Applying the 12 Principles of Green Engineering in Low TRL Electronics: A Case Study of an Energy-Harvesting Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Object of Study and Main Materials
2.2. Methodology
3. Results and Discussion
3.1. Area of Design for Disassembly
3.2. Area of Materials for Substitution
3.2.1. Piezoelectric Harvester
3.2.2. Spherical Solar Cells
3.2.3. RF Harvesters
- Chlorobenzene: it is used in the metal deposition and patterning manufacturing stages. According to the harmonized classification and labeling (ATP09) approved by the European Union, this substance is toxic to aquatic life, with long-lasting effects [91]; therefore, it would be recommended to replace this solvent. Efforts to identify and replace chlorobenzene with other environmentally friendlier solvents are ongoing in different sectors [92], including semiconductor processing [93]. Larsen et al. [94] have developed a tool for the identification of green solvents for printed electronics. Based on this, more sustainable candidates for the replacement of chlorobenzene include ethoxybenzene, anisole, methyloleate, 2-ethylhexyl acetate, pentyl acetate, and n-Butyl acetate. The experimentally verified dissolution capacity, several relevant physical parameters, detailed category scores, the overall composite score, and the GHS hazard statements can be found in the mentioned reference. By crossing the parameters with the specific requirements for this application, the best candidate can be selected for the NANO-EH case.
- CHF3 is a potent greenhouse gas. A ton of CHF3 in the atmosphere has the same effect as 11,700 tons of carbon dioxide [95]; therefore, it is recommended to substitute it with an inert gas.
3.3. Area of Fabrication Efficiency
3.3.1. Atomic Layer Deposition (ALD)
3.3.2. Milling for Doped BT and KNN Powder Manufacturing
3.3.3. Spin Coating
3.4. Manufacturing Processes That Enable Recycled Materials
3.4.1. Review on Potential and Barriers to the Use of Recycled Si
3.4.2. Review on Potential and Barriers to the Use of Recycled Metals
3.4.3. Review of the Possibilities for Recycling Precursors and Solvents
3.5. Overreaching Question: To What Extent Can a Technology Developer Fully Fulfill the 12 Principles of Green Engineering?
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The 12 Principles of Green Engineering. Reprinted with Permission from Environ. Sci. Technol. 2003, 37, 94A–101A [61]. Copyright 2003 American Chemical Society
References
- Schwab, K. The Fourth Industrial Revolution; Crown Publishing: New York, NY, USA, 2016; Volume 32, Available online: https://books.google.com/books/about/The_Fourth_Industrial_Revolution.html?id=ST_FDAAAQBAJ (accessed on 27 June 2023).
- Chatterjee, A.; Lobato, C.N.; Zhang, H.; Bergne, A.; Esposito, V.; Yun, S.; Insinga, A.R.; Christensen, D.V.; Imbaquingo, C.; Bjørk, R.; et al. Powering internet-of-things from ambient energy: A review. J. Physics Energy 2023, 5, 022001. [Google Scholar] [CrossRef]
- Logan, M.; Safi, M.; Lens, P.; Visvanathan, C. Investigating the performance of internet of things based anaerobic digestion of food waste. Process. Saf. Environ. Prot. 2019, 127, 277–287. [Google Scholar] [CrossRef]
- Hardin, R.G.; Barnes, E.M.; Delhom, C.D.; Wanjura, J.D.; Ward, J.K. Internet of things: Cotton harvesting and processing. Comput. Electron. Agric. 2022, 202, 107294. [Google Scholar] [CrossRef]
- Chen, E.T. The Internet of Things: Opportunities, Issues, and Challenges. In The Internet of Things in the Modern Business Environment; IGI Global: Hershey, PA, USA, 2017; pp. 167–187. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Das, R.; Zhao, J.; Mirzai, N.; Mercer, J.; Heidari, H. Battery-Free and Wireless Technologies for Cardiovascular Implantable Medical Devices. Adv. Mater. Technol. 2022, 7, 2101086. [Google Scholar] [CrossRef]
- Won, S.M.; Cai, L.; Gutruf, P.; Rogers, J.A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 2021, 7, 405–423. [Google Scholar] [CrossRef]
- Tran, T.V.; Dang, N.T.; Chung, W.-Y. Battery-free smart-sensor system for real-time indoor air quality monitoring. Sens. Actuators B Chem. 2017, 248, 930–939. [Google Scholar] [CrossRef]
- Karunanithy, K.; Velusamy, B. Cluster-tree based energy efficient data gathering protocol for industrial automation using WSNs and IoT. J. Ind. Inf. Integr. 2020, 19, 100156. [Google Scholar] [CrossRef]
- Jameel, F.; Zeb, S.; Khan, W.U.; Hassan, S.A.; Chang, Z.; Liu, J. NOMA-Enabled Backscatter Communications: Toward Battery-Free IoT Networks. IEEE Internet Things Mag. 2020, 3, 95–101. [Google Scholar] [CrossRef]
- Wen, F.; Wang, H.; He, T.; Shi, Q.; Sun, Z.; Zhu, M.; Zhang, Z.; Cao, Z.; Dai, Y.; Zhang, T.; et al. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy 2019, 67, 104266. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, B.; Zhang, L.; Yang, W. Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy 2019, 66, 104086. [Google Scholar] [CrossRef]
- Hester, J.; Sorber, J. The Future of Sensing is Batteryless, Intermittent, and Awesome. In Proceedings of the 15th ACM Conference on Embedded Networked Sensor Systems, SenSys 2017, Delft, The Netherlands, 6–8 November 2017; Association for Computing Machinery, Inc.: New York, NY, USA, 2017; Volume 2017-January. [Google Scholar] [CrossRef]
- La Rosa, R.; Dehollain, C.; Pellitteri, F.; Miceli, R.; Livreri, P. An RF Wireless Power Transfer system to power battery-free devices for asset tracking. In Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2019, Genoa, Italy, 27–29 November 2019; pp. 534–537. [Google Scholar] [CrossRef]
- Becker, T.; Borjesson, V.; Cetinkaya, O.; Baoxing, C.; Colomer-Farrarons, J.; Maeve, D.; Elefsiniotis, A.; Govoni, L.; Hadas, Z.; Hayes, M.; et al. Energy Harvesting for a Green Internet of Things; PSMA: Mendham, NJ, USA, 2021. [Google Scholar]
- European Comission. Nanomaterials Enabling Smart Energy Harvesting for Next-Generation Internet-of-Things|NANO-EH Project|Fact Sheet|H2020|CORDIS|European Commission, CORDIS EU Research Results. 2020. Available online: https://cordis.europa.eu/project/id/951761 (accessed on 23 May 2023).
- Pelagalli, N.; Aldrigo, M.; Dragoman, M.; Modreanu, M.; Mencarelli, D.; Pierantoni, L. Geometric Diode Modeling for Energy Harvesting Applications. In Proceedings of the 2022 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 25–29 April 2022; pp. 517–523. [Google Scholar] [CrossRef]
- Trovarello, S.; Masotti, D.; Aldrigo, M.; Modreanu, M.; Costanzo, A. Design of a 24-GHz dual-polarized rectenna integrated on silicon. In Proceedings of the 2021 51st European Microwave Conference (EuMC), London, UK, 2–7 April 2021; pp. 684–687. [Google Scholar] [CrossRef]
- Laudadio, E.; Aldrigo, M.; Stipa, P.; Pierantoni, L.; Mencarelli, D.; Dragoman, M.; Modreanu, M. A first-principle assessment at atomistic scale of interface phenomena in down-scaling hafnium-based metal-insulator-metal diodes. In Proceedings of the 2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Limoges, France, 6–8 July 2022. [Google Scholar] [CrossRef]
- Zerbo, B.F.; Modreanu, M.; Povey, I.; Lin, J.; Létoublon, A.; Rolland, A.; Pédesseau, L.; Even, J.; Lépine, B.; Turban, P.; et al. Study of MoS2 Deposited by ALD on c-Si, Towards the Development of MoS2/c-Si Heterojunction Photovoltaics. Crystals 2022, 12, 1363. [Google Scholar] [CrossRef]
- Pavoni, E.; Mohebbi, E.; Stipa, P.; Pierantoni, L.; Mencarelli, D.; Dragoman, M.; Aldrigo, M.; Laudadio, E. First-principles investigation of interface phenomena in hafnium-based metal–insulator–metal diodes. Nanoscale Adv. 2023, 5, 2748–2755. [Google Scholar] [CrossRef] [PubMed]
- Mohebbi, E.; Pavoni, E.; Mencarelli, D.; Stipa, P.; Pierantoni, L.; Laudadio, E. PBEsol/HSE functional: A promising candidate for vanadium dioxide (B) characterization. RSC Adv. 2022, 12, 31255–31263. [Google Scholar] [CrossRef] [PubMed]
- Dragoman, M.; Aldrigo, M.; Dinescu, A.; Vasilache, D.; Iordanescu, S.; Dragoman, D. Nanomaterials and Devices for Harvesting Ambient Electromagnetic Waves. Nanomaterials 2023, 13, 595. [Google Scholar] [CrossRef]
- United Nations. The Paris Agreement UNFCCC. In Proceedings of the UN Climate Change Conference (COP21), Paris, France, 30 November–12 December 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 10 May 2023).
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations. 2015. Available online: https://www.unfpa.org/resources/transforming-our-world-2030-agenda-sustainable-development (accessed on 10 May 2023).
- Mulvaney, D.; Richards, R.M.; Bazilian, M.D.; Hensley, E.; Clough, G.; Sridhar, S. Progress towards a circular economy in materials to decarbonize electricity and mobility. Renew. Sustain. Energy Rev. 2020, 137, 110604. [Google Scholar] [CrossRef]
- Kim, H.; Park, H. PV Waste Management at the Crossroads of Circular Economy and Energy Transition: The Case of South Korea. Sustainability 2018, 10, 3565. [Google Scholar] [CrossRef] [Green Version]
- Jensen, P.D.; Purnell, P.; Velenturf, A.P. Highlighting the need to embed circular economy in low carbon infrastructure decommissioning: The case of offshore wind. Sustain. Prod. Consum. 2020, 24, 266–280. [Google Scholar] [CrossRef]
- Cui, J.; Forssberg, E. Mechanical recycling of waste electric and electronic equipment: A review. J. Hazard. Mater. 2003, 99, 243–263. [Google Scholar] [CrossRef]
- Tansel, B. From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Environ. Int. 2017, 98, 35–45. [Google Scholar] [CrossRef]
- Forti, V.; Balde, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020. Quantities, Flows, and the Circular Economy Potential; United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR), SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA): Bonn, Germany, 2020; Available online: https://ewastemonitor.info/gem-2020/ (accessed on 27 January 2023).
- Ilankoon, I.; Ghorbani, Y.; Chong, M.N.; Herath, G.; Moyo, T.; Petersen, J. E-waste in the international context—A review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manag. 2018, 82, 258–275. [Google Scholar] [CrossRef]
- European Parliament; Council of the European Union. Directive 2011/65/EU of The European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off. J. Eur. Union 2011, 174, 88–110. [Google Scholar]
- European Parliament; Council of the European Union. Directive 2017/2102/Eu of The European Parliament and of the Council —of 15 November 2017—amending Directive 2011/65/ EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off. J. Eur. Union 2017, 305, 8–11. [Google Scholar]
- United Nations Security Council. Resolution 1896(2009); United Nations: New York, NY, USA, 2009; 5p. [Google Scholar]
- European Parliament; Council of the European Union. Regulation (EU) 2017/821 of the European Parliament and of the Council of the European Union of 17 May 2017 laying down supply chain due diligence obligations for Union importers of tin, tantalum and tungsten, their ores, and gold originating from conflict-affected and high-risk areas. Off. J. Eur. Union 2017, 130, 1–20. [Google Scholar]
- Blengini, G.; Latunussa, C.; Eynard, U.; Matos, C.; Georgitzikis, K.; Pavel, C.; Carrara, S.; Mancini, L.; Unguru, M.; Blagoeva, D.; et al. Study on the EU’s List of Critical Raw Materials (2020) Final Report; Publications Office of the European Union: Louxembourg, 2020.
- Kirchherr, J.; Yang, N.-H.N.; Schulze-Spüntrup, F.; Heerink, M.J.; Hartley, K. Conceptualizing the Circular Economy (Revisited): An Analysis of 221 Definitions. Resour. Conserv. Recycl. 2023, 194, 107001. [Google Scholar] [CrossRef]
- Homrich, A.S.; Galvão, G.; Abadia, L.G.; Carvalho, M.M. The circular economy umbrella: Trends and gaps on integrating pathways. J. Clean. Prod. 2018, 175, 525–543. [Google Scholar] [CrossRef]
- Braungart, M.; McDonough, W. Cradle to Cradle: Remaking the Way We Make Things; North Point Press: New York, NY, USA, 2002; 193p. [Google Scholar]
- Graedel, T.E.; Allenby, B.R. Industrial Ecology; Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Benyus, J.M. Biomimicry: Innovation Inspired by Nature; William Morrow & Company: New York, NY, USA, 1997; Available online: https://www.amazon.com/Biomimicry-Innovation-Inspired-Janine-Benyus/dp/0060533226 (accessed on 9 March 2023).
- Commoner, B. The Closing Circle: Nature, Man, and Technology; Alfred A. Knopf: New York, NY, USA, 1971. [Google Scholar]
- Stahel, W.R. The Performance Economy; Palgrave MacMillan: New York, NY, USA, 2006. [Google Scholar]
- Mollison, B.C.; Holmgren, D. Permaculture 1: A Perennial Agricultural System for Human Settlements; Transworld Publishers: London, UK, 1978. [Google Scholar]
- Lovins, A.B.; Lovins, L.H.; Hawken, P. A road map for natural capitalism. Harv. Bus. Rev. 1999, 77, 218–234. [Google Scholar] [CrossRef]
- Ayres, R.U. Industrial metabolism and global change. Int. Soc. Sci. J. 1989, 121, 363–373. [Google Scholar]
- Stål, H.I.; Corvellec, H. A decoupling perspective on circular business model implementation: Illustrations from Swedish apparel. J. Clean. Prod. 2018, 171, 630–643. [Google Scholar] [CrossRef]
- Bocken, N.; Schuit, C.; Kraaijenhagen, C. Experimenting with a circular business model: Lessons from eight cases. Environ. Innov. Soc. Transitions 2018, 28, 79–95. [Google Scholar] [CrossRef] [Green Version]
- Schoden, F.; Schnatmann, A.K.; Blachowicz, T.; Manz-Schumacher, H.; Schwenzfeier-Hellkamp, E. Circular Design Principles Applied on Dye-Sensitized Solar Cells. Sustainability 2022, 14, 15280. [Google Scholar] [CrossRef]
- Saidani, M.; Yannou, B.; Leroy, Y.; Cluzel, F. How to Assess Product Performance in the Circular Economy? Proposed Requirements for the Design of a Circularity Measurement Framework. Recycling 2017, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Bovea, M.D.; Pérez-Belis, V. Identifying design guidelines to meet the circular economy principles: A case study on electric and electronic equipment. J. Environ. Manag. 2018, 228, 483–494. [Google Scholar] [CrossRef]
- Crul, M.; Diehl, J.C. Design for Sustainability: Moving from Incremental towards Radical Design Approaches. In Proceedings of the 4th International Conference on Sustainability Engineering and Science, Transitions to Sustainability, Auckland, New Zealand, 30 November–3 December 2010. [Google Scholar]
- Pigosso, D.; McAloone, T. How can design science contribute to a circular economy? ICED23: Design in a complex world. In Proceedings of the 21st International Conference on Engineering Design (IDED 17), Vancouver, BC, Canada, 21–25 August 2017; Volume 5, Design for X, Design to X. pp. 299–307. Available online: https://iced.designsociety.org/publication/3975/How+can+design+science+contribute+to+a+circular+economy%3F (accessed on 27 March 2023).
- Doyle, L.; Weidlich, I.; Di Maio, E. Developing Insulating Polymeric Foams: Strategies and Research Needs from a Circular Economy Perspective. Materials 2022, 15, 6212. [Google Scholar] [CrossRef] [PubMed]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Villares, M.; Işıldar, A.; van der Giesen, C.; Guinée, J. Does ex ante application enhance the usefulness of LCA? A case study on an emerging technology for metal recovery from e-waste. Int. J. Life Cycle Assess. 2017, 22, 1618–1633. [Google Scholar] [CrossRef] [Green Version]
- Cucurachi, S.; van der Giesen, C.; Guinée, J. Ex-ante LCA of Emerging Technologies. Procedia CIRP 2018, 69, 463–468. [Google Scholar] [CrossRef]
- Moni, S.M.; Mahmud, R.; High, K.; Carbajales-Dale, M. Life cycle assessment of emerging technologies: A review. J. Ind. Ecol. 2020, 24, 52–63. [Google Scholar] [CrossRef]
- McDonough, W.; Braungart, M.; Anastas, P.T.; Zimmerman, J.B. Peer Reviewed: Applying the Principles of Green Engineering to Cradle-to-Cradle Design. Environ. Sci. Technol. 2003, 37, 434A–441A. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastas, P.T.; Zimmerman, J.B. Peer Reviewed: Design Through the 12 Principles of Green Engineering. Environ. Sci. Technol. 2003, 37, 94A–101A. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Huang, L.-B.; Wong, M.-C.; Chen, L.; Bai, G.; Hao, J. Environmentally Friendly Hydrogel-Based Triboelectric Nanogenerators for Versatile Energy Harvesting and Self-Powered Sensors. Adv. Energy Mater. 2017, 7, 1601529. [Google Scholar] [CrossRef]
- Ren, W.; Sun, Y.; Zhao, D.; Aili, A.; Zhang, S.; Shi, C.; Zhang, J.; Geng, H.; Zhang, J.; Zhang, L.; et al. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci. Adv. 2021, 7, eabe0586. [Google Scholar] [CrossRef]
- Slabov, V.; Kopyl, S.; dos Santos, M.P.S.; Kholkin, A.L. Natural and Eco-Friendly Materials for Triboelectric Energy Harvesting. Nano-Micro Lett. 2020, 12, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’connor, M.P.; Zimmerman, J.B.; Anastas, P.T.; Plata, D.L. A Strategy for Material Supply Chain Sustainability: Enabling a Circular Economy in the Electronics Industry through Green Engineering. ACS Sustain. Chem. Eng. 2016, 4, 5879–5888. [Google Scholar] [CrossRef]
- Hsu, E.; Barmak, K.; West, A.C.; Park, A.-H.A. Advancements in the treatment and processing of electronic waste with sustainability: A review of metal extraction and recovery technologies. Green Chem. 2019, 21, 919–936. [Google Scholar] [CrossRef]
- Dodson, J.R.; Hunt, A.J.; Parker, H.L.; Yang, Y.; Clark, J.H. Elemental sustainability: Towards the total recovery of scarce metals. Chem. Eng. Process. Process Intensif. 2012, 51, 69–78. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D.; Fontana, D.; Akcil, A.; Deveci, H.; Batinic, B.; Leal, J.P.; Gasche, T.A.; Kucuker, M.A.; Kuchta, K.; et al. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes—A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 212–275. [Google Scholar] [CrossRef] [Green Version]
- Epoxy Technology. Reworking, Removing and ‘Decapsulating’ Cured Epoxies 2009. Available online: https://www.tedpella.com/technote_html/Reworking_Cured_Epoxy.pdf (accessed on 17 April 2023).
- Master Bond. How To: Optimizing the Glass Transition Temperature (Tg) MasterBond.com. Available online: https://www.masterbond.com/techtips/how-optimizing-glass-transition-temperature-tg (accessed on 16 March 2023).
- Yi, H.; Hwang, I.; Sung, M.; Lee, D.; Kim, J.-H.; Kang, S.M.; Bae, W.-G. Bio-inspired adhesive systems for next-generation green manufacturing. Int. J. Precis. Engi-Neering Manuf. Green Technol. 2014, 1, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Keum, H.; Park, K.; Bashir, R.; Kim, S. Micro-Masonry of MEMS Sensors and Actuators. J. Microelectromechanical. Syst. 2014, 23, 308–314. [Google Scholar] [CrossRef]
- Mengüç, Y.; Sitti, M. Gecko-Inspired Polymer Adhesives. In Polymer Adhesion, Friction, And Lubrication; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 351–389. [Google Scholar] [CrossRef]
- Eisenhaure, J.; Kim, S. A Review of the State of Dry Adhesives: Biomimetic Structures and the Alternative Designs They Inspire. Micromachines 2017, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Swartwout, R.; Patidar, R.; Belliveau, E.; Dou, B.; Beynon, D.; Greenwood, P.; Moody, N.; DeQuilettes, D.; Bawendi, M.; Watson, T.; et al. Predicting Low Toxicity and Scalable Solvent Systems for High Speed Roll-to-Roll Perovskite Manufacturing. Solar RRL 2021, 6, 2100567. [Google Scholar] [CrossRef]
- Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G.A., Jr.; Rödel, J. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 041305. [Google Scholar] [CrossRef] [Green Version]
- Alston, S.M.; Clark, A.D.; Arnold, J.C.; Stein, B.K. Environmental Impact of Pyrolysis of Mixed WEEE Plastics Part 1: Experimental Pyrolysis Data. Environ. Sci. Technol. 2011, 45, 9380–9385. [Google Scholar] [CrossRef] [PubMed]
- Danz, P.; Aryan, V.; Möhle, E.; Nowara, N. Experimental Study on Fluorine Release from Photovoltaic Backsheet Materials Containing PVF and PVDF during Pyrolysis and Incineration in a Technical Lab-Scale Reactor at Various Temperatures. Toxics 2019, 7, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, J.E.; Zhenova, A.; Roberts, S.; Petchey, T.; Zhu, P.; Dancer, C.E.J.; McElroy, C.R.; Kendrick, E.; Goodship, V. On the Solubility and Stability of Polyvinylidene Fluoride. Polymers 2021, 13, 1354. [Google Scholar] [CrossRef]
- ECHA. Substance Information—Titanium Dioxide. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.033.327 (accessed on 13 March 2023).
- ECHA. Guide on the Classification and Labelling of Titanium Dioxide; ECHA: Helsinki, Finland, 2021.
- Ibn-Mohammed, T.; Koh, S.C.L.; Reaney, I.M.; Acquaye, A.; Wang, D.; Taylor, S.; Genovese, A. Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy Environ. Sci. 2016, 9, 3495–3520. [Google Scholar] [CrossRef] [Green Version]
- Vinothini, V.; Singh, P.; Balasubramanian, M. Synthesis of barium titanate nanopowder using polymeric precursor method. Ceram. Int. 2006, 32, 99–103. [Google Scholar] [CrossRef]
- Vinothini, V.; Vaidhyanathan, B.; Binner, J. Microwave assisted synthesis of barium zirconium titanate nanopowders. J. Mater. Sci. 2011, 46, 2155–2161. [Google Scholar] [CrossRef]
- Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Tennakone, K.; Kumara, G.R.R.A.; Kottegoda, I.R.M.; Perera, V.P.S. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem. Commun. 1999, 1, 15–16. [Google Scholar] [CrossRef]
- Sayama, K.; Sugihara, H.; Arakawa, H. Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye. Chem. Mater. 1998, 10, 3825–3832. [Google Scholar] [CrossRef]
- Le Viet, A.; Jose, R.; Reddy, M.V.; Chowdari, B.V.R.; Ramakrishna, S. Nb2O5 photoelectrodes for dye-sensitized solar cells: Choice of the polymorph. J. Phys. Chem. C. 2010, 114, 21795–21800. [Google Scholar] [CrossRef]
- Law, M.; Greene, L.E.; Johnson, J.C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459. [Google Scholar] [CrossRef]
- Gong, J.; Liang, J.; Sumathy, K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renew. Sustain. Energy Rev. 2012, 16, 5848–5860. [Google Scholar] [CrossRef]
- European Chemical Agency. Substance Information—Chlorobenzene. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.003.299 (accessed on 13 February 2023).
- Dutta, M.; Pathiparampil, A.; Murella, J.; Villacarte, D.; Hamada, D.; Hernandez, J.; Lopez-Linares, F. Determination of base number in lubricants and additives by ASTM D2896: Substitution of chlorinated solvents and alternate electrolyte study. Fuel 2021, 297, 120701. [Google Scholar] [CrossRef]
- Farrell, M.J.; Frey, K.; Mason, J. Corporate Responsibility: A Green Initiative to Reduce Chlorobenzene Based Chemistries in Semiconductor Processing. MRS Adv. 2019, 4, 393–398. [Google Scholar] [CrossRef]
- Larsen, C.; Lundberg, P.; Tang, S.; Ràfols-Ribé, J.; Sandström, A.; Lindh, E.M.; Wang, J.; Edman, L. A tool for identifying green solvents for printed electronics. Nat. Commun. 2021, 12, 1–7. [Google Scholar] [CrossRef]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, J.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Hausmann, D.M.; Kim, E.; Becker, J.; Gordon, R.G. Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors. Chem. Mater. 2002, 14, 4350–4358. [Google Scholar] [CrossRef]
- Puurunen, R.L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 2005, 97, 121301. [Google Scholar] [CrossRef]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2009, 110, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Yuan, C. A hybrid life cycle assessment of atomic layer deposition process. J. Clean. Prod. 2014, 74, 145–154. [Google Scholar] [CrossRef]
- Beltrami, R.; Mercadelli, E.; Baldisserri, C.; Galassi, C.; Braghin, F.; Lecis, N. Synthesis of KNN powders: Scaling effect of the milling step. Powder Technol. 2020, 375, 101–108. [Google Scholar] [CrossRef]
- Sahu, N.; Parija, B.; Panigrahi, S. Fundamental understanding and modeling of spin coating process: A review. Indian J. Phys. 2009, 83, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Zhang, M.; Lau, C.F.J.; Deng, X.; Kim, J.; Ma, Q.; Chen, C.; Green, M.A.; Huang, S.; Ho-Baillie, A.W. Spin-coating free fabrication for highly efficient perovskite solar cells. Sol. Energy Mater. Sol. Cells 2017, 168, 165–171. [Google Scholar] [CrossRef]
- Lee, J.-W.; Na, S.-I.; Kim, S.-S. Efficient spin-coating-free planar heterojunction perovskite solar cells fabricated with successive brush-painting. J. Power Sources 2017, 339, 33–40. [Google Scholar] [CrossRef]
- Xu, X.; Lai, D.; Wang, W.; Wang, Y. A systematically integrated recycling and upgrading technology for waste crystalline silicon photovoltaic module. Resour. Conserv. Recycl. 2022, 182, 106284. [Google Scholar] [CrossRef]
- Huang, W.-H.; Shin, W.J.; Wang, L.; Sun, W.-C.; Tao, M. Strategy and technology to recycle wafer-silicon solar modules. Sol. Energy 2017, 144, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Broeck, K.V.D.; Van Hoornick, N.; Van Hoeymissen, J.; de Boer, R.; Giesen, A.; Wilms, D. Sustainable treatment of HF wastewaters from semiconductor industry with a fluidized bed reactor. IEEE Trans. Semicond. Manuf. 2003, 16, 423–428. [Google Scholar] [CrossRef]
- Shin, J.; Park, J.; Park, N. A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers. Sol. Energy Mater. Sol. Cells 2017, 162, 1–6. [Google Scholar] [CrossRef]
- European Chemical Agency. Substance Information—Hydrogen Fluoride. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.028.759 (accessed on 28 February 2023).
- Chen, W.-S.; Chen, Y.-J.; Lee, C.-H.; Cheng, Y.-J.; Chen, Y.-A.; Liu, F.-W.; Wang, Y.-C.; Chueh, Y.-L. Recovery of Valuable Materials from the Waste Crystalline-Silicon Photovoltaic Cell and Ribbon. Processes 2021, 9, 712. [Google Scholar] [CrossRef]
- Latunussa, C.E.; Ardente, F.; Blengini, G.A.; Mancini, L. Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Sol. Energy Mater. Sol. Cells 2016, 156, 101–111. [Google Scholar] [CrossRef]
- Stolz, P.; Frischknecht, R.; Wambach, K.; Sinha, P.; Heath, G. Life Cycle Assessment of Current Photovoltaic Module Recycling; IEA PVPS Task 12, International Energy Agency Power Systems Programme, Report IEA-PVPS T12-13; International Energy Agency: Paris, France, 2018.
- Deng, R.; Chang, N.L.; Ouyang, Z.; Chong, C.M. A techno-economic review of silicon photovoltaic module recycling. Renew. Sustain. Energy Rev. 2019, 109, 532–550. [Google Scholar] [CrossRef]
- Ferro, P.; Bonollo, F. Design for Recycling in a Critical Raw Materials Perspective. Recycling 2019, 4, 44. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Gao, X.; Deng, Y.; Zha, Y.; Yuan, C. Comparison of life cycle environmental impacts of different perovskite solar cell systems. Sol. Energy Mater. Sol. Cells 2017, 166, 9–17. [Google Scholar] [CrossRef]
- Briend, P.; Alban, B.; Chevrel, H.; Jahan, D. Method for Recycling Silane. US20110011129A1, 20 January 2011. [Google Scholar]
- Hong, S.; Cho, S.; Kim, S.; Kwak, S. Recovery Method of Organic Solvent from Photoresist Removal Waste. KR100997743B1, 1 December 2010. [Google Scholar]
- Kirmani, A.R.; Woodhouse, M.; Luther, J.M. Technoeconomic Model Suggests Scaling-Up Perovskite Quantum Dots for Optoelectronics Warrants Improved Synthesis Yield, Solvent Recycling, and Automation. ACS Energy Lett. 2022, 7, 1255–1259. [Google Scholar] [CrossRef]
Module | Element | Material under Research |
---|---|---|
RF harvesters | Array of rectennas 2.45 GHz band | HfZrOf |
Array of rectennas 24–28 GHz band | HfZrOf | |
Array of rectennas 60 GHz band | 2D MoS2 | |
Pyroelectric energy harvester | HfZrOf | |
Energy Storage Module | Pseudocapacitor | HfZrOf |
Wake-up module | Piezoelectric energy harvesters | PVDF; PHBV + RT or KNN dopped powders |
Heterojunction solar cells | 2D MoO3 | |
Spherical Solar cells | Glass, TiO2, Ru dye |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doyle, L.; Cavero, G.; Modreanu, M. Applying the 12 Principles of Green Engineering in Low TRL Electronics: A Case Study of an Energy-Harvesting Platform. Sustainability 2023, 15, 11227. https://doi.org/10.3390/su151411227
Doyle L, Cavero G, Modreanu M. Applying the 12 Principles of Green Engineering in Low TRL Electronics: A Case Study of an Energy-Harvesting Platform. Sustainability. 2023; 15(14):11227. https://doi.org/10.3390/su151411227
Chicago/Turabian StyleDoyle, Lucía, German Cavero, and Mircea Modreanu. 2023. "Applying the 12 Principles of Green Engineering in Low TRL Electronics: A Case Study of an Energy-Harvesting Platform" Sustainability 15, no. 14: 11227. https://doi.org/10.3390/su151411227
APA StyleDoyle, L., Cavero, G., & Modreanu, M. (2023). Applying the 12 Principles of Green Engineering in Low TRL Electronics: A Case Study of an Energy-Harvesting Platform. Sustainability, 15(14), 11227. https://doi.org/10.3390/su151411227