Is There a Conflict between Automation and Environment? Implications of Artificial Intelligence for Carbon Emissions in China
Abstract
:1. Introduction
2. Literature Review
2.1. Factors Influencing Carbon Emissions
2.2. The Economic Effects of Artificial Intelligence
2.3. The Impacts of Artificial Intelligence on Environmental Monitoring and Governance
3. Theoretical Analysis
3.1. Consumer Demand
3.2. Production Behavior of Enterprises
3.3. Impact Mechanism of AI Development on Carbon Emissions
4. Methodology, Variables, and Data Sources
4.1. The Setting of Preliminary Econometric Model
4.2. Variables Selection
4.3. Data Sources and Description
5. Empirical Analysis
5.1. Panel Unit Root Test and Multicollinearity Test
5.2. Baseline Regression Analysis
5.3. Robustness Analysis
5.4. Instrumental Variables Regression Analysis
5.5. Regional Heterogeneity Analysis
5.6. Transmission Mechanism Analysis
6. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Z.H.; Li, L.S.; Liu, J.; Zhang, H.M. Total-factor carbon emission efficiency of China’s provincial industrial sector and its dynamic evolution. Renew. Sustain. Energy Rev. 2018, 94, 330–339. [Google Scholar] [CrossRef]
- Gao, Y.N.; Li, M.; Xue, J.J.; Liu, Y. Evaluation of effectiveness of China’s carbon emissions trading scheme in carbon mitigation. Energy Econ. 2020, 90, 104872. [Google Scholar] [CrossRef]
- Cao, K.H.; Birchenall, J.A. Agricultural productivity, structural change, and economic growth in post-reform China. J. Dev. Econ. 2013, 104, 165–180. [Google Scholar] [CrossRef]
- Li, Z.Z.; Li, R.Y.M.; Malik, M.Y.; Murshed, M.; Khan, Z.; Umar, M. Determinants of Carbon Emission in China: How Good Is Green Investment. Sustain. Prod. Consump. 2021, 27, 392–401. [Google Scholar] [CrossRef]
- Xu, X.P.; Li, S. Neighbor-Companion or Neighbor-Beggar? Estimating the Spatial Spillover Effects of Fiscal Decentralization on China’s Carbon Emissions Based on Spatial Econometric Analysis. Sustainability 2022, 14, 9984. [Google Scholar] [CrossRef]
- Liu, Y.S.; Yang, M.; Cheng, F.Y.; Tian, J.Z.; Du, Z.Q.; Song, P.B. Analysis of regional differences and decomposition of carbon emissions in China based on generalized divisia index method. Energy 2022, 256, 124666. [Google Scholar] [CrossRef]
- Peretto, P.F.; Valente, S. Resources, innovation and growth in the global economy. J. Monet. Econ. 2011, 58, 387–399. [Google Scholar] [CrossRef]
- Jung, J.H.; Lim, D.G. Industrial robots, employment growth, and labor cost: A simultaneous equation analysis. Technol. Forecast. Soc. Chang. 2020, 159, 120202. [Google Scholar] [CrossRef]
- Song, J.; Chen, Y.; Luan, F.S. Air pollution, water pollution, and robots: Is technology the panacea. J. Environ. Manag. 2023, 330, 117170. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhang, Y.R.; Pan, A.; Han, M.C.; Veglianti, E. Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms. Technol. Soc. 2022, 70, 102034. [Google Scholar] [CrossRef]
- Chang, L.; Taghizadeh-Hesary, F.; Mohsin, M. Role of artificial intelligence on green economic development: Joint determinates of natural resources and green total factor productivity. Resour. Policy 2023, 82, 103508. [Google Scholar] [CrossRef]
- Al-mulali, U.; Sab, C.N.B.C.; Fereidouni, H.G. Exploring the bi-directional long run relationship between urbanization, energy consumption, and carbon dioxide emission. Energy 2012, 46, 156–167. [Google Scholar] [CrossRef]
- Mayor, K.; St Tol, R. The impact of the UK aviation tax on carbon dioxide emissions and visitor numbers. Transp. Policy 2007, 14, 507–513. [Google Scholar] [CrossRef]
- Xu, X.P.; Yi, B.J. New Insights into the Impact of Local Corruption on China’s Regional Carbon Emissions Performance Based on the Spatial Spillover Effects. Sustainability 2022, 14, 15310. [Google Scholar] [CrossRef]
- Neves, S.A.; Marques, A.C.; Patricio, M. Determinants of CO2 emissions in European Union countries: Does environmental regulation reduce environmental pollution. Econ. Anal. Policy 2020, 68, 114–125. [Google Scholar] [CrossRef]
- Croci, E.; Lucchitta, B.; Molteni, T. Low carbon urban strategies: An investigation of 124 European cities. Urban Clim. 2021, 40, 101022. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Li, S.; Luo, T.Y.; Gao, J. The effect of emission trading policy on carbon emission reduction: Evidence from an integrated study of pilot regions in China. J. Clean Prod. 2020, 265, 121843. [Google Scholar] [CrossRef]
- Guo, Q.Q.; Su, Z.F.; Chiao, C.S. Carbon emissions trading policy, carbon finance, and carbon emissions reduction: Evidence from a quasi-natural experiment in China. Econ. Chang. Restruct. 2021, 55, 1445–1480. [Google Scholar] [CrossRef]
- Yang, F.; Wang, C.C. Clean energy, emission trading policy, and CO2 emissions: Evidence from China. Energy Environ. 2023, 34, 1657–1673. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Zhang, X.P.; Zheng, Y.H.; Rao, R. Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors. Energy Econ. 2014, 45, 455–462. [Google Scholar] [CrossRef]
- Jia, Z.J.; Lin, B.Q. Rethinking the choice of carbon tax and carbon trading in China. Technol. Forecast. Soc. Chang. 2020, 159, 120187. [Google Scholar] [CrossRef]
- Pao, H.T.; Tsai, C.M. CO2 emissions, energy consumption and economic growth in BRIC countries. Energy Policy 2010, 38, 7850–7860. [Google Scholar] [CrossRef]
- Lee, J.W.; Brahmasrene, T. Investigating the influence of tourism on economic growth and carbon emissions: Evidence from panel analysis of the European Union. Tour. Manag. 2013, 38, 69–76. [Google Scholar] [CrossRef]
- Pan, C.L.; Wang, H.Y.; Guo, H.P.; Pan, H. How do the population structure changes of China affect carbon emissions? An empirical study based on ridge regression analysis. Sustainability 2021, 13, 3319. [Google Scholar] [CrossRef]
- Zhang, C.G.; Tan, Z. The relationships between population factors and China’s carbon emissions: Does population aging matter. Renew. Sustain. Energy Rev. 2016, 65, 1018–1025. [Google Scholar] [CrossRef]
- Yi, Y.C.; Qi, J.; Chen, D. Impact of population agglomeration in big cities on carbon emissions. Environ. Sci. Pollut. Res. 2022, 29, 86692–86706. [Google Scholar] [CrossRef]
- Yi, Y.C.; Wang, Y.J.; Li, Y.Q.; Qi, J. Impact of urban density on carbon emissions in China. Appl. Econ. 2021, 53, 6153–6165. [Google Scholar] [CrossRef]
- Wu, L.; Jia, X.Y.; Gao, L.; Zhou, Y.Q. Effects of population flow on regional carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 62628–62639. [Google Scholar] [CrossRef]
- Galloway, C.; Swiatek, L. Public relations and artificial intelligence: It’s not (just) about robots. Public Relat. Rev. 2018, 44, 734–740. [Google Scholar] [CrossRef]
- Goralski, M.A.; Tan, T.K. Artificial intelligence and sustainable development. Int. J. Manag. Educ. 2020, 18, 100330. [Google Scholar] [CrossRef]
- Lu, C.H. The impact of artificial intelligence on economic growth and welfare. J. Macroecon. 2021, 69, 103342. [Google Scholar] [CrossRef]
- Nishant, R.; Kennedy, M.; Corbett, J. Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. Int. J. Inf. Manag. 2020, 53, 102104. [Google Scholar] [CrossRef]
- Autor, D.H.; Levy, F.; Murnane, R.J. The skill content of recent technological change: An empirical exploration. Q. J. Econ. 2003, 118, 1279–1333. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Robots and Jobs: Evidence from US Labor Markets. J. Polit. Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef]
- Ma, H.M.; Gao, Q.; Li, X.Z.; Zhang, Y. AI development and employment skill structure: A case study of China. Econ. Anal. Policy 2022, 73, 242–254. [Google Scholar] [CrossRef]
- Akerman, A.; Gaarder, I.; Mogstad, M. The Skill Complementarity of Broadband Internet. Q. J. Econ. 2015, 130, 1781–1824. [Google Scholar] [CrossRef]
- Gaggl, P.; Wright, G.C. A Short-Run View of What Computers Do: Evidence from a UK Tax Incentive. Am. Econ. J.-Appl. Econ. 2017, 9, 262–294. [Google Scholar] [CrossRef]
- Graetz, G.; Michaels, G. Robots at Work. Rev. Econ. Stat. 2018, 100, 753–768. [Google Scholar] [CrossRef]
- Zhang, L.H.; Gan, T.; Fan, J.C. Do industrial robots affect the labour market? Evidence from China. Econ. Transit. Inst. Chang. 2023, 31, 787–817. [Google Scholar] [CrossRef]
- Mutascu, M. Artificial intelligence and unemployment: New insights. Econ. Anal. Policy 2021, 69, 653–667. [Google Scholar] [CrossRef]
- Nguyen, Q.P.; Vo, D.H. Artificial intelligence and unemployment: An international evidence. Struct. Chang. Econ. Dyn. 2022, 63, 40–55. [Google Scholar] [CrossRef]
- Rammer, C.; Fernandez, G.; Czarnitzki, D. Artificial intelligence and industrial innovation: Evidence from German firm-level data. Res. Policy 2022, 51, 104555. [Google Scholar] [CrossRef]
- Makridis, C.A.; Mishra, S. Artificial intelligence as a service, economic growth, and well-being. J. Serv. Res. 2022, 25, 505–520. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, J.; Shi, L.F.; Forrest, J.Y.L.; Yang, Z.D. Can artificial intelligence improve green economic growth? Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 16418–16437. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.C.; Liu, K.R. The relationship between artificial intelligence and China’s sustainable economic growth: Focused on the mediating effects of industrial structural change. Sustainability 2021, 13, 11542. [Google Scholar] [CrossRef]
- Zhao, P.Y.; Gao, Y.; Sun, X. How does artificial intelligence affect green economic growth? Evidence from China. Sci. Total Environ. 2022, 834, 155306. [Google Scholar] [CrossRef]
- Wang, L.H.; Cao, Z.L.; Dong, Z.Q. Are artificial intelligence dividends evenly distributed between profits and wages? Evidence from the private enterprise survey data in China. Struct. Chang. Econ. Dyn. 2023, 66, 342–356. [Google Scholar] [CrossRef]
- Lin, C.Q.; Xiao, S.P.; Yin, Z.H. How do industrial robots applications affect the quality upgrade of Chinese export trade. Telecommun. Policy 2022, 46, 102425. [Google Scholar] [CrossRef]
- Zou, W.Y.; Xiong, Y.J. Does artificial intelligence promote industrial upgrading? Evidence from China. Ekon. Istraz. 2022, 36, 1666–1687. [Google Scholar] [CrossRef]
- Liu, J.; Chang, H.H.; Forrest, J.Y.L.; Yang, B.H. Influence of artificial intelligence on technological innovation: Evidence from the panel data of China’s manufacturing sectors. Technol. Forecast. Soc. Chang. 2020, 158, 120142. [Google Scholar] [CrossRef]
- Bogue, R. Robots for monitoring the environment. Ind. Robot 2011, 38, 560–566. [Google Scholar] [CrossRef]
- Ye, Z.P.; Yang, J.Q.; Zhong, N.; Tu, X.; Jia, J.N.; Wang, J.D. Tackling environmental challenges in pollution controls using artificial intelligence: A review. Sci. Total Environ. 2020, 699, 134279. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S.; Raju, N.; Ganesan, A.; Rajavel, N.; Chenniappan, M.; Prakash, C.; Pramanik, A.; Basak, A.K.; Dixit, S. Artificial intelligence technologies for forecasting air pollution and human health: A narrative review. Sustainability 2022, 14, 9951. [Google Scholar] [CrossRef]
- Sengorur, B.; Koklu, R.; Ates, A. Water quality assessment using artificial intelligence techniques: SOM and ANN-A case study of Melen river Turkey. Water Qual. Expos. Health 2015, 7, 469–490. [Google Scholar] [CrossRef]
- Liu, W.W.; Zhao, J.F.; Du, L.B.; Padwal, H.H.; Vadivel, T. Intelligent comprehensive evaluation system using artificial intelligence for environmental evaluation. Environ. Impact Assess. Rev. 2021, 86, 106495. [Google Scholar] [CrossRef]
- Chen, M.; Liu, Q.; Huang, S.; Dang, C.L. Environmental cost control system of manufacturing enterprises using artificial intelligence based on value chain of circular economy. Enterp. Inf. Syst. 2020, 16, 1268–1287. [Google Scholar] [CrossRef]
- Sharifi, A.; Ahmadi, M.; Ala, A. The impact of artificial intelligence and digital style on industry and energy post-COVID-19 pandemic. Environ. Sci. Pollut. Res. 2021, 28, 46964–46984. [Google Scholar] [CrossRef]
- Sepulveda, M.J. Integrating information technologies safety into occupational and environmental safety management systems. J. Occup. Environ. Med. 2019, 61, e297–e299. [Google Scholar] [CrossRef]
- Zhang, X.H.; Shu, K.L.; Rajkumar, S.; Sivakumar, V. Research on deep integration of application of artificial intelligence in environmental monitoring system and real economy. Environ. Impact Assess. Rev. 2021, 86, 106499. [Google Scholar] [CrossRef]
- Masood, A.; Ahmad, K. A review on emerging artificial intelligence (AI) techniques for air pollution forecasting: Fundamentals, application and performance. J. Clean Prod. 2021, 322, 129072. [Google Scholar] [CrossRef]
- Wang, S.J.; Li, M.Y. Does industrial intelligence improve resource misallocation? An empirical test based on China. Environ. Sci. Pollut. Res. 2022, 29, 77973–77991. [Google Scholar] [CrossRef]
- Yu, L.Z.; Zeng, C.Y.; Wei, X.H. The impact of industrial robots application on air pollution in China: Mechanisms of energy use efficiency and green technological innovation. Sci. Prog. 2022, 105, 368504221144093. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Tian, Q.B. How does usage of robot affect corporate carbon emissions? Evidence from China’s manufacturing sector. Sustainability 2023, 15, 1198. [Google Scholar] [CrossRef]
- Kugler, M.; Verhoogen, E. Prices, plant size, and product quality. Rev. Econ. Stud. 2012, 79, 307–339. [Google Scholar] [CrossRef]
- Flach, L.; Unger, F. Quality and gravity in international trade. J. Int. Econ. 2022, 137, 103578. [Google Scholar] [CrossRef]
- Wu, H.T.; Xu, L.N.; Ren, S.Y.; Hao, Y.; Yan, G.Y. How do energy consumption and environmental regulation affect carbon emissions in China? New evidence from a dynamic threshold panel model. Resour. Policy 2020, 67, 101678. [Google Scholar] [CrossRef]
- Liang, X.Y.; Fan, M.; Xiao, Y.T.; Yao, J. Temporal-spatial characteristics of energy-based carbon dioxide emissions and driving factors during 2004–2019, China. Energy 2022, 261, 124965. [Google Scholar] [CrossRef]
- Ma, Q.; Murshed, M.; Khan, Z. The nexuses between energy investments, technological innovations, emission taxes, and carbon emissions in China. Energy Policy 2021, 155, 112345. [Google Scholar] [CrossRef]
Symbol | Definition | Obs | Min | Max | Mean | Std. Dev. |
---|---|---|---|---|---|---|
lnCE | Per capita carbon emissions | 420 | 0.564 | 3.361 | 1.766 | 0.506 |
lnRobot | Development level of artificial intelligence | 420 | 2.657 | 11.875 | 7.378 | 1.759 |
lnPGDP | Per capita GDP | 420 | 8.657 | 11.694 | 10.320 | 0.549 |
lnIS | Ratio of secondary industry output | 420 | 2.782 | 4.078 | 3.789 | 0.226 |
lnER | Degree of environmental regulation | 420 | −1.577 | 4.597 | 2.333 | 0.841 |
lnPA | Rate of population aging | 420 | 1.699 | 2.789 | 2.268 | 0.210 |
lnFDI | Foreign direct investment | 420 | 1.615 | 9.121 | 6.318 | 1.341 |
Variable | LLC | IPS | Breitung | ADF-Fisher | PP-Fisher | VIF |
---|---|---|---|---|---|---|
lnCE | −6.413 *** | −4.719 *** | −1.587 * | 148.443 *** | 83.342 ** | — |
lnRobot | −1.833 ** | −2.830 *** | −4.826 *** | 161.877 *** | 182.988 *** | 3.02 |
lnPGDP | −3.041 *** | −7.831 *** | −2.100 ** | 86.734 ** | 120.608 *** | 3.59 |
lnIS | −3.733 *** | −1.438 * | −2.263 ** | 146.368 *** | 82.740 ** | 1.41 |
lnER | −6.726 *** | −4.273 *** | −1.918 ** | 130.179 *** | 79.176 ** | 1.71 |
lnPA | −8.990 *** | −1.815 ** | −1.825 ** | 155.918 *** | 77.469 * | 1.76 |
lnFDI | −5.242 *** | −1.918 ** | −1.892 ** | 126.234 *** | 101.267 *** | 2.39 |
Variable | Pooled OLS | FGLS | RE | FE | Two-Way FE |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
lnRobot | −0.067 *** | −0.031 *** | −0.044 *** | −0.055 *** | −0.172 *** |
(−3.94) | (−2.89) | (−2.77) | (−3.21) | (−6.61) | |
lnPGDP | 0.933 *** | 0.838 *** | 0.717 *** | 0.728 *** | 0.372 *** |
(15.72) | (21.43) | (12.45) | (11.87) | (4.80) | |
lnIS | 0.409 *** | 0.378 *** | 0.172 ** | 0.083 | 0.350 *** |
(4.55) | (5.90) | (1.98) | (0.88) | (3.04) | |
lnER | 0.283 *** | 0.201 *** | 0.059 *** | 0.046 *** | 0.054 *** |
(10.59) | (11.47) | (4.42) | (3.71) | (4.07) | |
lnPA | 0.011 | −0.043 | 0.013 | 0.014 | 0.182 ** |
(0.10) | (−0.59) | (0.16) | (0.18) | (2.06) | |
lnFDI | −0.147 *** | −0.152 *** | −0.061 *** | −0.041 *** | −0.029 ** |
(−7.45) | (−10.41) | (−4.10) | (−2.82) | (−2.08) | |
_Cons | −8.671 *** | −7.536 *** | −5.743 *** | −5.538 *** | −3.047 *** |
(−12.27) | (−17.12) | (−10.17) | (−10.13) | (−4.90) | |
R2 | 0.517 | — | 0.598 | 0.602 | 0.668 |
F/Wald statistic | 75.83 | 854.33 | 522.64 | 97.14 | 39.38 |
Hausman | 63.33 | ||||
Obs | 420 | 420 | 420 | 420 | 420 |
Variable | Adjusted Explained Variable | Adjusted Explanatory Variable | Adjusted Sample Interval | Adjusted Estimation Method |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
L.lnCE | 0.816 *** | |||
(18.69) | ||||
lnRobot | −0.150 *** | −0.166 *** | −0.147 *** | −0.052 *** |
(−6.09) | (−6.59) | (−5.68) | (−3.45) | |
lnPGDP | 0.324 *** | 0.335 *** | 0.565 *** | 0.077 ** |
(4.39) | (4.26) | (6.13) | (2.11) | |
lnIS | 0.282 *** | 0.264 ** | 0.103 | 0.271 *** |
(2.58) | (2.29) | (0.87) | (3.18) | |
lnER | 0.049 *** | 0.039 *** | 0.038 *** | 0.014 ** |
(3.90) | (2.97) | (2.91) | (2.33) | |
lnPA | 0.026 | 0.159 * | 0.134 | 0.145 *** |
(0.31) | (1.81) | (1.53) | (5.54) | |
lnFDI | −0.028 ** | −0.025 * | −0.030 ** | −0.028 ** |
(−2.10) | (−1.79) | (−2.12) | (−2.57) | |
_Cons | −2.052 *** | −2.273 *** | −3.818 *** | −1.155 *** |
(−3.47) | (−3.46) | (−5.09) | (−3.05) | |
Province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
R2 | 0.687 | 0.610 | 0.645 | — |
F statistic | 42.87 | 29.76 | 33.40 | — |
AR(1) | p < 0.000 | |||
AR(2) | p = 0.243 | |||
Sargan | p = 0.664 | |||
Obs | 420 | 390 | 360 | 390 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Stage One | Stage Two | Stage One | Stage Two | |
lnRobot | lnCE | lnRobot | lnCE | |
IV_lnRobot | 0.367 *** | 0.245 *** | ||
(6.70) | (4.75) | |||
lnRobot | −0.154 * | −0.715 *** | ||
(−1.75) | (−3.22) | |||
Control Variable | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes |
Year FE | No | No | Yes | Yes |
Kleibergen-Paap rkLM | 10.53 | 9.87 | ||
Cragg-Donald Wald F | 150.82 | 75.47 | ||
F statistic | 16.46 | 3.83 | ||
Obs | 420 | 420 | 420 | 420 |
Variable | East | Center | West | North | South |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
lnRobot | −0.151 *** | −0.033 | −0.101 *** | −0.320 *** | 0.051 * |
(−3.24) | (−0.68) | (−2.77) | (−6.97) | (1.94) | |
lnPGDP | 0.709 *** | 0.167 | −0.541 *** | 0.566 *** | 0.692 *** |
(6.12) | (1.19) | (−4.56) | (4.17) | (7.46) | |
lnIS | −0.022 | 0.066 | 0.721 *** | 0.479 *** | 0.119 |
(−0.12) | (0.39) | (3.56) | (2.79) | (0.91) | |
lnER | 0.055 *** | 0.073 *** | 0.023 | 0.078 *** | 0.021 |
(3.31) | (3.29) | (0.99) | (3.71) | (1.61) | |
lnPA | 0.236 ** | −0.283 | −0.316 * | −0.003 | −0.260 *** |
(2.26) | (−1.56) | (−1.80) | (−0.02) | (−2.72) | |
lnFDI | −0.120 *** | −0.056 * | 0.005 | −0.021 | 0.038 * |
(−4.27) | (−1.90) | (0.28) | (−1.10) | (1.91) | |
_Cons | −4.555 *** | 0.414 | 4.604 *** | −4.290 *** | −5.878 *** |
(−4.35) | (0.33) | (4.38) | (−3.74) | (−8.24) | |
Province FE | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes |
R2 | 0.545 | 0.812 | 0.871 | 0.718 | 0.792 |
F statistic | 7.82 | 19.44 | 44.18 | 23.63 | 35.32 |
Obs | 154 | 112 | 154 | 210 | 210 |
Variable | Energy Structure | Technological Innovation | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
High | Low | High | Low | |||
lnRobot | −0.280 *** | 0.089 ** | −0.153 ** | −0.174 ** | −0.198 *** | −0.080 |
(−12.92) | (2.14) | (−1.98) | (−2.25) | (−2.68) | (−1.11) | |
lnRobot × lnES | 0.037 *** | |||||
(15.15) | ||||||
lnRobot × lnTI | −0.018 *** | |||||
(−7.67) | ||||||
_Cons | −2.408 *** | −3.651 *** | −3.936 ** | −3.020 * | −3.975 * | −2.861 * |
(−4.90) | (−6.26) | (−2.35) | (−1.76) | (−1.75) | (−1.89) | |
Control variable | Yes | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
R2 | 0.795 | 0.714 | 0.723 | 0.649 | 0.619 | 0.689 |
F statistic | 71.93 | 46.19 | 38.19 | 20.09 | 18.28 | 33.42 |
Obs | 420 | 420 | 210 | 210 | 210 | 210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Song, Y. Is There a Conflict between Automation and Environment? Implications of Artificial Intelligence for Carbon Emissions in China. Sustainability 2023, 15, 12437. https://doi.org/10.3390/su151612437
Xu X, Song Y. Is There a Conflict between Automation and Environment? Implications of Artificial Intelligence for Carbon Emissions in China. Sustainability. 2023; 15(16):12437. https://doi.org/10.3390/su151612437
Chicago/Turabian StyleXu, Xianpu, and Yuchen Song. 2023. "Is There a Conflict between Automation and Environment? Implications of Artificial Intelligence for Carbon Emissions in China" Sustainability 15, no. 16: 12437. https://doi.org/10.3390/su151612437
APA StyleXu, X., & Song, Y. (2023). Is There a Conflict between Automation and Environment? Implications of Artificial Intelligence for Carbon Emissions in China. Sustainability, 15(16), 12437. https://doi.org/10.3390/su151612437