Machine-Learning-Based Sensor Design for Water Salinity Prediction: A Conceptual Approach
Abstract
:1. Introduction
2. Sensor’s Design and Concept
3. Simulation Data Validation
4. Machine-Learning Model Verification
- Incident angle of ;
- Temperature of ;
- Wavelength of .
- It is a monotonic increasing function;
- Its output is bounded between 0 and 1;
- It is differentiable, and its derivative can be expressed in terms of the function itself as given in Equation (8):
- Learning rate = ‘adaptive’;
- Random state = 0;
- Hidden layer sizes = 3;
- Activation = ‘logistic’;
- Solver = ‘lbfgs’;
- Alpha = 0.000001;
- Max iter = 10,000,000.
5. Results and Discussion
6. Conclusions
- Unlike other approaches that rely on current flow or chemicals, which can be harmful to underwater life and are complex for real on-site evaluations, our proposed method utilizes the light refraction optics concept to generate synthetic data for ML predictions.
- Synthetic data speed up the machine-learning training process, which is a challenging step in all AI applications. COMSOL 2D simulation reduces the time–cost process for obtaining input–output data used in the training process.
- The data obtained from COMSOL is validated by comparing the refractive indices calculated in COMSOL with those determined using Snell’s law, trigonometry, and experimental research.
- The obtained results demonstrate the multi-layer perceptron (MLP) model’s ability to accurately predict salinity values for previously unseen input data, indicating a high level of precision.
- Water salinity prediction is possible under diverse temperature settings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Millero, F.J.; Zhang, J.-Z.; Lee, K.; Campbell, D.M. Titration alkalinity of seawater. Mar. Chem. 1993, 44, 153–165. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.-X. Salinity influences on the uptake of silver nanoparticles and silver nitrate by marine medaka (Oryzias melastigma). Environ. Toxicol. Chem. 2013, 33, 632–640. [Google Scholar] [CrossRef]
- Johari, S.A.; Sarkheil, M.; Tayemeh, M.B.; Veisi, S. Influence of salinity on the toxicity of silver nanoparticles (AgNPs) and silver nitrate (AgNO3) in halophilic microalgae, Dunaliella salina. Chemosphere 2018, 209, 156–162. [Google Scholar] [CrossRef]
- Agha, M.; Ennen, J.R.; Bower, D.S.; Nowakowski, A.J.; Sweat, S.C.; Todd, B.D. Salinity tolerances and use of saline environments by freshwater turtles: Implications of sea level rise. Biol. Rev. Camb. Philos. Soc. 2018, 93, 1634–1648. [Google Scholar] [CrossRef]
- Huber, C.; Klimant, I.; Krause, C.; Werner, T.; Mayr, T.; Wolfbeis, O.S. Optical sensor for seawater salinity. Anal. Bioanal. Chem. 2000, 368, 196–202. [Google Scholar] [CrossRef]
- Huber, C.; Klimant, I.; Krause, C.; Wolfbeis, O.S. Dual Lifetime Referencing as Applied to a Chloride Optical Sensor. Anal. Chem. 2001, 73, 2097–2103. [Google Scholar] [CrossRef]
- An, S.; Ko, D.; Noh, J.; Lee, C.; Seo, D.; Lee, M.; Chang, J. ITO Nanoparticle Chemiresistive Sensor for Detecting Liquid Chemicals Diluted in Brine. Trans. Electr. Electron. Mater. 2022, 23, 107–112. [Google Scholar] [CrossRef]
- Dong, T.; Barbosa, C. Capacitance Variation Induced by Microfluidic Two-Phase Flow across Insulated Interdigital Electrodes in Lab-On-Chip Devices. Sensors 2015, 15, 2694–2708. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Tan, C.; Dong, X.; Dong, F. Design of a Conductance and Capacitance Combination Sensor for Water Holdup Measurement in Oil–Water Two-Phase Flow. Flow. Meas. Instrum. 2015, 46, 218–229. [Google Scholar] [CrossRef]
- Zhai, L.; Jin, N.; Gao, Z.; Wang, Z. Liquid Holdup Measurement with Double Helix Capacitance Sensor in Horizontal Oil–Water Two-Phase Flow Pipes. Chin. J. Chem. Eng. 2015, 23, 268–275. [Google Scholar] [CrossRef]
- Huang, X.; Pascal, R.W.; Chamberlain, K.; Banks, C.J.; Mowlem, M.; Morgan, H. A Miniature, High Precision Conductivity and Temperature Sensor System for Ocean Monitoring. IEEE Sens. J. 2011, 11, 3246–3252. [Google Scholar] [CrossRef]
- Ioc, Scor, and Iapso, “The international thermodynamic equation of seawater–2010: Calculation and use of thermodynamic properties,” Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, no. June. 2010. Scientific Committee on Oceanic Research. International Association for the Physical Sciences of the Ocean. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000188170.locale=en (accessed on 1 June 2023).
- McDougall, T.J.; Jackett, D.R.; Millero, F.J.; Pawlowicz, R.; Barker, P.M. A Global Algorithm for Estimating Absolute Salinity. Ocean. Sci. 2012, 8, 1123–1134. [Google Scholar] [CrossRef] [Green Version]
- Xiao, A.; Huang, Y.; Zheng, J.; Chen, P.; Guan, B.-O. An Optical Microfiber Biosensor for CEACAM5 Detection in Serum: Sensitization by a Nanosphere Interface. ACS Appl. Mater. Interfaces 2019, 12, 1799–1805. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.-Z.; Song, H.; Zhao, W.-M.; Jing, J.-Y. A Dual Channel Self-Compensation Optical Fiber Biosensor Based on Coupling of Surface Plasmon Polariton. Opt. Laser Technol. 2020, 124, 106002. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, Z.; Wu, Q.; Wang, W. The Biochemical Sensor Based on Liquid-Core Photonic Crystal Fiber Filled with Gold, Silver and Aluminum. Opt. Laser Technol. 2020, 130, 106363. [Google Scholar] [CrossRef]
- Rifat, A.A.; Mahdiraji, G.A.; Sua, Y.M.; Ahmed, R.; Shee, Y.G.; Adikan, F.R.M. Highly Sensitive Multi-Core Flat Fiber Surface Plasmon Resonance Refractive Index Sensor. Opt. Express 2016, 24, 2485. [Google Scholar] [CrossRef]
- Lin, Q.; Hu, Y.; Yan, F.; Hu, S.; Chen, Y.; Liu, G.; Chen, L.; Xiao, Y.; Chen, Y.; Luo, Y.; et al. Half-Side Gold-Coated Hetero-Core Fiber for Highly Sensitive Measurement of a Vector Magnetic Field. Opt. Lett. 2020, 45, 4746. [Google Scholar] [CrossRef]
- Momtaj, M.; Mou, J.R.; Kamrunnahar, Q.M.; Islam, M.d.A. Open-Channel-Based Dual-Core D-Shaped Photonic Crystal Fiber Plasmonic Biosensor. Appl. Opt. 2020, 59, 8856. [Google Scholar] [CrossRef]
- Wang, H.; Dai, W.; Cai, X.; Xiang, Z.; Fu, H.; IEEE, M. Half-Side PDMS-Coated Dual-Parameter PCF Sensor for Simultaneous Measurement of Seawater Salinity and Temperature. Opt. Fiber Technol. 2021, 65, 102608. [Google Scholar] [CrossRef]
- Fan, Y.; Xue, Y.; Wang, Y.; Liu, R.; Zhong, S. Combined LIBS and Raman Spectroscopy: An Approach for Salinity Detection in the Field of Seawater Investigation. Appl. Opt. 2022, 61, 1718. [Google Scholar] [CrossRef]
- Hu, C.; Voss, K.J. In Situ Measurements of Raman Scattering in Clear Ocean Water. Appl. Opt. 1997, 36, 6962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosso, P. Refractometer Resolution Limits for Measuring Seawater Refractive Index. Opt. Eng. 2010, 49, 103603. [Google Scholar] [CrossRef]
- Malardé, D.; Wu, Z.Y.; Grosso, P.; de Bougrenet de la Tocnaye, J.-L.; Le Menn, M. High-Resolution and Compact Refractometer for Salinity Measurements. Meas. Sci. Technol. 2008, 20, 015204. [Google Scholar] [CrossRef]
- Aly, K.M.; Esmail, E. Refractive Index of Salt Water: Effect of Temperature. Opt. Mater. 1993, 2, 195–199. [Google Scholar] [CrossRef]
- Chen, J.; Guo, W.; Xia, M.; Li, W.; Yang, K. In Situ Measurement of Seawater Salinity with an Optical Refractometer Based on Total Internal Reflection Method. Opt. Express 2018, 26, 25510. [Google Scholar] [CrossRef]
- Qiu, Z. A Simple Optical Model to Estimate Suspended Particulate Matter in Yellow River Estuary. Opt. Express 2013, 21, 27891. [Google Scholar] [CrossRef]
- Röttgers, R.; McKee, D.; Utschig, C. Temperature and Salinity Correction Coefficients for Light Absorption by Water in the Visible to Infrared Spectral Region. Opt. Express 2014, 22, 25093. [Google Scholar] [CrossRef] [Green Version]
- Artlett, C.P.; Pask, H.M. New Approach to Remote Sensing of Temperature and Salinity in Natural Water Samples. Opt. Express 2017, 25, 2840. [Google Scholar] [CrossRef]
- Schmidt, H.; Wolf, H.; Hassel, E. A Method to Measure the Density of Seawater Accurately to the Level of 10−6. Metrologia 2016, 53, 770–786. [Google Scholar] [CrossRef]
- Woosley, R.J.; Huang, F.; Millero, F.J. Corrigendum to “Estimating Absolute Salinity (SA) in the World’s Oceans Using Density and Composition” [Deep-Sea Res. I 93 (2014) 14–20]. Deep. Sea Res. Part. I Oceanogr. Res. Pap. 2018, 142, 145. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, W. Temperature-Independent Fiber Salinity Sensor Based on Fabry-Perot Interference. Opt. Express 2015, 23, 10353. [Google Scholar] [CrossRef]
- Wu, C.; Sun, L.; Li, J.; Guan, B.-O. Highly Sensitive Evanescent-Wave Water Salinity Sensor Realized with Rectangular Optical Microfiber Sagnac Interferometer. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2 June 2014; SPIE Proceedings: Bellingham, WA, USA, 2014. [Google Scholar] [CrossRef]
- Jaddoa, M.F.; Jasim, A.A.; Razak, M.Z.A.; Harun, S.W.; Ahmad, H. Highly Responsive NaCl Detector Based on Inline Microfiber Mach–Zehnder Interferometer. Sens. Actuators A Phys. 2016, 237, 56–61. [Google Scholar] [CrossRef]
- Li, L.; Xia, L.; Wuang, Y.; Ran, Y.; Yang, C.; Liu, D. Novel NCF-FBG Interferometer for Simultaneous Measurement of Refractive Index and Temperature. IEEE Photonics Technol. Lett. 2012, 24, 2268–2271. [Google Scholar] [CrossRef]
- Profiling|Sea-Bird Scientific-Overview|Sea-Bird. Available online: https://www.seabird.com/profiling/family?productCategoryId=54627473767 (accessed on 23 May 2023).
- Grosso, P.; Menn, M.L.; De Bougrenet De La Tocnaye, J.-L.; Yan Wu, Z.; Malardé, D. Practical versus Absolute Salinity Measurements: New Advances in High Performance Seawater Salinity Sensors. Deep. Sea Res. Part. I Oceanogr. Res. Pap. 2010, 57, 151–156. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Yang, Z.; Dou, Y.; Chang, X.; Sun, R.; Zuo, G.; Yang, W.; Liang, C.; Hao, Y.; et al. Computer Prediction of Seawater Sensor Parameters in the Central Arctic Region Based on Hybrid Machine Learning Algorithms. IEEE Access 2020, 8, 213783–213798. [Google Scholar] [CrossRef]
- Cipollini, P.; Corsini, G.; Diani, M.; Grasso, R. Retrieval of Sea Water Optically Active Parameters from Hyperspectral Data by Means of Generalized Radial Basis Function Neural Networks. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1508–1524. [Google Scholar] [CrossRef]
- Alshehri, M.; Kumar, M.; Bhardwaj, A.; Mishra, S.; Gyani, J. Deep Learning Based Approach to Classify Saline Particles in SeaWater. Water 2021, 13, 1251. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Teng, D.; He, B.; Chen, X.; Ge, X.; Zhang, Z.; Wang, Y.; Yang, X.; et al. Machine Learning-Based Detection of Soil Salinity in an Arid Desert Region, Northwest China: A Comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total Environ. 2020, 707, 136092. [Google Scholar] [CrossRef]
- Mourched, B.; Abdallah, M. Design and Characterization of a New Microscopy Probe Using COMSOL and ANSYS. IJM 2022, 16, 95–106. [Google Scholar] [CrossRef]
- Mourched, B.; Abboud, N.; Abdallah, M.; Moustafa, M. Electro-Thermal Simulation Study of MOSFET Modeling in Silicon and Silicon Carbide. IJM 2022, 16, 383–394. [Google Scholar] [CrossRef]
- Mourched, B.; Nativel, E.L.; Kribich, R.; Falgayrettes, P.; Gall-Borrut, P. Study of Light Emission and Collection in a Transparent Dielectric Cantilever-based Near-field Optical Probe. J. Microsc. 2015, 262, 3–11. [Google Scholar] [CrossRef]
- Mourched, B.; Ferko, N.; Abdallah, M.; Neji, B.; Vrtagic, S. Study and Design of a Machine Learning-Enabled Laser-Based Sensor for Pure and Sea Water Determination Using COMSOL Multiphysics. Appl. Sci. 2022, 12, 6693. [Google Scholar] [CrossRef]
- Mourched, B.; Hoxha, M.; Abdelgalil, A.; Ferko, N.; Abdallah, M.; Potams, A.; Lushi, A.; Turan, H.I.; Vrtagic, S. Piezoelectric-Based Sensor Concept and Design with Machine Learning-Enabled Using COMSOL Multiphysics. Appl. Sci. 2022, 12, 9798. [Google Scholar] [CrossRef]
- Index of Refraction of Seawater and Freshwater as a Function of Wavelength and Temperature|Parrish Research Group|Oregon State University. Available online: https://research.engr.oregonstate.edu/parrish/index-refraction-seawater-and-freshwater-function-wavelength-and-temperature (accessed on 23 May 2023).
- Austin, R.W.; Halikas, G. The Index of Refraction of Seawater. Available online: https://escholarship.org/uc/item/8px2019m (accessed on 23 May 2023).
- Bass, M.; DeCusatis, C.; Enoch, J.M.; Lakshminarayanan, V.; Li, G.; MacDonald, C.; Mahajan, V.N.; Stryland, E.V. Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics; The Optical Society of America, the McGrawHill Companies: New York, NY, USA, 2009; ISBN 978-0-07-149892-0. [Google Scholar]
- Quan, X.; Fry, E.S. Empirical Equation for the Index of Refraction of Seawater. Appl. Opt. 1995, 34, 3477. [Google Scholar] [CrossRef] [PubMed]
- Krichen, M.; Mihoub, A.; Alzahrani, M.Y.; Adoni, W.Y.H.; Nahhal, T. Are Formal Methods Applicable to Machine Learning and Artificial Intelligence? In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia, 9–11 May 2022. [Google Scholar] [CrossRef]
- Raman, R.; Gupta, N.; Jeppu, Y. Framework for Formal Verification of Machine Learning Based Complex System-of-Systems. Insight 2023, 26, 91–102. [Google Scholar] [CrossRef]
INPUT | OUTPUT | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ (nm) | 450 | 520 | 660 | 450 | 520 | 660 | 450 | 520 | 660 | 450 | 520 | 660 | ||
θ (deg) | 10 | 10 | 10 | 20 | 20 | 20 | 30 | 30 | 30 | 45 | 45 | 45 | T (°C) | S (%) |
d (cm) | 3.0687 | 3.0724 | 3.0769 | 6.2764 | 6.2843 | 6.2939 | 9.7901 | 9.8032 | 9.819 | 16.2026 | 16.2268 | 16.256 | 10 | 8 |
3.0716 | 3.0753 | 3.0798 | 6.2826 | 6.2905 | 6.3 | 9.8004 | 9.8134 | 9.8293 | 16.2216 | 16.2457 | 16.275 | 45 | 15 | |
3.0743 | 3.078 | 3.0825 | 6.2882 | 6.2961 | 6.3057 | 9.8097 | 9.8228 | 9.8387 | 16.2388 | 16.2631 | 16.2925 | 62 | 20 | |
3.0733 | 3.0771 | 3.0816 | 6.2863 | 6.2942 | 6.3039 | 9.8065 | 9.8196 | 9.8356 | 16.2328 | 16.2572 | 16.2868 | 64 | 27 | |
3.0634 | 3.0671 | 3.0717 | 6.2651 | 6.2731 | 6.2829 | 9.7714 | 9.7847 | 9.8008 | 16.1683 | 16.1927 | 16.2225 | 8 | 35 | |
3.0631 | 3.0669 | 3.0715 | 6.2644 | 6.2725 | 6.2823 | 9.7704 | 9.7837 | 9.7998 | 16.1664 | 16.1908 | 16.2206 | 16 | 40 | |
3.0695 | 3.0732 | 3.0777 | 6.2781 | 6.286 | 6.2956 | 9.793 | 9.8061 | 9.8219 | 16.208 | 16.2321 | 16.2613 | 7 | 3 | |
3.07 | 3.0737 | 3.0782 | 6.2791 | 6.287 | 6.2965 | 9.7946 | 9.8077 | 9.8235 | 16.211 | 16.2351 | 16.2643 | 3 | 0 |
Coefficient of Determination | 0.999 |
Mean Squared Error MSE | 0.009 |
Root Mean Squared Error RMSE | 0.094 |
Mean Absolute Error MAE | 0.074 |
Real | 8 | 15 | 20 | 27 | 35 | 40 | 3 | 0 |
---|---|---|---|---|---|---|---|---|
Predicted | 7.97926 | 14.9341 | 19.9869 | 26.9965 | 34.946 | 39.8294 | 3.07405 | 0.016663 |
Error difference | 0.02074 | 0.0659 | 0.0131 | 0.0035 | 0.054 | 0.1706 | 0.07405 | 0.016663 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourched, B.; Abdallah, M.; Hoxha, M.; Vrtagic, S. Machine-Learning-Based Sensor Design for Water Salinity Prediction: A Conceptual Approach. Sustainability 2023, 15, 11468. https://doi.org/10.3390/su151411468
Mourched B, Abdallah M, Hoxha M, Vrtagic S. Machine-Learning-Based Sensor Design for Water Salinity Prediction: A Conceptual Approach. Sustainability. 2023; 15(14):11468. https://doi.org/10.3390/su151411468
Chicago/Turabian StyleMourched, Bachar, Mariam Abdallah, Mario Hoxha, and Sabahudin Vrtagic. 2023. "Machine-Learning-Based Sensor Design for Water Salinity Prediction: A Conceptual Approach" Sustainability 15, no. 14: 11468. https://doi.org/10.3390/su151411468
APA StyleMourched, B., Abdallah, M., Hoxha, M., & Vrtagic, S. (2023). Machine-Learning-Based Sensor Design for Water Salinity Prediction: A Conceptual Approach. Sustainability, 15(14), 11468. https://doi.org/10.3390/su151411468