 11,590 | 5861.6 | 73.9 |
Grazed and Burned Grassland Area | Average Forage Consumed | Total Forage (Fuel) Removal by Cattle | CO2e Avoided by Grazing (5th and 95th Percentiles) | PM2.5 Avoided by Grazing (5th and 95th Percentiles) | |
---|---|---|---|---|---|
Units | ha | kg/ha | kg | MT | MT |
Santa Clara County | 6291 | 339 | 2,128,343 | 1073 (−1247, 4936) | 13 (0, 26) |
San Joaquin County | 3048 | 462 | 1,412,083 | 708 (−779, 3061) | 9 (0.4, 18) |
Stanislaus County | 11,659 | 460 | 5,347,265 | 2937 (−2702, 12,503) | 35 (3, 67) |
EBRPD | 471 | 131 | 61,288 | 31 (−34, 130) | 0.4 (0, 0.7) |
SFPUC | 1348 | 497 | 668,652 | 360 (−362, 1584) | 4 (0.2, 8) |
TOTAL | 22,817 | 423 | 9,617,631 | 5109 (−5124, 22,214) | 62 (4, 120) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratcliff, F.; Barry, S.; Rao, D.; Peterson, R.; Becchetti, T.; Kebreab, E.; Motamed, K.; Jung, M.; Mitloehner, F. Cattle Grazing Moderates Greenhouse Gas and Particulate Matter Emissions from California Grassland Wildfires. Sustainability 2023, 15, 13539. https://doi.org/10.3390/su151813539
Ratcliff F, Barry S, Rao D, Peterson R, Becchetti T, Kebreab E, Motamed K, Jung M, Mitloehner F. Cattle Grazing Moderates Greenhouse Gas and Particulate Matter Emissions from California Grassland Wildfires. Sustainability. 2023; 15(18):13539. https://doi.org/10.3390/su151813539
Chicago/Turabian StyleRatcliff, Felix, Sheila Barry, Devii Rao, Rowan Peterson, Theresa Becchetti, Ermias Kebreab, Kaveh Motamed, Minju Jung, and Frank Mitloehner. 2023. "Cattle Grazing Moderates Greenhouse Gas and Particulate Matter Emissions from California Grassland Wildfires" Sustainability 15, no. 18: 13539. https://doi.org/10.3390/su151813539