Impacts of Contaminants from Different Sources on Geotechnical Properties of Soils
Abstract
:1. Introduction
2. Transport of Contaminants
3. Impacts of Contaminants on Geotechnical Properties of Soil
3.1. Permeability
3.1.1. Impact of Industrial Wastewater
3.1.2. Impact of Landfill Leachate
3.1.3. Impact of Agricultural and Aquacultural Activity
3.2. Shear Strength
3.2.1. Impact of Industrial Wastewater
3.2.2. Impact of Landfill Leachate
3.2.3. Impact of Agricultural Activity
3.3. Compressibility
3.3.1. Impact of Industrial Wastewater
3.3.2. Impact of Landfill Leachate
3.3.3. Impact of Agricultural Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.; Rautela, R.; Chavan, D.; Kumar, S. Evaluation of soil contamination due to crude E-waste recycling activities in the capital city of India. Process Saf. Environ. Prot. 2021, 152, 641–653. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated sites in Europe: Review of the current situation based on data collected through a European network. J. Environ. Public Health 2013, 2013, 158764. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, J.; Feng, S.J. The era of low-permeability sites remediation and corresponding technologies: A review. Chemosphere 2023, 313, 137264. [Google Scholar] [CrossRef] [PubMed]
- Mahammedi, C.; Mahdjoubi, L.; Booth, C.A.; Akram, H.; Butt, T.E. A systematic review of risk assessment tools for contaminated sites–Current perspectives and future prospects. Environ. Res. 2020, 191, 110180. [Google Scholar] [CrossRef] [PubMed]
- Moghal, A.A.B.; Rasheed, R.M.; Mohammed, S.A.S. Sorptive and desorptive response of divalent heavy metal ions from EICP-treated plastic fines. Indian Geotech. J. 2023, 53, 315–333. [Google Scholar] [CrossRef]
- Moghal, A.A.B.; Sanaulla, P.F.; Mohammed, S.A.S.; Rasheed, R.M. Leaching test protocols to evaluate contaminant response of nano-calcium silicate–treated tropical soils. J. Hazard. Toxic Radioact. Waste 2023, 27, 04023002. [Google Scholar] [CrossRef]
- Nouri, M.; Haddioui, A. Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco. Environ. Monit. Assess. 2016, 188, 1–12. [Google Scholar] [CrossRef]
- Williams, G.M.; Aitkenhead, N. Lessons from Loscoe: The uncontrolled migration of landfill gas. Q. J. Eng. Geol. Hydrogeol. 1991, 24, 191–207. [Google Scholar] [CrossRef]
- Du, Y.J.; Jiang, N.J.; Liu, S.Y.; Jin, F.; Singh, D.N.; Puppala, A.J. Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin. Can. Geotech. J. 2014, 51, 289–302. [Google Scholar] [CrossRef]
- Gajo, A.; Maines, M. Mechanical effects of aqueous solutions of inorganic acids and bases on a natural active clay. Géotechnique 2007, 57, 687–699. [Google Scholar] [CrossRef]
- Zhang, W.B.; Shi, D.D.; Shen, Z.Z.; Zhang, J.; Zhao, S.; Gan, L.; Li, Q.M.; Chen, Y.S.; Tang, P. Influence of chopped basalt fibers on the fracture performance of concrete subjected to calcium leaching. Theor. Appl. Fract. Mech. 2023, 125, 103934. [Google Scholar] [CrossRef]
- Zhang, G. Soil nanoparticles and their influence on engineering properties of soils. In Advances In Measurement and Modeling of Soil Behavior; ASCE: Reston, VA, USA, 2007; pp. 1–13. [Google Scholar]
- Avcil, F.; Ercan, I.Ş.I.K.; Büyüksaraç, A. The effect of local soil conditions on structure target displacements in different seismic zones. Gümüşhane Üniversitesi Fen Bilim. Derg. 2022, 12, 1000–1011. [Google Scholar]
- Stone, K.J.L.; Newson, T.A. Arching effects in soil-structure interaction. In Physical Modelling in Geotechnics; Routledge: Abingdon, UK, 2022; pp. 935–939. [Google Scholar]
- Awoyera, P.; Adesina, A.; Olalusi, O.; Viloria, A. Reinforced concrete deterioration caused by contaminated construction water: An overview. Eng. Fail. Anal. 2020, 116, 104715. [Google Scholar] [CrossRef]
- Capraro, A.P.B.; Macioski, G.; de Medeiros, M. Effect of aggregate contamination with pyrite on reinforcement corrosion in concrete. Eng. Fail. Anal. 2021, 120, 105116. [Google Scholar] [CrossRef]
- Alhassan, H.M.; Fagge, S.A. Effects of crude oil, low point pour fuel oil and vacuum gas oil contamination on the geotechnical properties sand, clay and laterite soils. Int. J. Eng. Res. Appl. 2013, 3, 1947–1954. [Google Scholar]
- Clarkson, L.; Williams, D. An overview of conventional tailings dam geotechnical failure mechanisms. Min. Metall. Explor. 2021, 38, 1305–1328. [Google Scholar] [CrossRef]
- Elsaigh, W.A.H.; Oluremi, J.R. Assessment of geotechnical properties of oil contaminated subgrade soil. Soil Sediment Contam. Int. J. 2021, 31, 586–610. [Google Scholar] [CrossRef]
- Haghsheno, H.; Arabani, M. Geotechnical properties of oil-polluted soil: A review. Environ. Sci. Pollut. Res. 2022, 29, 32670–32701. [Google Scholar] [CrossRef]
- Shayler, H.; McBride, M.; Harrison, E. Sources and Impacts of Contaminants in Soils. Cornell Waste Management Institute. 2009. Available online: https://cwmi.css.cornell.edu (accessed on 9 July 2023).
- Al-Khyat, S.; Naji, D.M.; Hamad, H.T.; Onyeaka, H. A review on soil contamination sources: Impact on engineering properties and remediation techniques. J. Eng. Sustain. Dev. JEASD 2023, 27, 292–307. [Google Scholar] [CrossRef]
- Mackay, D.M.; Freyberg, D.L.; Roberts, P.V.; Cherry, J.A. A natural gradient experiment on solute transport in a sand aquifer: 1. Approach and overview of plume movement. Water Resour. Res. 1986, 22, 2017–2029. [Google Scholar] [CrossRef]
- McCarty, P.L.; Reinhard, M.; Rittmann, B.E. Trace organics in groundwater. Environ. Sci. Technol. 1981, 15, 40–51. [Google Scholar] [CrossRef]
- Postigo, C.; Martinez, D.E.; Grondona, S.; Miglioranza, K.S.B. Groundwater pollution: Sources, mechanisms, and prevention. Encycl. Anthr. 2018, 5, 87–96. [Google Scholar]
- Izbicki, J.A.; Flint, A.L.; O’Leary, D.R.; Nishikawa, T.; Martin, P.; Johnson, R.D.; Clark, D.A. Storage and mobilization of natural and septic nitrate in thick unsaturated zones, California. J. Hydrol. 2015, 524, 147–165. [Google Scholar] [CrossRef]
- Guo, L.; Qian, L.; Xu, M.; Zhang, Y.; Kang, X.; Xiao, X.; Zhang, Q. Effect of the loam inter-layer on the migration and breakthrough of benzene under constant flow in the unsaturated zone: Column experiments. Water Sci. Technol. 2019, 79, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Grantham, G.; Lucas, J.L. Monitoring of the Unsaturated Zone as an Aid in Aquifer Protection; International Association of Hydrogeologists: Cambridge, UK, 1985; pp. 70–83. [Google Scholar]
- Singh, G.; Kaur, G.; Williard, K.; Schoonover, J.; Kang, J. Monitoring of water and solute transport in the vadose zone: A review. Vadose Zone J. 2018, 17, 1–23. [Google Scholar] [CrossRef]
- Berg, S.J.; Gillham, R.W. Studies of water velocity in the capillary fringe: The point velocity probe. Groundwater 2010, 48, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Dunn, A.M.; Silliman, S.E. Air and Water Entrapment in the Vicinity of the Water Table. Groundwater 2003, 41, 729–734. [Google Scholar] [CrossRef]
- Luthin, J.N.; Day, P.R. Lateral flow above a sloping water table. Soil Sci. Soc. Am. J. 1955, 19, 406–410. [Google Scholar] [CrossRef]
- Ronen, D.; Scher, H.; Blunt, M. On the structure and flow processes in the capillary fringe of phreatic aquifers. Transp. Porous Media 1997, 28, 159–180. [Google Scholar] [CrossRef]
- Dunn, A.M.; Silliman, S.; Dhamwichukorn, S.; Kulpa, C. Demonstration of microbial transport into the capillary fringe via advection from below the water table. J. Hydrol. 2005, 306, 50–58. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Yun, Y.S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 2008, 26, 266–291. [Google Scholar] [CrossRef]
- Berkowitz, B.; Silliman, S.; Dunn, A. Impact of the capillary fringe on local flow, chemical migration, and microbiology. Vadose Zone J. 2004, 3, 534–548. [Google Scholar] [CrossRef]
- Chen, Y.; Hou, D.; Lu, C.; Spain, J.; Luo, J. Effects of rate-limited mass transfer on modeling vapor intrusion with aerobic biodegradation. Environ. Sci. Technol. 2016, 50, 9400–9406. [Google Scholar] [CrossRef] [PubMed]
- Ronen, D.; Lev-Wiener, H.; Graber, E.R.; Dahan, O.; Weisbrod, N. Simultaneous counter-flow of chlorinated volatile organic compounds across the saturated–unsaturated interface region of an aquifer. Water Res. 2010, 44, 2107–2112. [Google Scholar] [CrossRef] [PubMed]
- Kurt, Z.; Mack, E.E.; Spain, J.C. Biodegradation of cis-dichloroethene and vinyl chloride in the capillary fringe. Environ. Sci. Technol. 2014, 48, 13350–13357. [Google Scholar] [CrossRef]
- Rivett, M.O.; Wealthall, G.P.; Dearden, R.A.; McAlary, T.A. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. J. Contam. Hydrol. 2011, 123, 130–156. [Google Scholar] [CrossRef]
- Yang, M.; Annable, M.D.; Jawitz, J.W. Back diffusion from thin low permeability zones. Environ. Sci. Technol. 2015, 49, 415–422. [Google Scholar] [CrossRef]
- Chapman, S.W.; Parker, B.L. Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation. Water Resour. Res. 2005, 41, W12411. [Google Scholar] [CrossRef]
- Yang, M.; Annable, M.D.; Jawitz, J.W. Solute source depletion control of forward and back diffusion through low-permeability zones. J. Contam. Hydrol. 2016, 193, 54–62. [Google Scholar] [CrossRef]
- You, X.; Liu, S.; Dai, C.; Guo, Y.; Zhong, G.; Duan, Y. Contaminant occurrence and migration between high-and low-permeability zones in groundwater systems: A review. Sci. Total Environ. 2020, 743, 140703. [Google Scholar] [CrossRef]
- Seyedabbasi, M.A.; Newell, C.J.; Adamson, D.T.; Sale, T.C. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones. J. Contam. Hydrol. 2012, 134, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.H.; Ma, J.; Xi, B.D.; Yu, M.D.; Cui, J.; Chen, B.L.; Li, Y.; Gu, Q.B.; He, X.S. Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater. J. Hazard. Mater. 2022, 432, 128738. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, M.R.; Doyle, J.R.; Carraway, J.W. Integrated bioremediation of soil and groundwater at a superfund site. Remediat. J. 1992, 2, 293–309. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Q.; Jiang, S.; Du, Z.; Zhang, X.; Chen, H.; Cao, W.; Nghiem, L.D.; Ngo, H.H. Enhancement of lead removal from soil by in-situ release of dissolved organic matters from biochar in electrokinetic remediation. J. Clean. Prod. 2022, 361, 132294. [Google Scholar] [CrossRef]
- de Melo Henrique, J.M.; Isidro, J.; Sáez, C.; López-Vizcaíno, R.; Yustres, A.; Navarro, V.; Dos Santos, E.V.; Rodrigo, M.A. Enhancing soil vapor extraction with EKSF for the removal of HCHs. Chemosphere 2022, 296, 134052. [Google Scholar] [CrossRef]
- Verma, G.; Kumar, B. Prediction of compaction parameters for fine-grained and coarse-grained soils: A review. Int. J. Geotech. Eng. 2020, 14, 970–977. [Google Scholar] [CrossRef]
- Singh, S.K.; Srivastava, R.K.; John, S. Settlement characteristics of clayey soils contaminated with petroleum hydrocarbons. Soil Sediment Contam. 2008, 17, 290–300. [Google Scholar] [CrossRef]
- Ekici, A.; Huvaj, N.; Akgüner, C. Index properties and classification of marginal fills or coarse-fine mixtures. In Geo-Congress 2019: Engineering Geology, Site Characterization, and Geophysics; ASCE: Reston, VA, USA, 2019; pp. 91–99. [Google Scholar]
- Liao, W.; Ji, J. Time-dependent reliability analysis of rainfall-induced shallow landslides considering spatial variability of soil permeability. Comput. Geotech. 2021, 129, 103903. [Google Scholar] [CrossRef]
- Chao, Z.; Dang, Y.; Pan, Y.; Wang, F.; Wang, M.; Zhang, J.; Yang, C. Prediction of the shale gas permeability: A data mining approach. Geomech. Energy Environ. 2023, 33, 100435. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Archilha, N.L.; Pires, L. An analysis of three XCT-based methods to determine the intrinsic permeability of soil aggregates. J. Hydrol. 2022, 612, 128024. [Google Scholar] [CrossRef]
- Oyediran, I.A.; Enya, N.I. Crude oil effects on some engineering properties of sandy alluvial soil. Inter. J. Min. Geo-Eng. 2021, 55, 7–10. [Google Scholar]
- Rahman, Z.A.; Hamzah, U.; Taha, M.; Ithnain, N.; Ahmad, N. Influence of oil contamination on geotechnical properties of basaltic residual soil. Am. J. Appl. Sci. 2010, 7, 954–961. [Google Scholar] [CrossRef]
- Karkush, M.O.; Ali, S.D. Impacts of lead nitrate contamination on the geotechnical properties of clayey soil. J. Eng. Sci. Technol. Rev. 2020, 15, 1032–1045. [Google Scholar]
- Amadi, A.A.; Eberemu, A.O. Performance of cement kiln dust in stabilizing lateritic soil contaminated with organic chemicals. Adv. Mater. Res. 2012, 367, 41–47. [Google Scholar] [CrossRef]
- He, Y.; Li, B.B.; Zhang, K.N.; Li, Z.; Chen, Y.G.; Ye, W.M. Experimental and numerical study on heavy metal contaminant migration and retention behavior of engineered barrier in tailings pond. Environ. Pollut. 2019, 252, 1010–1018. [Google Scholar] [CrossRef]
- Khodary, S.M.; Elwakil, A.Z.; Fujii, M.; Tawfik, A. Effect of hazardous industrial solid waste landfill leachate on the geotechnical properties of clay. Arab. J. Geosci. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Shariatmadari, N.; Lasaki, B.A.; Eshghinezhad, H.; Alidoust, P. Effects of landfill leachate on mechanical behaviour of adjacent soil: A case study of Saravan Landfill, Rasht, Iran. Int. J. Civ. Eng. 2018, 16, 1503–1513. [Google Scholar] [CrossRef]
- Francisca, F.M.; Glatstein, D.A. Long term hydraulic conductivity of compacted soils permeated with landfill leachate. Appl. Clay Sci. 2010, 49, 187–193. [Google Scholar] [CrossRef]
- Eltarabily, M.G.A.; Negm, A.; Valeriano, O.; Gafar, K. Effects of di-ammonium phosphate on hydraulic, compaction, and shear strength characteristic of sand and clay soils. Arab. J. Geosci. 2015, 8, 10419–10432. [Google Scholar] [CrossRef]
- Hanaei, F.; Sarmadi, M.S.; Rezaee, M.; Rahmani, A. Experimental investigation of the effects of gas oil and benzene on the geotechnical properties of sandy soils. Innov. Infrastruct. Solut. 2021, 6, 1–8. [Google Scholar] [CrossRef]
- Nazir, A.K. Effect of motor oil contamination on geotechnical properties of over consolidated clay. Alex. Eng. J. 2011, 50, 331–335. [Google Scholar] [CrossRef]
- Salimnezhad, A.; Soltani-Jigheh, H.; Soorki, A.A. Effects of oil contamination and bioremediation on geotechnical properties of highly plastic clayey soil. J. Rock Mech. Geotech. Eng. 2021, 13, 653–670. [Google Scholar] [CrossRef]
- Izdebska-Mucha, D.; Trzcińsk, J.; Żbik, M.S.; Frost, R.L. Influence of hydrocarbon contamination on clay soil microstructure. Clay Min. 2011, 46, 47–58. [Google Scholar] [CrossRef]
- Bakhshipour, Z.; Asadi, A.; Huat, B.; Sridharan, A.; Kawasaki, S. Effect of acid rain on geotechnical properties of residual soils. Soils Found. 2016, 56, 1008–1020. [Google Scholar] [CrossRef]
- Nayak, S.; Sunil, B.M.; Shrihari, S. Hydraulic and compaction characteristics of leachate-contaminated lateritic soil. Eng. Geol. 2007, 94, 137–144. [Google Scholar] [CrossRef]
- George, M.; Beena, K. Geotechnical characteristics of leachate-contaminated lateratic soil. In Proceedings of the Indian Geotechnical Conference, Kochi, India, 15–17 December 2011; pp. 769–772. [Google Scholar]
- Nagaraju, T.V.; Malegole, S.B.; Chaudhary, B.; Ravindran, G. Assessment of environmental impact of aquaculture ponds in the western delta region of Andhra Pradesh. Sustainability 2022, 14, 13035. [Google Scholar] [CrossRef]
- Nagaraju, T.V.; Sunil, B.M.; Chaudhary, B. A Study on Aquaculture Waste Leachate Transport Through Soil. In Recent Trends in Civil Engineering: Select Proceedings of ICRACE 2021; Springer: Singapore, 2022; pp. 485–491. [Google Scholar]
- Hemmat, A.; Aghilinategh, N.; Sadeghi, M. Shear strength of repacked remoulded samples of a calcareous soil as affected by long-term incorporation of three organic manures in central Iran. Biosyst. Eng. 2010, 107, 251–261. [Google Scholar] [CrossRef]
- Nasehi, S.A.; Uromeihy, A.; Nikudel, M.R.; Morsali, A. Influence of gas oil contamination on geotechnical properties of fine and coarse-grained soils. Geotech. Geol. Eng. 2016, 34, 333–345. [Google Scholar] [CrossRef]
- Negahdar, A.; Nikghalbpour, M. Geotechnical properties of sandy clayey soil contaminated with lead and zinc. SN Appl. Sci. 2020, 2, 1–13. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Fang, J.; Guo, F. Study on shear behavior of kaolinite contaminated by heavy metal Cu (II). Environ. Sci. Pollut. Res. 2019, 26, 13906–13913. [Google Scholar] [CrossRef] [PubMed]
- Li, J.S.; Xue, Q.; Wang, P.; Liu, L. Influence of leachate pollution on mechanical properties of compacted clay: A case study on behaviors and mechanisms. Eng. Geol. 2013, 167, 128–133. [Google Scholar] [CrossRef]
- Demdoum, A.; Gueddouda, M.; Goual, I.; Souli, H.; Ghembaza, M. Effect of landfill leachate on the hydromechanical behavior of bentonite-geomaterials mixture. Constr. Build. Mater. 2020, 234, 117356. [Google Scholar] [CrossRef]
- Sunil, B.M.; Shrihari, S.; Nayak, S. Shear strength characteristics and chemical characteristics of leachate-contaminated lateritic soil. Eng. Geol. 2009, 106, 20–25. [Google Scholar] [CrossRef]
- Fallahzade, J.; Karimi, A.; Naderi, M.; Shirani, H. Soil mechanical properties and wind erosion following conversion of desert to irrigated croplands in central Iran. Soil Tillage Res. 2020, 204, 104665. [Google Scholar] [CrossRef]
- Fang, H.M.; Zhang, Q.; Ji, C.; Guo, J. Soil shear properties as influenced by straw content: An evaluation of field-collected and laboratory-remolded soils. J. Integr. Agric. 2016, 15, 2848–2854. [Google Scholar] [CrossRef]
- Keramatikerman, M.; Chegenizadeh, A.; Nikraz, H.; Yilmaz, Y. Mechanical behaviour of atrazine-contaminated clay. Appl. Sci. 2020, 10, 2457. [Google Scholar] [CrossRef]
- Amiri, M.; Dehghani, M.; Javadzadeh, T.; Taheri, S. Effects of lead contaminants on engineering properties of Iranian marl soil from the microstructural perspective. Miner. Eng. 2022, 176, 107310. [Google Scholar] [CrossRef]
- Varghese, R.; Chandrakaran, S.; Rangaswamy, K. Influence of type of organic substances on the strength and consolidation behaviour of inorganic clay soil. Int. J. Geotech. Eng. 2019, 15, 1165–1176. [Google Scholar] [CrossRef]
- Chen, J.; Anandarajah, A.; Inyang, H. Pore fluid properties and compressibility of kaolinite. J. Geotech. Geoenviron. Eng. 2000, 126, 798–807. [Google Scholar] [CrossRef]
- Jang, Y.S.; Kim, Y.I. Influence of accumulated leachate on settlement and in-situ geotechnical properties of a landfill site. Geosci. J. 2007, 11, 115–119. [Google Scholar] [CrossRef]
- Desai, V.M.; Desai, V.; Rao, D. Prediction of compression index using artificial neural networks. In Indian Geotechnical Conference (IGC-2009); Allied Publishers: New Delhi, India, 2009; pp. 614–617. [Google Scholar]
- Kashefipour, S.M.; Daryaee, M. Modeling the compression index for fine soils using an intelligent method. J. Biodivers. Environ. Sci. 2014, 5, 197–204. [Google Scholar]
- Irfan, M.; Aghilinategh, N.; Sadeghi, M. Geotechnical properties of effluent-contaminated cohesive soils and their stabilization using industrial by-products. Processes 2018, 6, 203. [Google Scholar] [CrossRef]
- Gratchev, I.; Towhata, I. Compressibility of natural soils subjected to long-term acidic contamination. Environ. Earth Sci. 2011, 64, 193–200. [Google Scholar] [CrossRef]
- Shehzad, A.Z.H.A.R.; Khan, A.H.; Rehman, Z.U. Characteristics of low plastic clay contaminated by industrial effluents. Int. J. Adv. Struct. Eng. 2015, 4, 138–147. [Google Scholar]
- Ray, S.; Chowdhury, B.R.; Mishra, A.K.; Kalamdhad, A.S. Impact of heavy metals on consolidation properties of bentonite. In The International Congress on Environmental Geotechnics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 567–574. [Google Scholar]
- Ezeokonkwo, J.C. Engineering properties of NPK fertilizer modified soil. J. Emerg. Trends Eng. Appl. Sci. 2011, 2, 962–966. [Google Scholar]
- Zhang, J.B.; Yang, J.S.; Yao, R.J.; Yu, S.P.; Li, F.R.; Hou, X.J. The effects of farmyard manure and mulch on soil physical properties in a reclaimed coastal tidal flat salt-affected soil. J. Integr. Agric. 2014, 13, 1782–1790. [Google Scholar] [CrossRef]
- Agbede, T.M.; Adekiya, A.O.; Eifediyi, E.K. Impact of poultry manure and NPK fertilizer on soil physical properties and growth and yield of carrot. J. Hortic. Res. 2017, 25, 81–88. [Google Scholar] [CrossRef]
- Cyrus, S.; Kumar, T.; Abraham, B.; Sridharan, A.; Jose, B. Effect of industrial wastes on the physical and engineering properties of soils. In Proceedings of the Indian Geotechnical Conference GEOtrends, Mumbai, Indian, 16–18 December 2010; pp. 16–18. [Google Scholar]
Soil Type | Permeability Test | Contaminant | Permeability Coefficient k(m/s) | Variations | Mechanisms | References | |
---|---|---|---|---|---|---|---|
Natural Soil | Contaminated Soil | ||||||
Well-graded sand (SW) | Constant head test | Crude oil | 1.85 (10−7) | 1.28 (10−7) | ↓ | The high viscosity of the permeable fluid and the blockage of the pores. | [57] |
Sandy loam | Falling head test | Engine oil | 3.74 (10−7) | ~ 0.22 (10−7) | ↓ | Engine oil occupied the pores of the soil. | [58] |
Silty loam | 2.65 (10−7) | ~0.22 (10−7) | ↓ | ||||
High plastic clay (CH) | — | Lead nitrate | 3.22 (10−10) | 1.86 (10−10) | ↓ | The deposition of salt in the pores of the soil. | [59] |
Lateritic soil | Falling head test | Benzene | 1.44 (10−8) | 2.9 (10−5) | ↑ | The shrinkage of the double layer of clay particles. | [60] |
Ethanol | 9.7 (10−6) | ↑ | |||||
Kerosene | 9.5 (10−6) | ↑ | |||||
Compacted tailing | Constant head test | Copper sulfate | 4.47 (10−6) | 4.67 (10−6) | ↑ | The shrinkage of the double layer of clay particles and increase of effective pore volume. | [61] |
Compacted bentonite | 1.0 (10−13) | 2.0 (10−13) | ↑ | ||||
High plastic clay (CH) | Falling head test | Alkaline leachate | ~2.72 (10−10) | ~0.59 (10−10) | ↓ | Alkaline leachate makes soil structure became dispersed and clay particles clogged pores of the soil. | [62] |
Low plastic clay (CL) | Constant head test | Landfill leachate | ~7.27 (10−7) | ~5.81 (10−7) | ↓ | The addition of fine grains and microorganisms clogged soil pores. | [63] |
Silt–bentonite mixture | Falling head test | Landfill leachate | ~3.36 (10−7) | ~1.12 (10−8) | ↓ | The growth of bacteria clogged the pores of the soil. | [64] |
Coarse sand | Falling head test | Di-ammonium phosphate | 1.80 (10−4) | 0.51 (10−4) | ↓ | Soil particles become finer owing to the effect of alkaline solutions, the decreasing the effective pore space, and the hydraulic conductivity. | [65] |
Fine to medium sand | 3.00 (10−5) | 0.12 (10−5) | ↓ | ||||
Silty clay | 1.16 (10−8) | 8.17 (10−8) | ↑ | The alkaline solution dissolves the clay minerals, resulting in a larger permeability coefficient. |
Soil Type | Test Method | Contaminant | Cohesion c (MPa) | Variations | Internal Friction Angle (°) | Variations | Mechanisms | References | ||
---|---|---|---|---|---|---|---|---|---|---|
Natural Soil | Contaminated Soil | Natural Soil | Contaminated Soil | |||||||
SP | Direct shear test | Gas oil | ~7.30 | ~12.20 | ↑ | ~20.15 | ~14.34 | ↓ | The increase of cohesion is owing to the low dielectric constant of gas oil, and the decrease of the internal friction angle is caused by the lubrication effect. | [76] |
ML | ~10.00 | ~12.40 | ↑ | ~19.80 | ~10.88 | ↓ | ||||
CL | ~12.00 | ~14.68 | ↑ | ~18.58 | ~6.17 | ↓ | ||||
SP | Direct shear test | Benzene | 0 | ~7.30 | ↑ | ~38.00 | ~30.00 | ↓ | The viscosity of gas oil is higher than benzene. | [66] |
Gas oil | ~8.90 | ↑ | ~28.00 | ↓ | ||||||
SP | Benzene | 0 | ~7.10 | ↑ | ~30.00 | ~24.00 | ↓ | |||
Gas oil | ~8.40 | ↑ | ~20.00 | ↓ | ||||||
90% kaolinite and 10% sand | Direct shear test | Lead nitrate | ~36.00 | ~21.00 | ↓ | ~32.48 | ~32.93 | ↑ | The invasion of heavy metal cations leads to the double layer contraction, which leads to the flocculent structure of the clay and the decrease of the shear strength. | [77] |
Zinc nitrate | ~28.67 | ↓ | ~33.45 | ↑ | ||||||
60% kaolinite and 40% sand | Lead nitrate | ~31.00 | ~15.00 | ↓ | ~36.17 | ~37.47 | ↑ | |||
Zinc nitrate | ~23.74 | ↓ | ~37.88 | ↑ | ||||||
Kaolinite | Triaxial consolidated undrained test | Copper chloride | ~24.00 | ~19.68 | ↓ | ~ 14.10 | ~ 12.40 | ↓ | The double layer contraction and the clay particles become relatively free. | [78] |
Silty clay | Direct shear test | Landfill leachate | ~21.95 | ~19.92 | ↓ | ~18.06 | ~23.73 | ↑ | The mineral content of clay decreases, which leads to the decrease in soil cohesion. Changes in the geometric arrangement of soil particles may increase the internal friction angle. | [79] |
10% bentonite, 20% sand and 70% clay | Direct shear test | Landfill leachate | 35.25 | 51.50 | ↑ | 29.70 | 28.46 | ↓ | The content and specific surface area of fine grains increased. | [80] |
Lateritic soil | Triaxial consolidated undrained test | Landfill leachate | 18.20 | 20.00 | ↑ | 30.00 | 25.00 | ↓ | The landfill leachate liberates the clay particles in the soil mass and increases the clay content in the lateritic soil. | [81] |
Clay loam | Direct shear test | Agricultural contamination | 21.39 | 22.46 | ↓ | 36.90 | 41.05 | ↑ | The increase of organic carbon content enhanced the cohesion of soil. | [82] |
Clay loam | Direct shear test | Rice straw | ~40.70 | ~91.66 | ↑ | ~7.12 | ~15.98 | ↑ | The content of soil organic carbon was improved. | [83] |
Wheat straw | ~82.69 | ↑ | ~17.73 | ↑ | ||||||
Amber clay | Ring shear test | Atrazine | 6.40 | 9.50 | ↑ | 27.32 | 21.70 | ↓ | The increase of pore fluid viscosity promotes particle sliding and reduces the internal friction angle of soil. | [84] |
Black clay | 8.60 | 12.60 | ↑ | 28.80 | 23.40 | ↓ | ||||
Kaolinite clay | 4.70 | 7.20 | ↑ | 26.80 | 22.40 | ↓ |
Soil Type | Contaminant | Compression Index Cc | Variations | Mechanisms | Reference | |
---|---|---|---|---|---|---|
Natural Soil | Contaminated Soil | |||||
CH | Acidic industrial wastewater | 0.226 | 0.316 | ↑ | Industrial waste water destroys soil structure and makes the contaminated soil have greater consolidation potential than the undisturbed natural soil. Therefore, the compression index of soil increases. | [91] |
Basic industrial wastewater | 0.282 | ↑ | ||||
CL | Acidic industrial wastewater | 0.169 | 0.245 | ↑ | ||
Basic industrial wastewater | 0.235 | ↑ | ||||
Osaka Bay clay | Sulphuric acid | 0.474 | 0.722 | ↑ | The corrosion of sulfuric acid weakens the cementation between clay particles and reacts with clay minerals, which loosens the soil structure and increases the compression index. The opposite performance of Kawasaki mud may be caused by the decrease in the diffuse double-layer thickness. | [92] |
Ariake clay | ~1.220 | ~1.469 | ↑ | |||
Kawasaki mud | ~0.400 | ~0.315 | ↓ | |||
CH | Motor oil | 0.150 | ~0.300 | ↑ | The structural stability of clay contaminated with motor oil has been damaged, and the clay particles are loosely stacked together. Compared with natural soil, it has a larger compression index and may cause extra settlement when under new loads. | [67] |
CH | Crude oil | ~0.300 | ~0.380 | ↑ | Since crude oils are nonpolar fluids, they do not react with soil components and occupy pores in the soil. Crude oil is more easily drained from the soil when subjected to loading. Therefore, crude oil-contaminated soil has a higher compression index than natural soil. | [68] |
10% bentonite, 45% sand and 45% clay | Landfill leachate | 0.127 | 0.106 | ↓ | Mineralogical degradation and microorganisms play an important role. Compared with water, landfill leachate-contaminated soil has a higher pre-consolidation pressure. Therefore, it has less compressibility and a smaller compression index. | [80] |
10% bentonite, 45% sand and 45% clay | 0.120 | 0.097 | ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zhang, B.; Zhang, W.; Su, X.; Sun, B. Impacts of Contaminants from Different Sources on Geotechnical Properties of Soils. Sustainability 2023, 15, 12586. https://doi.org/10.3390/su151612586
Zhao S, Zhang B, Zhang W, Su X, Sun B. Impacts of Contaminants from Different Sources on Geotechnical Properties of Soils. Sustainability. 2023; 15(16):12586. https://doi.org/10.3390/su151612586
Chicago/Turabian StyleZhao, Shan, Baoju Zhang, Wenbing Zhang, Xinjia Su, and Botao Sun. 2023. "Impacts of Contaminants from Different Sources on Geotechnical Properties of Soils" Sustainability 15, no. 16: 12586. https://doi.org/10.3390/su151612586
APA StyleZhao, S., Zhang, B., Zhang, W., Su, X., & Sun, B. (2023). Impacts of Contaminants from Different Sources on Geotechnical Properties of Soils. Sustainability, 15(16), 12586. https://doi.org/10.3390/su151612586