The Impact of the Beijing Winter Olympic Games on Air Quality in the Beijing–Tianjin–Hebei Region: A Quasi-Natural Experiment Study
Abstract
:1. Introduction
2. Theoretical Mechanisms and Research Hypotheses
3. Materials and Methods
3.1. Model Selection and Construction
3.2. Variable Settings
3.2.1. Explained Variable
3.2.2. Explanatory Variable
3.2.3. Control Variable
3.3. Data Source
4. Empirical Results
4.1. Main Results
4.2. Robustness Tests
4.2.1. Parallel Trend Test
4.2.2. Placebo Test
4.2.3. Variable Substitution
4.3. Heterogeneity Analysis
4.3.1. Effect of Pollution Status
4.3.2. Impact of Capital City Distance
4.3.3. Effect of the Degree of Economic Development
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kobierecki, M.M.; Pierzgalski, M. Sports mega-events and economic growth: A synthetic control approach. J. Sports Econ. 2022, 23, 567–597. [Google Scholar] [CrossRef]
- Kassens-Noor, E.; Vertalka, J.; Wilson, M. Good games, bad host? Using big data to measure public attention and imagery of the Olympic Games. Cities 2019, 90, 229–236. [Google Scholar] [CrossRef]
- Jovanovic, Z. The environmental reimagining of Olympic Sarajevo. Int. J. Hist. Sport 2021, 38, 1459–1475. [Google Scholar] [CrossRef]
- Zhong, Y.T.; Fan, H.; Herrmann, P. The impact of the 2008 Beijing Olympic games on China and the Olympic movement: The legacy. Int. J. Hist. Sport 2022, 38, 1863–1879. [Google Scholar] [CrossRef]
- Pringle, R. Debunking Olympic sized myths: Government investment in Olympism in the context of terror and the risk society. Educ. Rev. 2012, 64, 303–316. [Google Scholar] [CrossRef]
- De La Cruz, A.R.H.; Calderon, E.R.D.; Franca, B.B.; Requia, W.J.; Gioda, A. Evaluation of the impact of the Rio 2016 Olympic Games on air quality in the City of Rio de Janeiro, Brazil. Atmos. Environ. 2019, 203, 206–215. [Google Scholar] [CrossRef]
- Yan, W.H.; Xu, N.; Xue, R.; Ye, Z.H.; Wang, Z.Y.; Ren, D.M. Efforts proposed by IOC to alleviate pressure on Olympic Games hosts and evidence from Beijing 2022. Sustainability 2022, 14, 16086. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, N.; Wang, L.; Tan, Q. The effect of air pollution on the healthy growth of cities: An empirical study of the Beijing-Tianjin-Hebei region. Appl. Sci. 2020, 10, 3699. [Google Scholar] [CrossRef]
- Chang, L.; Zou, T. Spatio-temporal analysis of air pollution in North China Plain. Environ. Ecol. Stat. 2022, 29, 271–293. [Google Scholar] [CrossRef]
- Sining, C.; Jun, G. Climatic risks of Beijing–Tianjin–Hebei urban agglomeration and their changes. Geomat. Nat. Hazards Risk 2021, 12, 1298–1314. [Google Scholar] [CrossRef]
- Wicker, P. The carbon footprint of active sport participants. Sport Manag. Rev. 2019, 22, 513–526. [Google Scholar] [CrossRef]
- Pourpakdelfekr, T.; Oboudi, B. Overview of sustainable solutions to improve the environmental impacts of mega sporting events. Athens J. Sports 2022, 9, 1–16. [Google Scholar] [CrossRef]
- Donald, S.G.; Lang, K. Inference with difference-in-differences and other panel data. Rev. Econ. Stat. 2007, 89, 221–233. [Google Scholar] [CrossRef]
- Ashenfelter, O. Estimating the Effect of Training Programs on Earnings. Rev. Econ. Stat. 1978, 60, 47–57. [Google Scholar] [CrossRef]
- Alari, A.; Schwarz, L.; Zabrocki, L.; Le Nir, G.; Chaix, B.; Benmarhnia, T. The effects of an air quality alert program on premature mortality: A difference-in-differences evaluation in the region of Paris. Environ. Int. 2020, 156, 106583. [Google Scholar] [CrossRef]
- Bel, G.; Bolancé, C.; Guillén, M.; Rosell, J. The environmental effects of changing speed limits: A quantile regression approach. Transp. Res. Part D Transp. Environ. 2015, 36, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Fredriksson, A.; Oliveira, G.M.d. Impact evaluation using Difference-in-Differences. RAUSP Manag. J. 2019, 54, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Gibson, L.; Zimmerman, F. Measuring the sensitivity of difference-in-difference estimates to the parallel trends assumption. Res. Methods Med. Health Sci. 2021, 2, 148–156. [Google Scholar] [CrossRef]
- Mincyte, D.; Casper, M.J.; Cole, C.L. Sports, environmentalism, land use, and urban development. J. Sport Soc. Issues 2009, 33, 103–110. [Google Scholar] [CrossRef]
- Park, H. 1988 Seoul Olympic games and urban renewal: Making of respectable landscape and the birth of disrespectable landscape. Korean J. Cult. Sociol. 2019, 27, 445–499. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Wu, T.; Yang, Y. The evolution of landscape ecological security in Beijing under the influence of different policies in recent decades. Sci. Total Environ. 2019, 646, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Konstantaki, M.; Wickens, E. Residents’ perceptions of environmental and security issues at the 2012 London Olympic Games. J. Sport Tour. 2010, 15, 337–357. [Google Scholar] [CrossRef]
- International Olympic Committee. Agenda 21: Sport for Sustainable Development; International Olympic Committee: Lausanne, Switzerland, 2003. [Google Scholar]
- Chu, F.J.; Gong, C.G.; Sun, S.; Li, L.J.; Yang, X.C.; Zhao, W.J. Air pollution characteristics during the 2022 Beijing Winter Olympics. Int. J. Environ. Res. Public Health 2022, 19, 11616. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, X.J.; Yang, X.Y.; He, J.; Ji, D.S.; Wang, Y.S. Significant Reduction in Fine Particulate Matter in Beijing during 2022 Beijing Winter Olympics. Environ. Sci. Technol. Lett. 2022, 9, 822–828. [Google Scholar] [CrossRef]
- Rich, D.Q.; Kipen, H.M.; Huang, W.; Wang, G.F.; Wang, Y.D.; Zhu, P.; Ohman-Strickland, P.; Hu, M.; Philipp, C.; Diehl, S.R.; et al. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. Jama 2012, 307, 2068–2078. [Google Scholar] [CrossRef] [Green Version]
- Beijing Bid for the 2022 Winter Olympics. Available online: https://en.wikipedia.org/w/index.php?title=Beijing_bid_for_the_2022_Winter_Olympics&oldid=1115644705 (accessed on 20 April 2023).
- Beijing, Zhangjiakou See Better Air Quality during Winter Games. Available online: https://english.www.gov.cn/news/topnews/202203/30/content_WS6243fe78c6d02e533532876f.html (accessed on 20 April 2023).
- Hou, L.; Zhu, Y.; Bing, L.; Li, J. Analysis on air quality of spatio-temporal characteristics, meteorological impact, and emission reduction effect during the Winter Olympics in Beijing-Tianjin-Hebei and its surrounding areas. Environ. Sci. 2022, 1–19. (In Chinese) [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Xie, Y.; Wu, L. Research on influence factors of air quality in the host area of the 24th Winter Olympic Games based on grey relational analysis. Front. Environ. Sci. 2021, 9, 757533. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. Air pollution and control action in Beijing. J. Clean. Prod. 2016, 112, 1519–1527. [Google Scholar] [CrossRef]
- For China, Hosting the Olympics is Worth Every Billion. Available online: https://www.nytimes.com/2022/02/14/business/economy/olympics-china-economics.html (accessed on 3 May 2023).
- Wang, X.; Westerdahl, D.; Chen, L.C.; Wu, Y.; Hao, J.; Pan, X.; Guo, X.; Zhang, K.M. Evaluating the air quality impacts of the 2008 Beijing Olympic Games: On-road emission factors and black carbon profiles. Atmos. Environ. 2009, 43, 4535–4543. [Google Scholar] [CrossRef]
- Five Ways in which Beijing 2022 Will Become Carbon Neutral. Available online: https://olympics.com/ioc/news/five-ways-in-which-beijing-2022-will-become-carbon-neutral (accessed on 3 May 2023).
- Beijing 2022 Highlights Range of Measures to Meet Carbon-Neutral Target. Available online: https://www.insidethegames.biz/articles/1108309/beijing-2022-winter-games-carbon-neutral (accessed on 3 May 2023).
- China’s Winter Olympics Are Carbon-Neutral—How? Available online: https://www.nature.com/articles/d41586-022-00321-1 (accessed on 4 May 2023).
- Du, W.; Li, M. Assessing the Impact of environmental regulation on pollution abatement and collaborative emissions reduction: Micro-evidence from Chinese industrial enterprises. Environ. Impact Assess. Rev. 2020, 82, 106382. [Google Scholar] [CrossRef]
- Liu, Q.; Li, H.; Shang, W.-l.; Wang, K. Spatio-temporal distribution of Chinese cities’ air quality and the impact of high-speed rail. Renew. Sustain. Energy Rev. 2022, 170, 112970. [Google Scholar] [CrossRef]
- Esri. ArcMap 10.8.0. 2020. Available online: https://www.esri.com (accessed on 28 June 2023).
- Zhan, D.; Kwan, M.-P.; Zhang, W.; Yu, X.; Meng, B.; Liu, Q. The driving factors of air quality index in China. J. Clean. Prod. 2018, 197, 1342–1351. [Google Scholar] [CrossRef]
- Hidalgo, D.; Sanz Bedate, S. Economic valuation and cost of air pollution. In Handbook of Research on Energy and Environmental Finance 4.0; CARTIF Technology Center: Boecillo, Spain, 2022; p. 23. [Google Scholar]
- Chuersuwan, N.; Nimrat, S.; Lekphet, S.; Kerdkumrai, T. Levels and major sources of PM2.5 and PM10 in Bangkok Metropolitan Region. Environ. Int. 2008, 34, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Pope Iii, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- PM10 Particles in the Air. Available online: https://www.epa.vic.gov.au/for-community/environmental-information/air-quality/pm10-particles-in-the-air (accessed on 6 July 2023).
- Petrowski, K.; Bührer, S.; Strauß, B.; Decker, O.; Brähler, E. Examining air pollution (PM10), mental health and well-being in a representative German sample. Sci. Rep. 2021, 11, 18436. [Google Scholar] [CrossRef]
- Roy, A.D.; Parial, M.D.; Mukherjee, K. Synergy between air quality, various urban forms, and land surface temperature: A case study of Kolkata metropolitan area. In Handbook of Research on Resource Management for Pollution and Waste Treatment; IGI Global: Hershey, PA, USA, 2020; p. 34. [Google Scholar]
- Hesterberg, T.W.; Bunn, W.B.; McClellan, R.O.; Hamade, A.K.; Long, C.M.; Valberg, P.A. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: Evidence for NO2 no-effect levels. Crit. Rev. Toxicol. 2009, 39, 743–781. [Google Scholar] [CrossRef]
- Mabahwi, N.A.B.; Leh, O.L.H.; Omar, D. Human health and wellbeing: Human health effect of air pollution. Procedia Soc. Behav. Sci. 2014, 153, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Wang, H.; Lu, N.; Chen, T.; He, H.; Lu, Y.; Tu, X.M. Log-transformation and its implications for data analysis. Shanghai Arch. Psychiatry 2014, 26, 105–109. [Google Scholar] [CrossRef]
- Jiang, M.; Kim, E.; Woo, Y. The relationship between economic growth and air pollution—A regional comparison between China and South Korea. Int. J. Environ. Res. Public Health 2020, 17, 2761. [Google Scholar] [CrossRef] [Green Version]
- Borck, R.; Schrauth, P. Population density and urban air quality. Reg. Sci. Urban Econ. 2021, 86, 103596. [Google Scholar] [CrossRef]
- Liang, L.; Gong, P. Urban and air pollution: A multi-city study of long-term effects of urban landscape patterns on air quality trends. Sci. Rep. 2020, 10, 18618. [Google Scholar] [CrossRef] [PubMed]
- Canh, N.P.; Hao, W.; Wongchoti, U. The Impact of economic and financial activities on air quality: A Chinese city perspective. Environ. Sci. Pollut. Res. 2021, 28, 8662–8680. [Google Scholar] [CrossRef] [PubMed]
- Lütkepohl, H.; Xu, F. The role of the log transformation in forecasting economic variables. Empir. Econ. 2012, 42, 619–638. [Google Scholar] [CrossRef] [Green Version]
- IBM Corp. IBM SPSS Statistics for Windows, Version 26.0. 2019. Available online: https://www.ibm.com/ (accessed on 28 June 2023).
- Jacobson, L.S.; LaLonde, R.J.; Sullivan, D.G. Earnings losses of displaced workers. Am. Econ. Rev. 1993, 83, 685–709. [Google Scholar]
- StataCorp LLC. Stata/MP 17.0. 2021. Available online: https://www.stata.com/ (accessed on 28 June 2023).
- Cai, X.; Lu, Y.; Wu, M.; Yu, L. Does environmental regulation drive away inbound foreign direct investment? Evidence from a quasi-natural experiment in China. J. Dev. Econ. 2016, 123, 73–85. [Google Scholar] [CrossRef]
- Greenstone, M.; He, G.; Li, S.; Zou, E.Y. China’s war on pollution: Evidence from the first 5 years. Rev. Environ. Econ. Policy 2021, 15, 281–299. [Google Scholar] [CrossRef]
- Ventura, L.M.B.; Ramos, M.B.; Gioda, A.; França, B.B.; De Oliveira Godoy, J.M. Air quality monitoring assessment during the 2016 Olympic Games in Rio de Janeiro, Brazil. Environ. Monit. Assess. 2019, 191, 369. [Google Scholar] [CrossRef]
- Ecological Restoration in Beijing 2022 Yanqing Competition Zone 94% Completed. Available online: http://www.chinadaily.com.cn/a/202101/08/WS5ff7c0f4a31024ad0baa1518.html (accessed on 4 May 2023).
- Li, J.; Hou, L.; Wang, L.; Tang, L. Decoupling analysis between economic growth and air pollution in key regions of air pollution control in China. Sustainability 2021, 13, 6600. [Google Scholar] [CrossRef]
- Statistical Modeling vs. Machine Learning: What’s the Difference? Available online: https://jpt.spe.org/statistical-modeling-vs-machine-learning-whats-difference (accessed on 2 July 2023).
Type of Variable | Variable | Description |
---|---|---|
Explained variables | Ln (AQI) | The logarithm of the AQI, PM2.5, PM10, and NO2, which measure air pollution in each city, was used. |
Ln (PM2.5) | ||
Ln (PM10) | ||
Ln (NO2) | ||
Explanatory variable | Treati × Aftert | The value of Treati and Aftert determined the variable value. |
Control variables | Ln (GDP) | The logarithm of each city’s GDP, population size, fiscal revenue, and fiscal expenditure was used. |
Ln (Pop) | ||
Ln (Rev) | ||
Ln (Exp) |
Control Group | Treatment Group | |||||||
---|---|---|---|---|---|---|---|---|
Variables | Observation | Mean | Min | Max | Observation | Mean | Min | Max |
AQI | 1296 | 89.52 (30.93) | 34 | 303 | 1296 | 100.46 (35.15) | 42 | 301 |
PM2.5 (24 h average μg/m3) | 1296 | 47.57 (29.08) | 10 | 206 | 1296 | 56.64 (35.56) | 11 | 276 |
PM10 (24 h average μg/m3) | 1296 | 87.39 (26.44) | 40 | 157 | 1296 | 102.38 (38.28) | 39 | 224.33 |
N02 (24 h average μg/m3) | 1296 | 35.12 (13.77) | 8 | 83 | 1296 | 38.27 (16.03) | 10 | 96 |
GDP (RMB hundred million) | 126 | 2154.71 (2133.41) | 266.41 | 11,486.51 | 126 | 6114.54 (8416.35) | 1139.00 | 41,610.90 |
Population (ten thousand people) | 126 | 396.40 (247.83) | 69.83 | 1299.59 | 126 | 825.98 (489.75) | 300.18 | 2195.40 |
Revenue (RMB hundred million) | 126 | 177.65 (196.36) | 20.06 | 926.80 | 126 | 1306.06 (2921.16) | 100.29 | 14,347.21 |
Expenditure (RMB hundred million) | 126 | 420.33 (264.06) | 83.01 | 1573.13 | 126 | 1581.74 (3198.68) | 15.01 | 16,335.90 |
Variables | Ln (AQI) | Ln (PM2.5) | Ln (AQI) | Ln (PM2.5) |
---|---|---|---|---|
Model | (1) | (2) | (3) | (4) |
Treati × Aftert | −0.287 *** (0.065) | −0.339 *** (0.106) | −0.287 *** (0.067) | −0.332 *** (0.096) |
Ln (GDP) | 0.001 (0.056) | 0.019 (0.079) | ||
Ln (Pop) | 0.314 *** (0.043) | 0.555 *** (0.064) | ||
Ln (Rev) | 0.060 * (0.031) | 0.021 (0.044) | ||
Ln (Exp) | −0.232 *** (0.053) | −0.343 *** (0.072) | ||
Constant | 4.424 *** (0.040) | 3.932 *** (0.066) | 3.620 *** (0.194) | 2.390 *** (0.313) |
Year effects | Yes | Yes | Yes | Yes |
City effects | Yes | Yes | Yes | Yes |
Observations | 252 | 252 | 252 | 252 |
R-squared | 0.189 | 0.219 | 0.482 | 0.509 |
Variables | (1) Ln (PM10) | (2) Ln (NO2) | (3) Ln (PM10) | (4) Ln (NO2) |
---|---|---|---|---|
Treati × Aftert | −0.306 *** (0.092) | −0.269 *** (0.089) | −0.310 *** (0.088) | −0.253 *** (0.072) |
Control variables | No | No | Yes | Yes |
Constant | 4.557 *** (0.057) | 3.469 *** (0.056) | 3.730 *** (0.248) | 2.764 *** (0.223) |
Observations | 252 | 252 | 252 | 252 |
R-squared | 0.230 | 0.111 | 0.535 | 0.408 |
Variables | Panel A | Panel B | Panel C |
---|---|---|---|
Treati × Aftert × Pollutioni | 0.203 *** (0.036) | ||
Treati × Aftert × Distancei | 0.728 *** (0.045) | ||
Treati × Aftert × PGDPi | 0.001 (0.001) | ||
Treati × Aftert | −0.369 *** (0.051) | −3.454 *** (0.263)) | −0.001 (0.001) |
Control variables | Yes | Yes | Yes |
Year effects | Yes | Yes | Yes |
City effects | Yes | Yes | Yes |
Constant | 3.697 *** (0.145) | 6.879 *** (0.428) | 0.001 (0.001) |
Observations | 252 | 252 | 252 |
R-squared | 0.544 | 0.879 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Wu, Z.; Li, S.; Chen, Z. The Impact of the Beijing Winter Olympic Games on Air Quality in the Beijing–Tianjin–Hebei Region: A Quasi-Natural Experiment Study. Sustainability 2023, 15, 11252. https://doi.org/10.3390/su151411252
Wu Q, Wu Z, Li S, Chen Z. The Impact of the Beijing Winter Olympic Games on Air Quality in the Beijing–Tianjin–Hebei Region: A Quasi-Natural Experiment Study. Sustainability. 2023; 15(14):11252. https://doi.org/10.3390/su151411252
Chicago/Turabian StyleWu, Qianjin, Zusheng Wu, Shanshan Li, and Zichao Chen. 2023. "The Impact of the Beijing Winter Olympic Games on Air Quality in the Beijing–Tianjin–Hebei Region: A Quasi-Natural Experiment Study" Sustainability 15, no. 14: 11252. https://doi.org/10.3390/su151411252
APA StyleWu, Q., Wu, Z., Li, S., & Chen, Z. (2023). The Impact of the Beijing Winter Olympic Games on Air Quality in the Beijing–Tianjin–Hebei Region: A Quasi-Natural Experiment Study. Sustainability, 15(14), 11252. https://doi.org/10.3390/su151411252