Biochar-Acid Soil Interactions—A Review
Abstract
:1. Introduction
2. Soil Acidity
2.1. Causes of Acidity Development in Soil
2.1.1. Leaching of Bases
2.1.2. Fertilization
2.1.3. Acid Rain and Weathering of Soil Minerals
2.1.4. Organic Matter Mineralization and Biogeochemical Cycling of Nutrients
3. Soil Acidity Management
3.1. Biochar as a Sustainble Amemndment for Soil Acidity Reclamation
3.1.1. Biochar and Its Properties
Biochar Liming Potential
Contribution of Biochar Functional Groups in Soil Acidity Reclamation
Effects of Biochar on Soil pH
Biochar-Mediated Changes in Soil Properties Reduce Soil Acidity
Biochar Types | Temperature (°C) | Soil Texture | Experimental Condition | Major Findings | References |
---|---|---|---|---|---|
Wheat straw biochar | 500 | Typical saline alluvial soil | Leaching experiment with urea, N fertilizer and biochar | Biochar application reduced NO3−, total N andNH4+ leaching. | [48] |
Sycamore biochar | 500 | Sandy loam soil | Leaching experiment with manure, slurry, or fertilizer, each with or without 2% biochar | Mineral N leaching decreased | [49] |
Peanut hull biochar | 600 | Sandy soil | Leaching experiment with 2% biochar | Reduce the amounts of NO−, NH4+, and PO4− | [50] |
Pecan shell biochar | 300–600 | Norfolk foamy sand soil | Leaching experiment with 0.5%, 1%, 2% biochar | Extractable Ca, k, Mn, and P increased in an acid soil | [51] |
Mixture of hickory and other woods | - | Midwestern agriculture soil | Experiment on incubating and leaching manure with additions of 0.5%, 1%, and 2% biochar | Water retention, CEC, pH, and nutrient content increase but no effect on saturated hydraulic conductivity | [52] |
Forest slash biochar | 650 | Sand fraction | Biochar addition in compost | Leaching of dissolved organic C, N, and P enhanced | [53] |
Biochar Improves Crop Performance in Acidic Soils
Biochar Effects on Soil Acidity Are Biochar Specific
Biochar–Acid Soil Interactions and Carbon Stabilization
Biochar Types | Possible Effects on Soil pH | Possible Effects on Nutrient Retention and Uptake | Metal Ion Toxicity | Effect on Soil Microorganisms | Overall Effects | References |
---|---|---|---|---|---|---|
Low-temperature biochars (i.e., ≤450 °C) | pH buffering | Cation retention due to high CEC | A high toxic metal ion fixation on biochar’s functional groups | Less prominent effects since the surface area of biochar is low | Moderate effects are expected | [66,67,68] |
Medium-temperature biochars (i.e., 400–600 °C) | Soil pH increase by ash and pH buffering | Both cation and anion retention, but in moderate capacities | A moderate toxic metal ion fixation on biochar’s functional groups | Moderate to high microbial activities | Moderate to significant effects are expected | [68,69,70] |
High-temperature biochar (i.e., 600 °C or above) | A high change in soil pH and less pH buffering | High anion and moderate cation retention | A moderate toxic ion fixation | High microbial activity | A significant impact is expected | [67,71,72] |
Oxidized or aged biochars | High pH buffering and moderate pH increase | A high cation retention and low anion retention | A toxic ion fixation | Low microbial activity | Moderate impacts | [73,74] |
Some Challenges of Biochar Application
3.2. Comparison between Effects of Lime and Biochar
4. Conclusions and Future Research Perspectives
- (a)
- Long-term studies: Examining the changes in soil pH in field experiments in the longterm after application of artificially aged biochar.
- (b)
- Acid neutralization: Examining the role of liming vs. surface functionality:Biochar-mediated changes in soil acidity are brought about by the contribution of both liming and surface functionality. Therefore, it would be interesting to determine whether the liming material in biochar drives most of the effects.
- (c)
- Biochar–lime and/or nutrient interactions:Although several studies were conducted on biochar–lime interactions, our understanding is still limited about the interactions between biochar and lime and nutrients when applied in combination.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yadav, D.S.; Jaiswal, B.; Gautam, M.; Agrawal, M. Soil Acidification and Its Impact on Plants. In Plant Responses to Soil Pollution; Springer: Singapore, 2020; pp. 1–26. [Google Scholar] [CrossRef]
- Kalkhoran, S.S.; Pannell, D.J.; Thamo, T.; White, B.; Polyakov, M. Soil Acidity, Lime Application, Nitrogen Fertility, and Greenhouse Gas Emissions: Optimizing Their Joint Economic Management. Agric. Syst. 2019, 176, 102684. [Google Scholar] [CrossRef]
- Goulding, K.W.T. Soil Acidification and the Importance of Liming Agricultural Soils with Particular Reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef]
- Seguel, A.; Cumming, J.R.; Klugh-Stewart, K.; Cornejo, P.; Borie, F. The Role of Arbuscular Mycorrhizas in Decreasing Aluminium Phytotoxicity in Acidic Soils: A Review. Mycorrhiza 2013, 23, 167–183. [Google Scholar] [CrossRef]
- Thakuria, D.; Hazarika, S.; Krishnappa, R. Soil Acidity and Management Options. Indian J. Fertil. 2016, 12, 40–56. [Google Scholar]
- Behera, S.K.; Shukla, A.K. Spatial Distribution of Surface Soil Acidity, Electrical Conductivity, Soil Organic Carbon Content and Exchangeable Potassium, Calcium and Magnesium in Some Cropped Acid Soils of India. Land Degrad. Dev. 2015, 26, 71–79. [Google Scholar] [CrossRef]
- Mosharrof, M.; Uddin, M.K.; Sulaiman, M.F.; Mia, S.; Shamsuzzaman, S.M.; Haque, A.N.A. Combined Application of Biochar and Lime Increases Maize Yield and Accelerates Carbon Loss from an Acidic Soil. Agronomy 2021, 11, 1313. [Google Scholar] [CrossRef]
- Qambrani, N.A.; Rahman, M.M.; Won, S.; Shim, S.; Ra, C. Biochar Properties and Eco-Friendly Applications for Climate Change Mitigation, Waste Management, and Wastewater Treatment: A Review. Renew. Sustain. Energy Rev. 2017, 79, 255–273. [Google Scholar] [CrossRef]
- Steiner, C. Considerations in Biochar Characterization. Agric. Environ. Appl. Biochar Adv. Barriers 2016, 63, 87–100. [Google Scholar]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V.V. Biochar Applications Influence Soil Physical and Chemical Properties, Microbial Diversity, and Crop Productivity: A Meta-Analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
- Mrunalini, K.; Behera, B.; Jayaraman, S.; Abhilash, P.C.; Dubey, P.K.; Swamy, G.N.; Prasad, J.V.N.S.; Rao, K.V.; Krishnan, P.; Pratibha, G. Nature-based Solutions in Soil Restoration for Improving Agricultural Productivity. Land Degrad. Dev. 2022, 33, 1269–1289. [Google Scholar] [CrossRef]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar Amendment Improves Crop Production in Problem Soils: A Review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef]
- Kaur, C.; Selvakumar, G.; Ganeshamurthy, A.N. Acid Tolerant Microbial Inoculants: A Requisite for Successful Crop Production in Acidic Soils. In Phyto and Rhizo Remediation; Springer: Berlin/Heidelberg, Germany, 2019; pp. 235–247. [Google Scholar] [CrossRef]
- Fageria, N.K.; Nascente, A.S. Management of Soil Acidity of South American Soils for Sustainable Crop Production. Adv. Agron. 2014, 128, 221–275. [Google Scholar]
- Bian, M.; Zhou, M.; Sun, D.; Li, C. Molecular Approaches Unravel the Mechanism of Acid Soil Tolerance in Plants. Crop J. 2013, 1, 91–104. [Google Scholar] [CrossRef]
- Bolan, N.; Sarmah, A.K.; Bordoloi, S.; Bolan, S.; Padhye, L.P.; Van Zwieten, L.; Sooriyakumar, P.; Khan, B.A.; Ahmad, M.; Solaiman, Z.M.; et al. Soil Acidification and the Liming Potential of Biochar. Environ. Pollut. 2023, 317, 120632. [Google Scholar] [CrossRef]
- Lu, X.; Mao, Q.; Gilliam, F.S.; Luo, Y.; Mo, J. Nitrogen Deposition Contributes to Soil Acidification in Tropical Ecosystems. Glob. Chang. Biol. 2014, 20, 3790–3801. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.M.; Wiedemann, S.; Rowley, H.V.; Tucker, R.; Feitz, A.J.; Schulz, M. Assessing Agricultural Soil Acidification and Nutrient Management in Life Cycle Assessment. Int. J. Life Cycle Assess. 2011, 16, 431–441. [Google Scholar] [CrossRef]
- Zeng, M.; de Vries, W.; Bonten, L.T.C.; Zhu, Q.; Hao, T.; Liu, X.; Xu, M.; Shi, X.; Zhang, F.; Shen, J. Model-Based Analysis of the Long-Term Effects of Fertilization Management on Cropland Soil Acidification. Environ. Sci. Technol. 2017, 51, 3843–3851. [Google Scholar] [CrossRef]
- Bouman, O.T.; Curtin, D.; Campbell, C.A.; Biederbeck, V.O.; Ukrainetz, H. Soil Acidification from Long-Term Use of Anhydrous Ammonia and Urea. Soil Sci. Soc. Am. J. 1995, 59, 1488–1494. [Google Scholar] [CrossRef]
- Bolan, N.S.; Hedley, M.J. Role of Carbon, Nitrogen, and Sulfur Cycles in Soil Acidification. In Handbook of Soil Acidity; Marcel Dekker: New York, NY, USA, 2003; pp. 29–56. [Google Scholar]
- Kumar, S. Acid Rain-the Major Cause of Pollution: Its Causes, Effects. Int. J. Appl. Chem. 2017, 13, 53–58. [Google Scholar]
- Zelazny, L.W.; Jackson, M.L.; Lim, C.H. Oxides, Hydroxides, and Aluminosilicates. Methods Soil Anal. Part 1 Phys. Mineral. Methods 1986, 5, 101–150. [Google Scholar]
- Neina, D. The Role of Soil PH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Pettit, R.E. Organic Matter, Humus, Humate, Humic Acid, Fulvic Acid and Humin: Their Importance in Soil Fertility and Plant Health. CTI Res. 2004, 10, 1–7. [Google Scholar]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Singh, R.; Dhaliwal, M.K. Dynamics and Transformations of Micronutrients in Agricultural Soils as Influenced by Organic Matter Build-up: A Review. Environ. Sustain. Indic. 2019, 1, 100007. [Google Scholar] [CrossRef]
- Golla, A.S. Soil Acidity and Its Management Options in Ethiopia: A Review. Int. J. Sci. Res. Manag. 2019, 7, 1429–1440. [Google Scholar]
- Ayaz, M.; Feizienė, D.; Tilvikienė, V.; Akhtar, K.; Stulpinaitė, U.; Iqbal, R. Biochar Role in the Sustainability of Agriculture and Environment. Sustainability 2021, 13, 1330. [Google Scholar] [CrossRef]
- Shen, W.; Li, Z.; Liu, Y. Surface Chemical Functional Groups Modification of Porous Carbon. Recent Pat. Chem. Eng. 2008, 1, 27–40. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of Process Parameters on Production of Biochar from Biomass Waste through Pyrolysis: A Review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K.; et al. Feedstock Choice, Pyrolysis Temperature and Type Influence Biochar Characteristics: A Comprehensive Meta-Data Analysis Review. Biochar 2020, 2, 421–438. [Google Scholar] [CrossRef]
- Wang, L.; Butterly, C.R.; Wang, Y.; Herath, H.; Xi, Y.G.; Xiao, X.J. Effect of Crop Residue Biochar on Soil Acidity Amelioration in Strongly Acidic Tea Garden Soils. Soil Use Manag. 2014, 30, 119–128. [Google Scholar] [CrossRef]
- Camps-Arbestain, M.; Amonette, J.E.; Singh, B.; Wang, T.; Schmidt, H.P. A Biochar Classification System and Associated Test Methods. In Biochar for Environmental Management: Science, Technology and Implementation; Routledge: London, UK, 2015; pp. 165–193. [Google Scholar]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; De Melo, I.C.N.A.; Melo, L.C.A.; Magriotis, Z.M.; Sánchez-Monedero, M.A. Properties of Biochar Derived from Wood and High-Nutrient Biomasses with the Aim of Agronomic and Environmental Benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Dolk, M.M.; Shen, Q.; Camps-Arbestain, M. Biochar PH, Electrical Conductivity and Liming Potential. In Biochar: A Guide to Analytical Methods; Csiro Publishing: Melbourne, Australia, 2017; pp. 23–38. [Google Scholar]
- Hue, N. Soil Acidity: Development, Impacts, and Management. In Structure and Functions of Pedosphere; Springer: Berlin/Heidelberg, Germany, 2022; pp. 103–131. [Google Scholar]
- Sui, F.; Zuo, J.; Chen, D.; Li, L.; Pan, G.; Crowley, D.E. Biochar Effects on Uptake of Cadmium and Lead by Wheat in Relation to Annual Precipitation: A 3-Year Field Study. Environ. Sci. Pollut. Res. 2018, 25, 3368–3377. [Google Scholar] [CrossRef]
- Blok, C.; Van der Salm, C.; Hofland-Zijlstra, J.; Streminska, M.; Eveleens, B.; Regelink, I.; Fryda, L.; Visser, R. Biochar for Horticultural Rooting Media Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis. Agronomy 2017, 7, 6. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Kim, D.; Nah, J.-W.; Jeon, Y.-J. Advances in Functionalizing Fucoidans and Alginates (Bio) Polymers by Structural Modifications: A Review. Chem. Eng. J. 2019, 355, 33–48. [Google Scholar] [CrossRef]
- Geng, N.; Kang, X.; Yan, X.; Yin, N.; Wang, H.; Pan, H.; Yang, Q.; Lou, Y.; Zhuge, Y. Biochar Mitigation of Soil Acidification and Carbon Sequestration Is Influenced by Materials and Temperature. Ecotoxicol. Environ. Saf. 2022, 232, 113241. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R.; Hamdan, R.; Cooper, W.T. Physicochemical Changes in Pyrogenic Organic Matter (Biochar) after 15 Months of Field Aging. Solid Earth 2014, 5, 693–704. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Liu, B.; Amonette, J.E.; Lin, Z.; Liu, G.; Ambus, P.; Xie, Z. How Does Biochar Influence Soil N Cycle? A Meta-Analysis. Plant Soil 2018, 426, 211–225. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological Nitrogen Fixation by Common Beans (Phaseolus vulgaris L.) Increases with Bio-Char Additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Tian, J.; Kuang, X.; Tang, M.; Chen, X.; Huang, F.; Cai, Y.; Cai, K. Biochar Application under Low Phosphorus Input Promotes Soil Organic Phosphorus Mineralization by Shifting Bacterial PhoD Gene Community Composition. Sci. Total Environ. 2021, 779, 146556. [Google Scholar] [CrossRef]
- Hiemstra, T.; Mia, S.; Duhaut, P.B.; Molleman, B. Natural and Pyrogenic Humic Acids at Goethite and Natural Oxide Surfaces Interacting with Phosphate. Environ. Sci. Technol. 2013, 47, 9182–9189. [Google Scholar] [CrossRef]
- Johan, P.D.; Ahmed, O.H.; Omar, L.; Hasbullah, N.A. Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy 2021, 11, 2010. [Google Scholar] [CrossRef]
- Sun, H.; Lu, H.; Chu, L.; Shao, H.; Shi, W. Biochar Applied with Appropriate Rates Can Reduce N Leaching, Keep N Retention and Not Increase NH3 Volatilization in a Coastal Saline Soil. Sci. Total Environ. 2017, 575, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Angst, T.E.; Patterson, C.J.; Reay, D.S.; Anderson, P.; Peshkur, T.A.; Sohi, S.P. Biochar Diminishes Nitrous Oxide and Nitrate Leaching from Diverse Nutrient Sources. J. Environ. Qual. 2013, 42, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of Biochar Amendment on Sorption and Leaching of Nitrate, Ammonium, and Phosphate in a Sandy Soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar Impact on Nutrient Leaching from a Midwestern Agricultural Soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef]
- Iqbal, H.; Garcia-Perez, M.; Flury, M. Effect of Biochar on Leaching of Organic Carbon, Nitrogen, and Phosphorus from Compost in Bioretention Systems. Sci. Total Environ. 2015, 521–522, 37–45. [Google Scholar] [CrossRef]
- Dai, Z.; Li, R.; Muhammad, N.; Brookes, P.C.; Wang, H.; Liu, X.; Xu, J. Principle Component and Hierarchical Cluster Analysis of Soil Properties following Biochar Incorporation. Soil Sci. Soc. Am. J. 2014, 78, 205–213. [Google Scholar] [CrossRef]
- Xiu, L.; Zhang, W.; Wu, D.; Sun, Y.; Zhang, H.; Gu, W.; Wang, Y.; Meng, J.; Chen, W. Biochar Can Improve Biological Nitrogen Fixation by Altering the Root Growth Strategy of Soybean in Albic Soil. Sci. Total Environ. 2021, 773, 144564. [Google Scholar] [CrossRef]
- Luo, S.; Wang, S.; Tian, L.; Li, S.; Li, X.; Shen, Y.; Tian, C. Long-Term Biochar Application Influences Soil Microbial Community and Its Potential Roles in Semiarid Farmland. Appl. Soil Ecol. 2017, 117, 10–15. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Wong, J.T.F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.X.; Bolan, N.; Wang, H.; Ok, Y.S. Response of Microbial Communities to Biochar-Amended Soils: A Critical Review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar Effects on Soil Biota—A Review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Elias, D.M.O.; Ooi, G.T.; Razi, M.F.A.; Robinson, S.; Whitaker, J.; McNamara, N.P. Effects of Leucaena Biochar Addition on Crop Productivity in Degraded Tropical Soils. Biomass Bioenergy 2020, 142, 105710. [Google Scholar] [CrossRef]
- Xu, H.; Cai, A.; Wu, D.; Liang, G.; Xiao, J.; Xu, M.; Colinet, G.; Zhang, W. Effects of Biochar Application on Crop Productivity, Soil Carbon Sequestration, and Global Warming Potential Controlled by Biochar C:N Ratio and Soil PH: A Global Meta-Analysis. Soil Tillage Res. 2021, 213, 105125. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential Mechanisms for Achieving Agricultural Benefits from Biochar Application to Temperate Soils: A Review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Abduljabbar, A.; Vithanage, M.; Ok, Y.S.; Ahmad, M.; Ahmad, M.; Elfaki, J.; Abdulazeem, S.S.; Al-Wabel, M.I. Biochar Production from Date Palm Waste: Charring Temperature Induced Changes in Composition and Surface Chemistry. J. Anal. Appl. Pyrolysis 2015, 115, 392–400. [Google Scholar] [CrossRef]
- Weng, Z.; Van Zwieten, L.; Tavakkoli, E.; Rose, M.T.; Singh, B.P.; Joseph, S.; Macdonald, L.M.; Kimber, S.; Morris, S.; Rose, T.J.; et al. Microspectroscopic Visualization of How Biochar Lifts the Soil Organic Carbon Ceiling. Nat. Commun. 2022, 13, 5177. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.; Liang, A.; Li, Y.; Song, Q.; Li, X.; Li, D.; Hou, N. Insight into the Soil Aggregate-Mediated Restoration Mechanism of Degraded Black Soil via Biochar Addition: Emphasizing the Driving Role of Core Microbial Communities and Nutrient Cycling. Environ. Res. 2023, 228, 115895. [Google Scholar] [CrossRef]
- Nkoh, J.N.; Al Baquy, M.A.; Mia, S.; Shi, R.; Kamran, M.A.; Mehmood, K.; Xu, R. A Critical-Systematic Review of the Interactions of Biochar with Soils and the Observable Outcomes. Sustainability 2021, 13, 13726. [Google Scholar] [CrossRef]
- Kelly, C.N.; Peltz, C.D.; Stanton, M.; Rutherford, D.W.; Rostad, C.E. Biochar Application to Hardrock Mine Tailings: Soil Quality, Microbial Activity, and Toxic Element Sorption. Appl. Geochem. 2014, 43, 35–48. [Google Scholar] [CrossRef]
- Guo, K.; Zhao, Y.; Liu, Y.; Chen, J.; Wu, Q.; Ruan, Y.; Li, S.; Shi, J.; Zhao, L.; Sun, X.; et al. Pyrolysis Temperature of Biochar Affects Ecoenzymatic Stoichiometry and Microbial Nutrient-Use Efficiency in a Bamboo Forest Soil. Geoderma 2020, 363, 114162. [Google Scholar] [CrossRef]
- Liao, X.; Kang, H.; Haidar, G.; Wang, W.; Malghani, S. The Impact of Biochar on the Activities of Soil Nutrients Acquisition Enzymes Is Potentially Controlled by the Pyrolysis Temperature: A Meta-Analysis. Geoderma 2022, 411, 115692. [Google Scholar] [CrossRef]
- Azadi, N.; Raiesi, F. Biochar Alleviates Metal Toxicity and Improves Microbial Community Functions in a Soil Co-Contaminated with Cadmium and Lead. Biochar 2021, 3, 485–498. [Google Scholar] [CrossRef]
- Becerra-Agudelo, E.; López, J.E.; Betancur-García, H.; Carbal-Guerra, J.; Torres-Hernández, M.; Saldarriaga, J.F. Assessment of the Application of Two Amendments (Lime and Biochar) on the Acidification and Bioavailability of Ni in a Ni-Contaminated Agricultural Soils of Northern Colombia. Heliyon 2022, 8, e10221. [Google Scholar] [CrossRef]
- Frimpong Manso, E.; Nartey, E.K.; Adjadeh, T.A.; Darko, D.A.; Lawson, I.Y.D.; Amoatey, C.A. Use of Corn Cob and Rice Husk Biochar as Liming Materials in Acid Soils. West Afr. J. Appl. Ecol. 2019, 27, 32–50. [Google Scholar]
- Soudek, P.; Rodriguez Valseca, I.M.; Petrová; Song, J.; Vaněk, T. Characteristics of Different Types of Biochar and Effects on the Toxicity of Heavy Metals to Germinating Sorghum Seeds. J. Geochem. Explor. 2017, 182, 157–165. [Google Scholar] [CrossRef]
- Shamin, M. Biochar Aging Effects on Nitrogen and Phosphorus Dynamics in Grassland Plants and Soils: A Molecular Understanding of Biochar Properties and Mechanisms. Ph.D. Thesis, The University of Sydney, Sydney, Australia, 2018. [Google Scholar]
- Dao, M.T.; Nguyen, T.T.T.; Nguyen, X.D.; La, D.D.; Nguyen, D.D.; Chang, S.W.; Chung, W.J.; Nguyen, V.K. Toxic Metal Adsorption from Aqueous Solution by Activated Biochars Produced from Macadamia Nutshell Waste. Sustainability 2020, 12, 7909. [Google Scholar] [CrossRef]
- Loehrlein, M. Soil Health. In Sustainable Landscaping; CRC Press: Boca Raton, FL, USA, 2020; pp. 169–188. [Google Scholar] [CrossRef]
- Jatav, H.S.; Rajput, V.D.; Minkina, T.; Singh, S.K.; Chejara, S.; Gorovtsov, A.; Barakhov, A.; Bauer, T.; Sushkova, S.; Mandzieva, S.; et al. Sustainable Approach and Safe Use of Biochar and Its Possible Consequences. Sustainability 2021, 13, 10362. [Google Scholar] [CrossRef]
- Enesi, R.O.; Dyck, M.; Chang, S.; Thilakarathna, M.S.; Fan, X.; Strelkov, S.; Gorim, L.Y. Liming Remediates Soil Acidity and Improves Crop Yield and Profitability—A Meta-Analysis. Front. Agron. 2023, 5, 1194896. [Google Scholar] [CrossRef]
- Hale, S.E.; Nurida, N.L.; Jubaedah; Mulder, J.; Sørmo, E.; Silvani, L.; Abiven, S.; Joseph, S.; Taherymoosavi, S.; Cornelissen, G. The Effect of Biochar, Lime and Ash on Maize Yield in a Long-Term Field Trial in a Ultisol in the Humid Tropics. Sci. Total Environ. 2020, 719, 137455. [Google Scholar] [CrossRef]
Feedstock | Temperature (°C) | CaCO3 eq % | References |
---|---|---|---|
Eucalyptus sawdust | 350 | 0.30 | [35] |
Eucalyptus sawdust | 450 | 0.20 | [35] |
Eucalyptus sawdust | 750 | 0.31 | [35] |
Coffee husk | 350 | 1.39 | [35] |
Coffee husk | 450 | 1.60 | [35] |
Coffee husk | 750 | 2.1 | [35] |
Sugarcane bagasse | 350 | 0.40 | [35] |
Sugarcane bagasse | 450 | 0.30 | [35] |
Sugarcane bagasse | 750 | 0.41 | [35] |
Pine bark | 350 | 0.40 | [35] |
Pine bark | 450 | 0.40 | [35] |
Pine bark | 750 | 0.31 | [35] |
Wheat straw | 550 | 5.7 | [36] |
Wheat straw | 700 | 6.5 | [36] |
Switchgrass | 400 | 1.9 | [36] |
Switchgrass | 550 | 3.0 | [36] |
Pine chips | 400 | 3.9 | [36] |
Pine chips | 550 | 5.0 | [36] |
Eucalyptus wood | 450 | 2.6 | [36] |
Eucalyptus wood | 550 | 6.3 | [36] |
Poultry litter | 550 | 11.8 | [36] |
Digestate | 700 | 10.8 | [36] |
Municipal green waste | 550 | 1.8 | [36] |
Rice husk | 550 | 1.5 | [36] |
Rice husk | 700 | 1.9 | [36] |
Miscanthus straw | 550 | 3.8 | [36] |
Miscanthus straw | 700 | 5.6 | [36] |
Mixed softwood | 550 | 1.5 | [36] |
Mixed softwood | 700 | 2.3 | [36] |
Greenhouse (tomato) waste | 550 | 20.5 | [36] |
Durian shell | 400 | 9.3 | [36] |
Mechanisms | Bacteria | Fungi | ||
---|---|---|---|---|
Rhizobia | Others | Mycorrhiza | Others | |
Greater P, Ca, Mg, K availability | Increase | Increase | Decrease | Decrease |
Greater micronutrient availability | Increase | Increase | Decrease | No significant effect |
Higher pH | Increase | Increase | Stable | Stable |
Lower pH | Decrease | Decrease | Stable | Stable or decrease |
Sorption of signaling compounds | No significant effect or decrease | No significant effect | No significant effect | No significant effect |
Greater N availability | Decrease | Decrease or increase | Stable | Stable |
Sorption of inhibitory compounds | No significant effect | Increase | No significant effect | No significant effect |
Sorption of dissolved organic matter as an energy source for microorganisms | No significant effect | No significant effect | Stable | No significant effect |
Planting Seasons | Yield of Maize t ha−1 | |
---|---|---|
Biochar | Lime | |
Season 1 | 8.85 | 6.31 |
Season 2 | 5.91 | 4.09 |
Season 3 | 4.70 | 3.31 |
Season 4 | 6.60 | 3.98 |
Season 5 | 5.99 | 5.48 |
Season 6 | 5.10 | 4.59 |
Season 7 | 5.29 | 4.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tusar, H.M.; Uddin, M.K.; Mia, S.; Suhi, A.A.; Wahid, S.B.A.; Kasim, S.; Sairi, N.A.; Alam, Z.; Anwar, F. Biochar-Acid Soil Interactions—A Review. Sustainability 2023, 15, 13366. https://doi.org/10.3390/su151813366
Tusar HM, Uddin MK, Mia S, Suhi AA, Wahid SBA, Kasim S, Sairi NA, Alam Z, Anwar F. Biochar-Acid Soil Interactions—A Review. Sustainability. 2023; 15(18):13366. https://doi.org/10.3390/su151813366
Chicago/Turabian StyleTusar, Hachib Mohammad, Md. Kamal Uddin, Shamim Mia, Ayesha Akter Suhi, Samsuri Bin Abdul Wahid, Susilawati Kasim, Nor Asrina Sairi, Zahangir Alam, and Farooq Anwar. 2023. "Biochar-Acid Soil Interactions—A Review" Sustainability 15, no. 18: 13366. https://doi.org/10.3390/su151813366
APA StyleTusar, H. M., Uddin, M. K., Mia, S., Suhi, A. A., Wahid, S. B. A., Kasim, S., Sairi, N. A., Alam, Z., & Anwar, F. (2023). Biochar-Acid Soil Interactions—A Review. Sustainability, 15(18), 13366. https://doi.org/10.3390/su151813366