Simulation and Prediction of Greenhouse Gas Emissions from Beef Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Model Construction
2.3. Scenario Setting
3. Results and Analysis
3.1. Model Verification
3.2. Trends in Greenhouse Gas Emissions under Different Scenarios
3.3. Potential of Greenhouse Gas Emission Reduction in Different Scenarios
3.4. Analysis of Factors Affecting Greenhouse Gas Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021; Volume 2. [Google Scholar]
- Khatri-Chhetri, A.; Sapkota, T.B.; Maharjan, S.; Konath, N.C.; Shirsath, P. Agricultural emissions reduction potential by improving technical efficiency in crop production. Agric. Syst. 2023, 207, 103620. [Google Scholar] [CrossRef]
- Terhaar, J.; Frölicher, T.L.; Aschwanden, M.T.; Friedlingstein, P.; Joos, F. Adaptive emission reduction approach to reach any global warming target. Nat. Clim. Chang. 2022, 12, 1136–1142. [Google Scholar] [CrossRef]
- Yang, F.; Dian, J.; Liu, Z. Can Taiwan’s “2025 Non-Nuclear Homeland” policy achieve the expected carbon emission reduction goals? J. Clean. Prod. 2022, 380, 134995. [Google Scholar] [CrossRef]
- Yang, M.; Liu, Y. Research on the potential for China to achieve carbon neutrality: A hybrid prediction model integrated with elman neural network and sparrow search algorithm. J. Environ. Manag. 2023, 329, 117081. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lin, J.; Tan, K.; Pei, Y.; Wang, X. Cooperation between specialized cropping and livestock farms at local level reduces carbon footprint of agricultural system: A case study of recoupling maize-cow system in South China. Agric. Ecosyst. Environ. 2023, 348, 108406. [Google Scholar] [CrossRef]
- Nayak, D.; Saetnan, E.; Cheng, K.; Wang, W.; Koslowski, F.; Cheng, Y.-F.; Zhu, W.Y.; Wang, J.-K.; Liu, J.-X.; Moran, D. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agric. Ecosyst. Environ. 2015, 209, 108–124. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Seale, J.L., Jr.; Wahl, T.I. Meat demand in China: To include or not to include meat away from home? Aust. J. Agric. Resour. Econ. 2020, 64, 150–170. [Google Scholar] [CrossRef]
- Shi, H.; Chang, M. How does agricultural industrial structure upgrading affect agricultural carbon emissions? Threshold effects analysis for China. Environ. Sci. Pollut. Res. 2023, 30, 52943–52957. [Google Scholar] [CrossRef]
- Caro, D.; Davis, S.J.; Bastianoni, S.; Caldeira, K. Global and regional trends in greenhouse gas emissions from livestock. Clim. Change 2014, 126, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Moraes, L.E.; Strathe, A.B.; Fadel, J.G.; Casper, D.P.; Kebreab, E. Prediction of enteric methane emissions from cattle. Glob. Change Biol. 2014, 20, 2140–2148. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Qing, C.; Deng, X.; Song, J.; Xu, D. How does Internet use affect farmers’ low-carbon agricultural technologies in southern China? Environ. Sci. Pollut. Res. 2023, 30, 16476–16487. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xu, Z.; Hao, Z. Low carbon economy and agricultural development. In Proceedings of the E3S Web of Conferences, Odesa, Ukraine, 16 April 2021; p. 3005. [Google Scholar]
- Jiang, S.-J.; Wang, L.; Xiang, F. The Effect of Agriculture Insurance on Agricultural Carbon Emissions in China: The Mediation Role of Low-Carbon Technology Innovation. Sustainability 2023, 15, 4431. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.; Zhang, H.; Zhang, N.; Tahir, N.; Zhang, Q. Estimating the potential of biohydrogen production and carbon neutralization contribution from crop straw. Bioresour. Technol. 2023, 373, 128718. [Google Scholar] [CrossRef] [PubMed]
- Jonker, A.; Muetzel, S.; Molano, G.; Pacheco, D. Effect of fresh pasture forage quality, feeding level and supplementation on methane emissions from growing beef cattle. Anim. Prod. Sci. 2015, 56, 1714–1721. [Google Scholar] [CrossRef]
- Jones, F.; Phillips, F.; Naylor, T.; Mercer, N. Methane emissions from grazing Angus beef cows selected for divergent residual feed intake. Anim. Feed Sci. Technol. 2011, 166, 302–307. [Google Scholar] [CrossRef]
- Zeng, X.; Ma, Y.; Ma, L. Utilization of straw in biomass energy in China. Renew. Sustain. Energy Rev. 2007, 11, 976–987. [Google Scholar] [CrossRef]
- Sarnklong, C.; Cone, J.; Pellikaan, W.; Hendriks, W. Utilization of rice straw and different treatments to improve its feed value for ruminants: A review. Asian-Australas. J. Anim. Sci. 2010, 23, 680–692. [Google Scholar] [CrossRef]
- Tongwane, M.I.; Moeletsi, M.E. Provincial cattle carbon emissions from enteric fermentation and manure management in South Africa. Environ. Res. 2021, 195, 110833. [Google Scholar] [CrossRef] [PubMed]
- Vibart, R.; de Klein, C.; Jonker, A.; Van der Weerden, T.; Bannink, A.; Bayat, A.R.; Crompton, L.; Durand, A.; Eugène, M.; Klumpp, K. Challenges and opportunities to capture dietary effects in on-farm greenhouse gas emissions models of ruminant systems. Sci. Total Environ. 2021, 769, 144989. [Google Scholar] [CrossRef]
- Patra, A.K. Estimation of methane and nitrous oxide emissions from Indian livestock. J. Environ. Monit. 2012, 14, 2673–2684. [Google Scholar] [CrossRef]
- Moreira, S.G.; Hoogenboom, G.; Nunes, M.R.; Martin-Ryals, A.D.; Sanchez, P.A. Circular agriculture increases food production and can reduce N fertilizer use of commercial farms for tropical environments. Sci. Total Environ. 2023, 879, 163031. [Google Scholar] [CrossRef] [PubMed]
- Franzluebbers, A.J.; Martin, G. Farming with forages can reconnect crop and livestock operations to enhance circularity and foster ecosystem services. Grass Forage Sci. 2022, 77, 270–281. [Google Scholar] [CrossRef]
- Duan, X.; An, B.; Du, L.; Chang, T.; Liang, M.; Yang, B.-G.; Xu, L.; Zhang, L.; Li, J.; Guangxin, E. Genome-wide association analysis of growth curve parameters in Chinese Simmental beef cattle. Animals 2021, 11, 192. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, S.; Davis, R.; McGahan, E.; Murphy, C.; Redding, M. Resource use and greenhouse gas emissions from grain-finishing beef cattle in seven Australian feedlots: A life cycle assessment. Anim. Prod. Sci. 2016, 57, 1149–1162. [Google Scholar] [CrossRef]
- Angthong, W.; Mori, A.; Kitwetcharoen, H.; Kaeokliang, O.; Kamphayae, S.; Suzuki, T.; Cai, Y.; Maeda, K. Comprehensive Assessment of Greenhouse Gas Emissions from Thai Beef Cattle Production and the Effect of Rice Straw Amendment on the Manure Microbiome. Front. Environ. Sci. 2022, 10, 665. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Kruska, R.; Reid, R.S. Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agric. Ecosyst. Environ. 2008, 126, 122–137. [Google Scholar] [CrossRef]
- Xue, Y.-N.; Luan, W.-X.; Wang, H.; Yang, Y.-J. Environmental and economic benefits of carbon emission reduction in animal husbandry via the circular economy: Case study of pig farming in Liaoning, China. J. Clean. Prod. 2019, 238, 117968. [Google Scholar] [CrossRef]
- Anand, S.; Dahiya, R.; Talyan, V.; Vrat, P. Investigations of methane emissions from rice cultivation in Indian context. Environ. Int. 2005, 31, 469–482. [Google Scholar] [CrossRef]
- Eggleston, H.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Sarfaraz, Q.; Silva, L.S.D.; Drescher, G.L.; Zafar, M.; Severo, F.F.; Kokkonen, A.; Dal Molin, G.; Shafi, M.I.; Shafique, Q.; Solaiman, Z.M. Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. Sci. Rep. 2020, 10, 955. [Google Scholar] [CrossRef] [Green Version]
- Meo-Filho, P.; Hood, J.; Lee, M.; Fleming, H.; Meethal, M.; Misselbrook, T. Performance and enteric methane emissions from housed beef cattle fed silage produced on pastures with different forage profiles. Animal 2023, 17, 100726. [Google Scholar] [CrossRef]
- Xu, P.; Liao, Y.; Zheng, Y.; Zhao, C.; Zhang, X.; Zheng, Z.; Luan, S. Northward shift of historical methane emission hotspots from the livestock sector in China and assessment of potential mitigation options. Agric. For. Meteorol. 2019, 272, 1–11. [Google Scholar] [CrossRef]
- Gessesse, B.; Tesfamariam, B.G.; Melgani, F. Understanding traditional agro-ecosystem dynamics in response to systematic transition processes and rainfall variability patterns at watershed-scale in Southern Ethiopia. Agric. Ecosyst. Environ. 2022, 327, 107832. [Google Scholar] [CrossRef]
- Ruviaro, C.F.; de Léis, C.M.; Lampert, V.d.N.; Barcellos, J.O.J.; Dewes, H. Carbon footprint in different beef production systems on a southern Brazilian farm: A case study. J. Clean. Prod. 2015, 96, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Mgendi, G.; Shiping, M.; Xiang, C. A review of agricultural technology transfer in Africa: Lessons from Japan and China case projects in Tanzania and Kenya. Sustainability 2019, 11, 6598. [Google Scholar] [CrossRef] [Green Version]
- Tedeschi, L.O.; Beauchemin, K.A. Galyean Appreciation Club Review: A holistic perspective of the societal relevance of beef production and its impacts on climate change. J. Anim. Sci. 2023, 101, skad024. [Google Scholar] [CrossRef]
- Du, L.; Li, X.; Zhao, H.; Ma, W.; Jiang, P. System dynamic modeling of urban carbon emissions based on the regional National Economy and Social Development Plan: A case study of Shanghai city. J. Clean. Prod. 2018, 172, 1501–1513. [Google Scholar] [CrossRef]
Gas Type | Selected Parameter | Recommended Value | Unit | Source |
---|---|---|---|---|
CH4 | GET | GET = 105.7 (T = fattening cattle) | MJ·day−1 | [25] |
GET = 289.97 (T = lactating cow) | ||||
GET = 258.38 (T = pregnant cow) | ||||
YM | YM = 6.5 | % | [31] | |
Y | 365 | day | - | |
B | B = 55.65 | MJ·kgCH4−1 | [31] | |
N2O | Nex(T) | Nex(T) = 20.47 (T = fattening cattle) | kgN·head−1·year−1 | [25] |
Nex(T) = 63.89 (T = lactating cow) | ||||
Nex(T) = 51.52 (T = pregnant cow) | ||||
MS (T, S) | MS(T,S) = 46 | % | [31] | |
EF3(s) | EF3(s) = 0.02 | kgN2O·kgN−1 | [31] | |
EF4(s) | EF4(s) = 0.01 | kgN2O·kgN−1 | [31] | |
FracGasMS | FracGasMS = 30 | % | [31] | |
N | N = 44/28 | N2O (mm)·(N2O-N) (mm)−1 | [31] | |
E(x) | E(x) = 0.43 (x = N2O) | g·kg−1 | [15] | |
CO2 | E(x) | E(x) = 1261.5 (x = CO2) | g·kg−1 | [15] |
Factor | Feed Precision | Breeding Environment | Corn Straw Utilization | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Controlled Variable | 60 | 70 | 80 | Dry Fattening Farm | Livestock Barn Manure Pit | Solid Broadcast | Burning Straw | Feed-Processing Straw | ||
Scenario | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | ||
Baseline Scenario | BAU | √ | √ | √ | ||||||
Single Emission Reduction Scenario | S2.1.1 | √ | √ | √ | ||||||
S2.2.1 | √ | √ | √ | |||||||
S2.3.1 | √ | √ | √ | |||||||
S2.1.1 | √ | √ | √ | |||||||
S3.2.1 | √ | √ | √ | |||||||
S3.3.1 | √ | √ | √ | |||||||
Comprehensive Emission Reduction Scenario | S2.1.2 | √ | √ | √ | ||||||
S2.2.2 | √ | √ | √ | |||||||
S2.3.2 | √ | √ | √ | |||||||
S3.1.2 | √ | √ | √ | |||||||
S3.2.2 | √ | √ | √ | |||||||
S3.3.2 | √ | √ | √ |
Year | Number of Beef Cattle (Ten Thousand Head) | Greenhouse Gas Emissions (Metric Tons) | Relative Error% | Quantity of Straw (Metric Tons) | Greenhouse Gas Emissions (Metric Tons) | Relative Error% | ||
---|---|---|---|---|---|---|---|---|
Our Method | Training Data for Regression | Our Method | Training Data for Regression | |||||
2013 | 437.62 | 736.95 | 736.95 | - | 2653.03 | 3647.78 | 3647.78 | - |
2014 | 430.91 | 725.66 | 725.66 | - | 2673.71 | 3676.22 | 3676.22 | - |
2015 | 450.72 | 759.02 | 759.02 | - | 2793.51 | 3840.93 | 3840.93 | - |
2016 | 427.28 | 719.54 | 719.54 | - | 2924.79 | 4021.44 | 4021.44 | - |
2017 | 337.56 | 568.45 | 568.45 | - | 2893.19 | 3978 | 3978 | - |
2018 | 325.29 | 547.79 | 547.79 | - | 2491.89 | 3426.23 | 3426.23 | - |
2019 | 331.48 | 558.21 | 558.21 | - | 2710.32 | 3726.55 | 3726.55 | - |
2020 | 285.48 | 480.75 | 480.75 | - | 2646.36 | 3638.61 | 3638.61 | - |
2021 | 338.3 | 569.67 | 569.67 | - | 2846.61 | 3913.95 | 3913.95 | - |
2022 | 390.3 | 657.27 | 657.27 | - | 2918.92 | 4013.36 | 4013.36 | - |
Year | Predicted data | Our method | Regression method | Relative error% | Predicted data | Our method | Regression method | Relative error% |
2023 | 448.85 | 755.86 | 786.14 | 4.01 | 2948.48 | 4054.01 | 4002.86 | 1.26 |
2024 | 516.17 | 869.23 | 881.85 | 1.45 | 2978.35 | 4095.08 | 4033.35 | 1.51 |
2025 | 593.6 | 999.63 | 1044.08 | 4.45 | 3008.52 | 4136.56 | 4139.7 | 0.08 |
2026 | 613.19 | 1032.61 | 1003.38 | 2.83 | 3039 | 4178.47 | 4198.41 | 0.48 |
2027 | 633.43 | 1066.69 | 1088.33 | 2.03 | 3069.78 | 4220.8 | 4200.6 | 0.48 |
2028 | 654.33 | 1101.89 | 1111.79 | 0.9 | 3100.88 | 4263.55 | 4277.23 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Tao, T.; Zhou, J.; Yu, H.; Guo, H.; Chen, H. Simulation and Prediction of Greenhouse Gas Emissions from Beef Cattle. Sustainability 2023, 15, 11994. https://doi.org/10.3390/su151511994
Chen X, Tao T, Zhou J, Yu H, Guo H, Chen H. Simulation and Prediction of Greenhouse Gas Emissions from Beef Cattle. Sustainability. 2023; 15(15):11994. https://doi.org/10.3390/su151511994
Chicago/Turabian StyleChen, Xiao, Tao Tao, Jiaxin Zhou, Helong Yu, Hongliang Guo, and Hongbing Chen. 2023. "Simulation and Prediction of Greenhouse Gas Emissions from Beef Cattle" Sustainability 15, no. 15: 11994. https://doi.org/10.3390/su151511994
APA StyleChen, X., Tao, T., Zhou, J., Yu, H., Guo, H., & Chen, H. (2023). Simulation and Prediction of Greenhouse Gas Emissions from Beef Cattle. Sustainability, 15(15), 11994. https://doi.org/10.3390/su151511994