Analyses of Vineyard Microclimate in the Eastern Foothills of the Helan Mountains in Ningxia Region, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Climate Quality Assessment
2.3. Statistical Analyses
3. Results
3.1. Vineyard Microclimate at Chateau Jinsemeiyu
3.1.1. Microclimate during the Year and the Growing Period for Grape at Chateau Jinsemeiyu
3.1.2. Monthly Microclimate at Chateau Jinsemeiyu
3.1.3. Microclimate on Typical Sunny Days during the Four Seasons at Chateau Jinsemeiyu
3.1.4. Chateau Jinsemeiyu Microclimate Compared with Local Weather
3.2. Vineyard Microclimate in Yinchuan Wine-Grape-Growing Area
3.2.1. Microclimate during the Year and the Growing Period for Grape in Yinchuan Wine-Grape-Growing Area
3.2.2. Monthly Microclimate in Yinchuan Wine-Grape-Growing Area
3.3. Comparison of Vineyard Microclimate among the Four Wine-Grape-Growing Areas
3.3.1. Comparison during the Year and the Growing Period for Grape
3.3.2. Comparison between Different Months
3.4. Climate Quality for Wine Grape in 2019 and 2020
4. Discussion
4.1. Vineyard Microclimate Data
4.2. Factors Affecting the Vineyard Microclimate
4.3. Climate Quality Assessment
4.4. Limitations
5. Conclusions
- (1)
- In the same wine-grape-growing area, where the climate was similar, the vineyard microclimate was affected by elevation, terrain, and soil texture. Elevation was positively associated with average wind velocity, but negatively associated with precipitation and relative humidity. The gravel content of the soil type was a key factor that positively affected the mean air temperature.
- (2)
- Except average wind velocity, there were no statistically significant differences in other meteorological elements between the field microclimate observation stations and the local national reference station.
- (3)
- From the north to the south of the study region, the vineyard air temperature and precipitation both gradually decreased while the vineyard relative humidity and PAR gradually increased.
- (4)
- The climate quality for grapes was superior in 2019 than in 2020. In particular, Yinchuan had a better climate quality for grape than the other study areas did.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Zhang, X.; Wang, J.; Zhang, H. Terroir suitability zoning for the six prevailing wine grape varieties in Ningxia Hui Autonomous Region (with a Focus on the Helan Mountain East) of China. J. Agric. Sci. Technol. 2019, A9, 278–293. [Google Scholar]
- Wang, J.; Zhang, X.; Su, L.; Li, H.; Wei, J. Global warming effects on climate zones for wine grape in Ningxia region, China. Theor. Appl. Climatol. 2020, 140, 1527–1536. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Change 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef]
- Tramontini, S.; Leeuwen, C.; Domec, J.C.; Destrac-Irvine, A.; Basteau, C. Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development. Plant Soil. 2013, 368, 215–230. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Friant, P.; Chone, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. The influence of climate, soil and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar] [CrossRef]
- Ubalde, J.M.; Sort, X.; Zayas, A.; Poch, R.M. Effects of soil and climatic conditions on grape ripening and wine quality of cabernet sauvignon. J. Wine Res. 2010, 21, 1–17. [Google Scholar] [CrossRef]
- Jones, G.V. The climate component of terroir. Elements 2018, 14, 167–172. [Google Scholar] [CrossRef]
- Neethling, E.; Barbeau, G.; Coulon-Leroy, C.; Quénol, H. Spatial complexity and temporal dynamics in viticulture: A review of climate-driven scales. Agric. For. Meteorol. 2019, 107618, 276–277. [Google Scholar] [CrossRef]
- Matese, A.; Crisci, A.; Gennaro, S.; Primicerio, J.; Tomasi, D.; Marcuzzo, P.; Guidoni, S. Spatial variability of meteorological conditions at different scales in viticulture. Agric. For. Meteorol. 2014, 189, 159–167. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, P.; Li, X. The effect of microclimate of hilly vineyard on grape and wine quality. J. Northwest A F Univ. 2007, 2007, 193–198, (In Chinese with English abstract). [Google Scholar]
- Matese, A.; Crisci, A.; Di Gennaro, F.S.; Fiorillo, E.; Primicerio, J.; Toscano, P.; Vaccari, F.P.; Di Blasi, S.; Genesio, L. Influence of Canopy Management Practices on Vineyard Microclimate: Definition of New Microclimatic Indices. Am. J. Enol. Vitic. 2012, 63, 424–430. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; de Toda, F.M. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef] [PubMed]
- QX/T 557—2020; Assessment for Climate Quality of Agricultural Products—Wine Grape. Meteorological Press: Beijing, China, 2020; (In Chinese with English illstration).
- Chen, Y.G.; Ding, L.X.; Ge, H.L.; Zhang, M.Z.; Hu, Y. Hyperspectral Bambusoideae Discrimination Based on Mann-Whitney Non-Parametric Test and SVM. Spectrosc. Spect. Anal. 2011, 31, 3010–3013, (In Chinese with English abstract). [Google Scholar]
- Jones, G.V.; Moriondo, M.; Bois, B.; Hall, A.; Duff, A. Analysis of the spatial climate structure in viticulture regions worldwide. Bull. OIV 2009, 82, 507–518. [Google Scholar]
- Thornton, P.E.; Running, S.W.; White, M.A. Generating surfaces of daily meteorology variables over large regions of complex terrain. J. Hydrol. 1997, 190, 214–251. [Google Scholar] [CrossRef]
- De Rességuier, L.; Séverine, M.; Roux, R.L.; Petitjean, T.; Leeuwen, C.V. Temperature variability at local scale in the bordeaux area. Relations with environmental factors and impact on vine phenology. Front. Plant. Sci. 2020, 11, 515. [Google Scholar] [CrossRef]
- Strack, T.; Schmidt, D.; Stoll, M. Impact of steep slope management system and row orientation on canopy microclimate. Comparing terraces to downslope vineyards. Agric. For. Meteorol. 2021, 307, 108515. [Google Scholar] [CrossRef]
- Gilbert, N.; Anich, N.; Worland, M.; Zuckerberg, B. Microclimate complexities at the trailing edge of the boreal forest. For. Ecol. Manag. 2022, 524, 120533. [Google Scholar] [CrossRef]
- Andreoli, V.; Bertoni, D.; Cassardo, C.; Ferrarese, S.; Francone, C.; Spanna, F. Analysis of micrometeorological conditions in Piedmontese vineyards. Ital. J. Agrometeorol. 2018, 2, 27–40. [Google Scholar]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Jones, G.V.; Alves, F.; Pinto, J.G.; Santos, J.A. Very high resolution bioclimatic zoning of Portuguese wine regions: Present and future scenarios. Reg. Environ. Change 2014, 14, 295–306. [Google Scholar] [CrossRef]
- Ferretti, C.G.; Febbroni, S. Terroir Traceability in Grapes, Musts and Gewürztraminer Wines from the South Tyrol Wine Region. Horticulturae 2022, 8, 586. [Google Scholar] [CrossRef]
- Tomada, S.; Agati, G.; Serni, E.; Michelini, S.; Lazazzara, V.; Pedri, U.; Sanoll, C.; Matteazzi, A.; Robatscher, P.; Haas, F. Non-destructive fluorescence sensing for assessing microclimate, site and defoliation effects on flavonol dynamics and sugar prediction in Pinot blanc grapes. PLoS ONE 2022, 17, e0273166. [Google Scholar] [CrossRef]
- Taye, M.; Simane, B.; Selsssie, Y.G.; Zaitchik, B.; Setegn, S. Analysis of the spatial variability of soil texture in a tropical highland: The case of the Jema Watershed, Northwestern Highlands of Ethiopia. Int. J. Environ. Res. Public Health 2018, 15, 1903. [Google Scholar] [CrossRef]
- Wang, R.; Sun, Q.; Chang, Q. Soil types effect on grape and wine composition in Helan Mountain area of Ningxia. PLoS ONE 2015, 10, e0116690. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Tian, M.B.; Duan, W.P.; Yang, W.M.; Mao, X.; Wang, J.; Duan, C.Q. Effects of Inner-Row Ground Management on the Volatomics of “Cabernet Sauvignon” Grapes and Wines in the Region of the Eastern Foothills of the Ningxia Helan Mountains in Northwest China. Foods 2023, 12, 2472. [Google Scholar] [CrossRef]
- Mania, E.; Petrella, F.; Giovannozzi, M.; Piazzi, M.; Wilson, A.; Guidoni, S. Managing Vineyard Topography and Seasonal Variability to Improve Grape Quality and Vineyard Sustainability. Agronomy 2021, 11, 1142. [Google Scholar] [CrossRef]
- Sun, Q.; Ebersole, C.; Wong, D.P.; Curtis, K. The Impact of Vineyard Mechanization on Grape and Wine Phenolics, Aroma Compounds, and Sensory Properties. Fermentation 2022, 8, 318. [Google Scholar] [CrossRef]
- Novikova, L.Y.; Naumova, L.G. Dependence of fresh grapes and wine taste scores on the origin of varieties and weather conditions of the harvest year in the northern zone of industrial viticulture in Russia. Agronomy 2020, 10, 1613. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Bastian, S.E.; Cozzolino, D.; Jeffery, D.W. Factors influencing the aroma composition of Chardonnay wines. J. Agric. Food Chem. 2014, 62, 6512–6534. [Google Scholar] [CrossRef]
- Moriondo, M.; Bindi, M.; Fagarazzi, C.; Ferrise, R.; Trombi, G. Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Reg. Environ. Change 2011, 11, 553–567. [Google Scholar] [CrossRef]
- Mozell, M.R.; Thach, L. The impact of climate change on the global wine industry: Challenges & solutions. Wine Econ. Policy 2014, 3, 81–89. [Google Scholar]
- Ruml, M.; Vuković, A.; Vujadinović, M.; Djurdjević, V.; Ranković-Vasić, Z.; Atanacković, Z.; Sivčev, B.; Marković, N.; Matijašević, S.; Petrović, N. On the use of regional climate models: Implications of climate change for viticulture in Serbia. Agric. For. Meteorol. 2012, 158, 53–62. [Google Scholar] [CrossRef]
- Alikadic, A.; Pertot, I.; Eccel, E.; Dolci, C.; Zarbo, C.; Caffarra, A.; Filippi, R.D.; Furlanello, C. The impact of climate change on grapevine phenology and the influence of altitude: A regional study. Agric. For. Meteorol. 2019, 271, 73–82. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Kang, Y.L.; Yuan, H.Y.; Zhang, L.; Ma, G.F.; Liu, J.; Han, Y.J. The quality evaluation of wine grape and its response to meteorological conditions. Acta Ecol. Sin. 2007, 27, 740–745, (In Chinese with English abstract). [Google Scholar]
- Rendulić Jelušić, I.; ŠakićBobić, B.; Grgić, Z.; Žiković, S.; Osrečak, M.; Puhelek, I.; Anić, M.; Karoglan, M. Grape Quality Zoning and Selective Harvesting in Small Vineyards—To Adopt or Not to Adopt. Agriculture 2022, 12, 852. [Google Scholar] [CrossRef]
- Niimi, J.; Tomic, O.; Næs, T.; Bastian, S.E.; Jeffery, D.W.; Nicholson, E.L.; Maffei, S.M.; Boss, P.K. Objective measures of grape quality: From Cabernet Sauvignon grape composition to wine sensory characteristics. LWT 2020, 123, 109105. [Google Scholar] [CrossRef]
- Poni, S.; Gatti, M.; Palliotti, A.; Dai, Z.; Duchêne, E.; Truong, T.T.; Ferrara, G.; Matarrese, A.M.S.; Gallotta, A.; Bellincontro, A.; et al. Grapevine quality: A multiple choice issue. Sci. Hortic. 2018, 234, 445–462. [Google Scholar] [CrossRef]
Area | Winery | Latitude (N) | Longitude (E) | Elevation (m) |
---|---|---|---|---|
Shizuishan | Chateau Hedong | 38°59′12″ | 106°18′40″ | 1.108 |
Yinchuan | Chateau Jinsemeiyu | 38°37′33″ | 106°00′52″ | 1.178 |
Legacy Peak Estate | 38°30′03″ | 106°01′10″ | 1.134 | |
Chateau Yunmo Greatwall | 38°22′34″ | 105°56′17″ | 1.230 | |
Domaine Chandon Ningxia | 38°19′30″ | 106°01′12″ | 1.140 | |
Chateau Yuquan | 38°11′05″ | 105°59′24″ | 1.130 | |
Qingtongxia | Chateau Yuhuang | 38°06′30″ | 105°53′17″ | 1.176 |
Hongsipu | D.F. Yuxing winery | 37°19′20″ | 106°05′22″ | 1.388 |
Grade | IQ | Quality Grading Reference Value | |
---|---|---|---|
Sugar Content of Grape (G) (g·L−1) | Ratio of Sugar to Acid (H) | ||
Excellent | IQ ≥ 2.7 | 220 ≤ G < 240 | 40 ≤ H < 50 |
Very good | 2.5 ≤ IQ < 2.7 | 200 ≤ G < 220 or 240 ≤ G < 260 | 32 ≤ H < 40 or 50 ≤ H < 55 |
Good | 1.5 ≤ IQ < 2.5 | 180 ≤ G < 200 or 260 ≤ G < 280 | 25 ≤ H < 32 or 55 ≤ H < 60 |
Ordinary | IQ < 1.5 | G < 180 or G ≥ 280 | H < 25 or H ≥ 60 |
Mi | IRT (°C·mm) | Ae (°C·d) | S (h) | R30 (mm) | T30 (°C) |
---|---|---|---|---|---|
3 | IRT ≤ 3000 | 1550 ≤ Ae < 2000 | S ≥ 1550 | R30 ≤ 30 | 18 < T30 ≤ 20 |
2 | 3000 < IRT ≤ 4000 | 1450 ≤ Ae < 1550 or 2000 ≤ Ae < 2200 | 1400 ≤ S < 1550 | 30 < R30 ≤ 50 | 20 < T30 ≤ 22 or 16 < T30 ≤ 18 |
1 | 4000 < IRT ≤ 5000 | 1350 ≤ Ae < 1450 or 2200 ≤ Ae < 2400 | 1250 ≤ S < 1400 | 50 < R30 ≤ 100 | 22 < T30 ≤ 24 or 14 < T30 ≤ 16 |
0 | IRT > 5000 | Ae < 1350 or Ae ≥ 2400 | S < 1250 | R30 > 100 | T30 > 25 or T30 ≤ 14 |
Year | Timescale | Tmax (°C) | Tmin (°C) | Tmean (°C) | RH at 150 cm (%) | P (mm) | P Days | Soil Temperature at 10 cm (°C) | PAR (W·m−2) |
---|---|---|---|---|---|---|---|---|---|
2019 | Annual | 35.9 | −17.0 | 10.8 | 42.6 | 186.2 | 56 | 12.4 | 310.2 |
Growing period | 35.9 | 6.0 | 18.7 | 44.7 | 171.5 | 47 | 20.0 | 392.1 | |
2020 | Annual | 37.7 | −22.7 | 11.0 | 44.1 | 121.3 | 38 | 12.4 | 308.8 |
Growingperiod | 37.7 | −2.30 | 18.8 | 42.7 | 120.3 | 31 | 19.2 | 388.0 |
Year | Timescale | RH at Different Heights (%) | Soil Temperature at Different Depths (°C) | |||||
---|---|---|---|---|---|---|---|---|
50 cm | 150 cm | 10 cm | 20 cm | 30 cm | 40 cm | 50 cm | ||
2019 | Annual | 43.1 | 42.6 | 12.2 | 12.4 | 12.4 | 12.4 | 12.4 |
Growing period | 45.3 | 44.7 | 20.0 | 19.8 | 19.4 | 19.2 | 19.0 | |
2020 | Annual | 45.1 | 44.1 | 12.4 | 12.6 | 12.6 | 12.7 | 12.7 |
Growing period | 44.0 | 42.7 | 19.3 | 19.2 | 19.0 | 18.8 | 18.6 |
Meteorological Element | Progressive Significance | |
---|---|---|
Monthly | Daily (Selected Sunny Days) | |
Tmean at 150 cm (°C) | 0.959 | 0.741 |
Tmax at 150 cm (°C) | 0.902 | 0.885 |
Tmin at 150 cm (°C) | 0.643 | 0.902 |
Precipitation (mm) | 0.942 | N/A |
Mean RH at 150 cm (%) | 0.564 | 0.364 |
Average wind velocity (m·s−1) | 0.065 | 0.016 * |
Soil temperature at 10 cm depth (°C) | 0.543 | 0.621 |
Winery | Year | Timescale | Tmean (°C) | RH at 150 cm (%) | P (mm) | Days with P | Average Wind Velocity (m·s−1) | PAR (W·m−2) |
---|---|---|---|---|---|---|---|---|
Legacy Peak Estate | 2019 | Annual | 10.1 | 46.0 | 151.8 | 43.0 | 1.71 | 299.1 |
Growth cycle | 18.4 | 49.6 | 151.4 | 41.0 | 1.6 | 382.8 | ||
2020 | Annual | 10.1 | 44.6 | 131.8 | 44.0 | 1.7 | 293.5 | |
Growth cycle | 18.1 | 43.6 | 130.6 | 40.0 | 1.8 | 379.5 | ||
Domaine Chandon Ningxia | 2019 | Annual | 10.9 | 44.5 | 39.5 | 47.0 | 1.9 | 300.4 |
Growth cycle | 18.8 | 48.6 | 38.5 | 43.0 | 1.8 | 382.7 | ||
2020 | Annual | 10.6 | 42.2 | 35.9 | 54.0 | 1.6 | 286.5 | |
Growth cycle | 18.8 | 41.3 | 33.9 | 47.0 | 1.6 | 368.1 | ||
Chateau Yuquan | 2019 | Annual | 10.2 | 46.9 | 126.2 | 45.0 | 1.8 | 327.7 |
Growth cycle | 18.3 | 51.4 | 125.8 | 41.0 | 1.8 | 411.0 | ||
2020 | Annual | 10.6 | 44.9 | 121.6 | 34.0 | 1.7 | 315.7 | |
Growth cycle | 18.3 | 48.4 | 121.0 | 32.0 | 1.8 | 405.8 | ||
Chateau Yunmo Greatwall | 2019 | Annual | 11.3 | 40.3 | 135.5 | 43.0 | 2.5 | 300.4 |
Growth cycle | 19.2 | 42.9 | 134.9 | 39.0 | 2.6 | 379.1 | ||
2020 | Annual | 11.4 | 38.9 | 45.6 | 51.0 | 2.3 | 304.8 | |
Growth cycle | 19.1 | 37.1 | 45.6 | 51.0 | 2.4 | 387.1 |
Area | Year | Timescale | Tmean (°C) | RH at 150 cm (%) | P (mm) | Days with P | Average Wind Velocity (m·s−1) | PAR (W·m−2) |
---|---|---|---|---|---|---|---|---|
Shizuishan | 2019 | Annual | 8.3 | 47.2 | 114.1 | 46 | 1.3 | 288.2 |
Growing period | 18.0 | 50.9 | 112.8 | 41 | 1.4 | 383.4 | ||
2020 | Annual | 9.9 | 44.9 | 136.7 | 34 | 1.4 | 284.0 | |
Growing period | 17.9 | 44.5 | 135.9 | 31 | 1.4 | 383.7 | ||
Yinchuan | 2019 | Annual | 9.3 | 42.6 | 186.2 | 56 | 2.2 | 309.5 |
Growing period | 18.9 | 44.7 | 171.5 | 47 | 2.1 | 392.1 | ||
2020 | Annual | 11.0 | 41.3 | 121.3 | 35 | 2.0 | 309.0 | |
Growing period | 18.8 | 39.4 | 120.3 | 31 | 2.0 | 399.1 | ||
Qingtongxia | 2019 | Annual | 9.3 | 44.5 | 111.7 | 47 | 2.6 | 323.7 |
Growing period | 18.4 | 49.0 | 111.7 | 47 | 2.4 | 406.3 | ||
2020 | Annual | 11.0 | 41.3 | 61.6 | 18 | 2.5 | 307.2 | |
Growing period | 18.4 | 45.1 | 61.6 | 18 | 2.3 | 388.0 | ||
Hongsipu | 2019 | Annual | 9.2 | 44.6 | 242.9 | 54 | 3.0 | 342.1 |
Growing period | 17.8 | 48.3 | 242.7 | 52 | 3.2 | 419.0 | ||
2020 | Annual | 10.6 | 43.6 | 209.7 | 43 | 2.9 | 325.7 | |
Growing period | 17.7 | 43.0 | 209.6 | 42 | 3.1 | 411.0 |
Cultivar | Year | Shizuishan Area | Yinchuan Area | Qingtongxia Area | Hongsipu Area |
---|---|---|---|---|---|
Cabernet Sauvignon | 2019 | Very good | Good to Excellent | Very good | Excellent |
2020 | Good | Good to Excellent | Excellent | Good | |
Chardonnay | 2019 | Very good | Good to Excellent | Very good | Good |
2020 | Good | Good to Excellent | Very good | Ordinary |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Zhang, X.; Yang, Y.; Yang, Y.; Wang, J.; Li, H. Analyses of Vineyard Microclimate in the Eastern Foothills of the Helan Mountains in Ningxia Region, China. Sustainability 2023, 15, 12740. https://doi.org/10.3390/su151712740
Chen R, Zhang X, Yang Y, Yang Y, Wang J, Li H. Analyses of Vineyard Microclimate in the Eastern Foothills of the Helan Mountains in Ningxia Region, China. Sustainability. 2023; 15(17):12740. https://doi.org/10.3390/su151712740
Chicago/Turabian StyleChen, Renwei, Xiaoyu Zhang, Yu Yang, Yonge Yang, Jing Wang, and Hongying Li. 2023. "Analyses of Vineyard Microclimate in the Eastern Foothills of the Helan Mountains in Ningxia Region, China" Sustainability 15, no. 17: 12740. https://doi.org/10.3390/su151712740
APA StyleChen, R., Zhang, X., Yang, Y., Yang, Y., Wang, J., & Li, H. (2023). Analyses of Vineyard Microclimate in the Eastern Foothills of the Helan Mountains in Ningxia Region, China. Sustainability, 15(17), 12740. https://doi.org/10.3390/su151712740