Differential Stomatal Responses to Surface Permeability by Sympatric Urban Tree Species Advance Novel Mitigation Strategy for Urban Heat Islands
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, P. The Biology of Urban Environments, 1st ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2018; p. 12. [Google Scholar]
- Group, W.B. Guide to Climate Change Adaptation in Cities; World Bank: Washington, DC, USA, 2011; p. 106. [Google Scholar]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar]
- Cook-Patton, S.C.; Leavitt, S.M.; Gibbs, D.; Harris, N.L.; Lister, K.; Anderson-Teixeira, K.J.; Briggs, R.D.; Chazdon, R.L.; Crowther, T.W.; Ellis, P.W.; et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 2020, 585, 545–550. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 129. [Google Scholar] [CrossRef]
- Houghton, J. Global warming. Rep. Prog. Phys. 2005, 68, 1343–1403. [Google Scholar] [CrossRef]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant–Pathogen Warfare under Changing Climate Conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef] [PubMed]
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, U.; Zhang, L.; Anderson, C.J.; Jørgensen, S.E.; Brix, H. Wetlands, carbon, and climate change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Chen, D.; Rodhe, H.; Emanuel, K.; Seneviratne, S.I.; Zhai, P.; Allard, B.; Berg, P.; Björck, S.; Brown, I.A.; Bärring, L.; et al. Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. Tellus B Chem. Phys. Meteorol. 2020, 72, 1. [Google Scholar] [CrossRef]
- Yang, L.; Qian, F.; Song, D.-X.; Zheng, K.-J. Research on Urban Heat-Island Effect. Procedia Eng. 2016, 169, 11–18. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Tsou, J.Y.; Li, Y. Surface Urban Heat Island Analysis of Shanghai (China) Based on the Change of Land Use and Land Cover. Sustainability 2017, 9, 1538. [Google Scholar] [CrossRef] [Green Version]
- Narumi, D.; Levinson, R.; Shimoda, Y. Effect of Urban Heat Island and Global Warming Countermeasures on Heat Release and Carbon Dioxide Emissions from a Detached House. Atmosphere 2021, 12, 572. [Google Scholar] [CrossRef]
- Howard, L. The Climate of London: Deduced from Meteorological Observations, Made at Different Places in the Neighbourhood of the Metropolis; W. Phillips, George Yard, Lombard Street, sold also by J. and A. Arch, Cornhill; Baldwin, Cradock, and Joy, and W. Bent, Paternoster Row; and J. Hatchard, Picadilly: London, UK, 1818. [Google Scholar]
- Szulkin, M.; Munshi-South, J.; Charmantier, A. Urban Evolutionary Biology, 1st ed.; Oxford University Press: Oxford, UK, 2020; p. 15. [Google Scholar]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution? Landsc. Urban Plan. 2013, 114, 1–8. [Google Scholar] [CrossRef]
- Padmanaban, R.; Bhowmik, A.K.; Cabral, P. Satellite image fusion to detect changing surface permeability and emerging urban heat islands in a fast-growing city. PLoS ONE 2019, 14, e0208949. [Google Scholar] [CrossRef]
- Carolis, L.D. The Urban Heat Island Effect in Windsor, An Assessment of Vulnerability and Mitigation Strategies; City of Windsor: Windsor, ON, Canada, 2012. [Google Scholar]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.; Hochuli, D.F. Creating better cities: How biodiversity and ecosystem functioning enhance urban residents’ wellbeing. Urban Ecosyst. 2015, 18, 747–762. [Google Scholar] [CrossRef]
- Mao, W.; Wang, X.; Cai, J.; Zhu, M. Multi-dimensional histogram-based information capacity analysis of urban heat island effect using Landsat 8 data. Remote Sens. Lett. 2016, 7, 925–934. [Google Scholar] [CrossRef]
- Boulton, C.; Dedekorkut-Howes, A.; Byrne, J. Factors shaping urban greenspace provision: A systematic review of the literature. Landsc. Urban Plan. 2018, 178, 82–101. [Google Scholar] [CrossRef]
- Song, J.; Du, S.; Feng, X.; Guo, L. The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models. Landsc. Urban Plan. 2014, 123, 145–157. [Google Scholar] [CrossRef]
- Kim, D.; Ahn, Y. The Contribution of Neighborhood Tree and Greenspace to Asthma Emergency Room Visits: An Application of Advanced Spatial Data in Los Angeles County. Int. J. Environ. Res. Public Health 2021, 18, 3487. [Google Scholar] [CrossRef]
- Fan, K.; Chu, H.; Eldridge, D.J.; Gaitan, J.J.; Liu, Y.-R.; Sokoya, B.; Wang, J.-T.; Hu, H.-W.; He, J.-Z.; Sun, W.; et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nat. Ecol. Evol. 2023, 7, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Grafius, D.R.; Corstanje, R.; Harris, J.A. Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landsc. Ecol. 2018, 33, 557–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Z.; Lau, K.K.-L.; Ng, E. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Kleerekoper, L.; Van Esch, M.; Salcedo, T.B. How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recycl. 2012, 64, 30–38. [Google Scholar] [CrossRef]
- Jordan, G.J.; Carpenter, R.J.; Koutoulis, A.; Price, A.; Brodribb, T.J. Environmental adaptation in stomatal size independent of the effects of genome size. New Phytol. 2014, 205, 608–617. [Google Scholar] [CrossRef] [Green Version]
- Nixon, K.C. Fagaceae Dumortier. In Flora of North America North of Mexico, Vol. 3: Magnoliophyta: Magnoliidae and Hamamelidae; Flora of North America Editorial Committee, Ed.; Oxford University Press: New York, NY, USA; Oxford, MI, USA, 1997; On-line version. [Google Scholar]
- Yang, Z.; Liu, B.; Yang, Y.; Ferguson, D.K. Phylogeny and taxonomy of Cinnamomum (Lauraceae). Ecol. Evol. 2022, 12, e9378. [Google Scholar] [CrossRef]
- Green, P.S. A Revision of Olea L. (Oleaceae). Kew Bull. 2002, 57, 91–140. [Google Scholar] [CrossRef]
- Radlkofer, L.A.T. Ueber Cupania und Damit Verwandte Pflanzen. Sitzungsberichte der Mathematisch-Physikalischen Classe; Königlichen Bayerischen Akademie der Wissenschaften zu Munchen; München Franz in Komm.: Munich, Germany, 1879; Volume 4, pp. 512–585. [Google Scholar]
- Esau, K. Anatomy of Seed Plants; Wiley: Hoboken, NJ, USA, 1960. [Google Scholar]
- Hopkin, M. Carbon sinks threatened by increasing ozone. Nature 2007, 448, 396. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, L.E.; Lin, J.C.; Bowling, D.R.; Pataki, D.E.; Strong, C.; Schauer, A.J.; Bares, R.; Bush, S.E.; Stephens, B.B.; Mendoza, D.; et al. Long-term urban carbon dioxide observations reveal spatial and temporal dynamics related to urban characteristics and growth. Proc. Natl. Acad. Sci. USA 2018, 115, 2912–2917. [Google Scholar] [CrossRef] [Green Version]
- Lietzke, B.; Vogt, R.; Feigenwinter, C.; Parlow, E. On the controlling factors for the variability of carbon dioxide flux in a heterogeneous urban environment. Int. J. Clim. 2015, 35, 3921–3941. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, B. Using Clear Nail Polish to Make Arabidopsis Epidermal Impressions for Measuring the Change of Stomatal Aperture Size in Immune Response. In Plant Pattern Recognition Receptors: Methods and Protocols; Shan, L., He, P., Eds.; Springer: New York, NY, USA, 2017; pp. 243–248. [Google Scholar]
- Walker, S.E. Density and Dispersion. Nat. Educ. Knowl. 2011, 3, 3. [Google Scholar]
- Statistica (Data Analysis Software System) Version 13; TIBCO Software Inc.: Palo Alto, CA, USA, 2017.
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.; Berry, J.A.; et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.; Berry, J.A.; Campbell, J.E.; et al. Response to Comments on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 2021, 373, eabg7484. [Google Scholar] [CrossRef]
- Groffman, P.M.; Cavender-Bares, J.; Bettez, N.D.; Grove, J.M.; Hall, S.J.; Heffernan, J.B.; Hobbie, S.E.; Larson, K.L.; Morse, J.L.; Neill, C. Ecological homogenization of urban USA. Front. Ecol. Environ. 2014, 12, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Savi, T.; Bertuzzi, S.; Branca, S.; Tretiach, M.; Nardini, A. Drought-induced xylem cavitation and hydraulic deterioration: Risk factors for urban trees under climate change? New Phytol. 2015, 205, 1106–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nnadi, E.O.; Newman, A.P.; Coupe, S.J.; Mbanaso, F.U. Stormwater harvesting for irrigation purposes: An investigation of chemical quality of water recycled in pervious pavement system. J. Environ. Manag. 2015, 147, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Wang, X.; Su, Y.; Chen, Y.; Yu, W.; Gong, C.; Li, L.; Rehim, A.; Wang, X. Impacts of pavement on the growth and biomass of young pine, ash and maple trees. Trees 2021, 35, 2019–2029. [Google Scholar] [CrossRef]
- Aguiar, A.C. Urban Heat Islands: Differentiating between the Benefits and Drawbacks of Using Native or Exotic Vegetation in Mitigating Climate. University of Wollongong: New South Wales, Australia, 2012. [Google Scholar]
- Gert de Roo, D.M. Integrating City Planning and Environmental Improvement: Practicable Strategies for Sustainable Urban Development, 2nd ed.; Routledge: London, UK, 2016. [Google Scholar]
- Carmona, M. Public Places, Urban Spaces: The Dimensions of Urban Design; Architectural Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Carmona-Galindo, V.D.; Hinton-Hardin, D.; Kagihara, J.; Pascua, M.R.T. Assessing the Impact of Invasive Species Management Strategies on the Population Dynamics of Castor bean (Ricinus communis L., Euphorbiaceae) at Two Southern California Coastal Habitats. Nat. Areas J. 2013, 33, 222–226. [Google Scholar] [CrossRef]
- Kuo, W.C.; Wang, H.W.; Ho, Y.T. Data-Informed Design of Sustainable Sediment Flushing Regimes for Reservoir Management. In Proceedings of the American Geophysical Union, Fall Meeting, Washington, DC, USA, 1 December 2018; American Geophysical Union: Washington, DC, USA, 2018. [Google Scholar]
- Werbach, A. Strategy for sustainability. Strat. Dir. 2011, 27, 10. [Google Scholar] [CrossRef]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; Resolution Adopted by the General Assembly on 25 September 2015; UN General Assembly: New York, NY, USA, 2015; Volume 42809, pp. 1–13. [Google Scholar]
- Schlaepfer, M.A.; Guinaudeau, B.P.; Martin, P.; Wyler, N. Quantifying the contributions of native and non-native trees to a city’s biodiversity and ecosystem services. Urban For. Urban Green. 2020, 56, 126861. [Google Scholar] [CrossRef]
- Vaz, A.S.; Castro-Díez, P.; Godoy, O.; Alonso, A.; Vilà, M.; Saldaña, A.; Marchante, H.; Bayón, A.; Silva, J.S.; Vicente, J.R.; et al. An indicator-based approach to analyse the effects of non-native tree species on multiple cultural ecosystem services. Ecol. Indic. 2018, 85, 48–56. [Google Scholar] [CrossRef]
- Asner, G.P.; Scurlock, J.M.O.; Hicke, J.A. Global synthesis of leaf area index observations: Implications for Ecological and Remote Sensing Studies. Glob. Ecol. Biogeogr. 2003, 12, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Miles, V.; Esau, I. Seasonal and Spatial Characteristics of Urban Heat Islands (UHIs) in Northern West Siberian Cities. Remote Sens. 2017, 9, 989. [Google Scholar] [CrossRef] [Green Version]
- Hardin, P.J.; Jensen, R.R. The effect of urban leaf area on summertime urban surface kinetic temperatures: A Terre Haute case study. Urban For. Urban Green. 2007, 6, 63–72. [Google Scholar] [CrossRef]
- Rahman, M.A.; Stratopoulos, L.M.; Moser-Reischl, A.; Zölch, T.; Häberle, K.-H.; Rötzer, T.; Pretzsch, H.; Pauleit, S. Traits of trees for cooling urban heat islands: A meta-analysis. Build. Environ. 2020, 170, 106606. [Google Scholar] [CrossRef]
Street Tree Species | Stomatal Responses | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Size (mm ± s) | Density (No./mm2 ± s) | Dispersion (Pattern) | Diversity of Class Sizes (H) | |||||||||
Pervious | Impervious | p | Pervious | Impervious | p | Pervious | Impervious | p | Pervious | Impervious | p | |
Coast Live Oak (N = 30 leaves) | 24.3 ± 2.5 | 27.7 ± 2.9 | 0.010 | 7.1 ± 0.7 | 2.4 ± 1.1 | <0.001 | clumped | clumped | >0.05 | 0.2 | 0.2 | >0.05 |
Camphor Tree (N = 28 leaves) | 16.0 ± 6.1 | 17.2 ± 3.4 | >0.05 | 333.2 ± 157.4 | 281.7 ± 107.9 | >0.05 | clumped | clumped | >0.05 | 1.0 | 1.1 | >0.05 |
Olive Tree (N = 28 leaves) | 7.5 ± 3.0 | 9.6 ± 4.9 | >0.05 | 1306.3 ± 662.8 | 191.6 ±1 87.9 | <0.001 | clumped | clumped | >0.05 | 1.3 | 1.1 | >0.05 |
Carrotwood Tree (N = 30 leaves) | 101.0 ± 19.3 | 85.7 ± 19.1 | >0.05 | 118.4 ± 31.4 | 95.6 ± 27.8 | >0.05 | clumped | clumped | >0.05 | 1.2 | 1.2 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shekanino, A.; Agustin, A.; Aladefa, A.; Amezquita, J.; Gonzalez, D.; Heldenbrand, E.; Hernandez, A.; May, M.; Nuno, A.; Ojeda, J.; et al. Differential Stomatal Responses to Surface Permeability by Sympatric Urban Tree Species Advance Novel Mitigation Strategy for Urban Heat Islands. Sustainability 2023, 15, 11942. https://doi.org/10.3390/su151511942
Shekanino A, Agustin A, Aladefa A, Amezquita J, Gonzalez D, Heldenbrand E, Hernandez A, May M, Nuno A, Ojeda J, et al. Differential Stomatal Responses to Surface Permeability by Sympatric Urban Tree Species Advance Novel Mitigation Strategy for Urban Heat Islands. Sustainability. 2023; 15(15):11942. https://doi.org/10.3390/su151511942
Chicago/Turabian StyleShekanino, Anette, Avaleen Agustin, Annette Aladefa, Jason Amezquita, Demetri Gonzalez, Emily Heldenbrand, Alyssa Hernandez, Maximus May, Anthony Nuno, Joshua Ojeda, and et al. 2023. "Differential Stomatal Responses to Surface Permeability by Sympatric Urban Tree Species Advance Novel Mitigation Strategy for Urban Heat Islands" Sustainability 15, no. 15: 11942. https://doi.org/10.3390/su151511942
APA StyleShekanino, A., Agustin, A., Aladefa, A., Amezquita, J., Gonzalez, D., Heldenbrand, E., Hernandez, A., May, M., Nuno, A., Ojeda, J., Ortiz, A., Puno, T., Quinones, J., Remillard, J., Reola, J., Rojo, J., Solis, I., Wang, J., Yepez, A., ... Carmona-Galindo, V. D. (2023). Differential Stomatal Responses to Surface Permeability by Sympatric Urban Tree Species Advance Novel Mitigation Strategy for Urban Heat Islands. Sustainability, 15(15), 11942. https://doi.org/10.3390/su151511942