Suitability of Various Parameters for the Determination of the Condition of Soil Structure with Dependence to the Quantity and Quality of Soil Organic Matter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterisation of Localities and Variants Included in the Study
2.2. Preparing of Soil Samples and Used Analytical Methods
- St
- =< 5%, loss of soil structure and high susceptibility to erosion;
- St
- = 5 to 7%, unstable structure and risk of soil degradation;
- St
- => 9%, stable soil structure [45].
2.3. Statistical Analysis Used in the Study
3. Results and Discussion
3.1. The Relationships between the Parameters of Soil Structure and Soil Organic Matter
3.2. Differences in the Parameters of Soil Structure with Dependence on Soil Type and Tillage System
3.3. Suitability of the Parameters of Soil Structure for the Evaluation of Its Condition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Basset, C.; Najm, M.A.; Ghezzehei, T.; Hao, X.; Daccache, A. How does soil structure affect water infiltration? A meta-data systematic review. Soil Till. Res. 2023, 226, 105577. [Google Scholar] [CrossRef]
- Du, L.; Zheng, Z.; Li, T.; Wang, Y.; Huang, H.; Yu, H.; Ye, D.; Liu, T.; Zhang, X. Aggregate-associated carbon compositions explain the variation of carbon sequestration in soils after long-term planting of different tea varieties. Sci. Total Environ. 2023, 856, 159227. [Google Scholar] [CrossRef]
- Liu, S.; Six, J.; Zhang, H.X.; Zhang, Z.B.; Peng, X.H. Integrated aggregate turnover and soil organic carbon sequestration usingrare earth oxides and 13C isotope as dual tracers. Geoderma 2023, 430, 116313. [Google Scholar] [CrossRef]
- Tian, S.; Zhu, B.; Yin, R.; Wang, M.; Jiang, Y.; Zhang, C.; Li, D.; Chen, C.; Kardol, P.; Liu, M. Organic fertilization promotes crop productivity through changes in soil aggregation. Soil Biol. Biochem. 2022, 165, 108533. [Google Scholar] [CrossRef]
- Zhang, J.B. Improving inherent soil productivity underpins agricultural sustainability. Pedosphere 2023, 33, 3–5. [Google Scholar] [CrossRef]
- Atere, C.T.; Gunina, A.; Zhu, Z.; Xiao, M.; Liu, S.; Kuzyakov, Y.; Chen, L.; Deng, Y.; Wu, J.; Ge, T. Organic matter stabilization in aggregates and density fractions in paddy soil depending on long-term fertilization: Tracing of pathways by 13C natural abundance. Soil Biol. Biochem. 2020, 149, 107931. [Google Scholar] [CrossRef]
- Balabane, M.; Plante, A.F. Aggregation and carbon storage in silty soil using physical fractionation techniques. Eur. J. Soil Sci. 2004, 55, 415–427. [Google Scholar] [CrossRef]
- Yao, Y.; Shen, X.; Wang, L.; Zhao, J.; Gong, L.; Wang, S.; Wu, L.; Li, G.; Xiu, W.; Zhan, G. Effects of tillage management on cbbL-carrying bacteria and soil organic carbon dynamics across aggregate size classes in the farmland of North China Plain. Ecol. Indic. 2023, 150, 110213. [Google Scholar] [CrossRef]
- Spaccini, R.; Piccolo, A. Effects of field managements for soil organic matter stabilization on water-stable aggregate distribution and aggregate stability in three agricultural soils. J. Geochem. Explor. 2013, 129, 45–51. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Li, S.; Wang, B.; Zhang, X.; Wang, H.; Yi, Y.; Huang, X.; Gao, X.; Zhu, P.; Han, W. Soil particle aggregation and aggregate stability associated with ion specificity and organic matter content. Geoderma 2023, 429, 116285. [Google Scholar] [CrossRef]
- Halder, M.; Liu, S.; Zhang, Z.B.; Guo, Z.C.; Peng, X.H. Effects of organic matter characteristics on soil aggregate turnover using rare earth oxides as tracers in a red clay soil. Geoderma 2022, 421, 115908. [Google Scholar] [CrossRef]
- Li, J.; Zhong, S.; Han, Z.; Gao, P.; Wei, C. The relative contributions of soil hydrophilicity and raindrop impact to soil aggregate breakdown for a series of textured soils. Int. Soil Water Conser. R. 2022, 10, 433–444. [Google Scholar] [CrossRef]
- Vasava, H.B.; Gupta, A.; Arora, R.; Das, B.S. Assessment of soil texture from spectral reflectance data of bulk soil samples and their dry-sieved aggregate size fractions. Geoderma 2019, 337, 914–926. [Google Scholar] [CrossRef]
- Guggenberger, G.; Zech, W.; Thomas, R.J. Lignin and carbohydrate alteration in particle-size separates of an Oxisol under tropical pastures following native savanna. Soil Biol. Biochem. 1995, 27, 1629–1638. [Google Scholar] [CrossRef]
- Yudina, A.; Kuzyakov, Y. Dual nature of soil structure: The unity of aggregates and pores. Geoderma 2023, 434, 116478. [Google Scholar] [CrossRef]
- Jakab, G.; Madarász, B.; Masoudi, M.; Karlik, M.; Király, C.; Zacháry, D.; Filep, T.; Dekemati, I.; Centeri, C.; Al-Graiti, T.; et al. Soil organic matter gain by reduced tillage intensity: Storage, pools, and chemical composition. Soil Till. Res. 2023, 226, 105584. [Google Scholar] [CrossRef]
- Ndzelu, B.S.; Dou, S.; Zhang, X.; Zhang, Y.; Ma, R.; Liu, X. All rights reserved. Tillage effects on humus composition and humic acid structural characteristics in soil aggregate-size fractions. Soil Till. Res. 2021, 213, 105090. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Wang, X.; Li, H.; Liu, P.; Wang, X.; Wang, R.; Li, J. Change of tillage system affects the soil carbon pools characters, reduces carbon emissions and improves maize yield in the Loess Plateau. Eur. J. Agron. 2022, 141, 126614. [Google Scholar] [CrossRef]
- Du, Z.; Ren, T.; Hu, C.; Zhang, Q. Transition from intensive tillage to no-till enhances carbon sequestration in microaggregates of surface soil in the North China Plain. Soil Till. Res. 2015, 146, 26–31. [Google Scholar] [CrossRef]
- Liu, W.-X.; Wei, Y.-X.; Li, R.-C.; Chen, Z.; Wang, H.-D.; Virk, A.L.; Lal, R.; Zhao, X.; Zhang, H.-L. Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the North China Plain. Sci. Total Environ. 2022, 847, 157518. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; Lai, H.; Yang, D.; Li, X. Optimizing residue and tillage management practices to improve soil carbon sequestration in a wheat–peanut rotation system. J. Environ. Manag. 2022, 306, 114468. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Archilha, N.L.; Cássaro, F.A.M.; Pires, L.F. How can pore characteristics of soil aggregates from contrasting tillage systems affect their intrinsic permeability and hydraulic conductivity? Soil Till. Res. 2023, 230, 105704. [Google Scholar] [CrossRef]
- Wardak, D.L.R.; Padia, F.N.; de Heer, M.I.; Sturrock, C.J.; Mooney, S.J. Zero tillage has important consequences for soil pore architecture and hydraulic transport: A review. Geoderma 2022, 422, 115927. [Google Scholar] [CrossRef]
- Budhathoki, S.; Lamba, J.; Srivastava, P.; Williams, C.; Arriaga, F.; Karthikeyan, K.G. Impact of land use and tillage practice on soil macropore characteristics inferred from X-ray computed tomography. Catena 2021, 210, 105886. [Google Scholar] [CrossRef]
- Malobane, M.E.; Nciizah, A.D.; Bam, L.C.; Mudau, F.N.; Wakindiki, I.I.C. Soil microstructure as affected by tillage, rotation and residue management in a sweet sorghum-based cropping system in soils with low organic carbon content in South Africa. Soil Till. Res. 2021, 209, 104972. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Hassim, R.; Shapiro, C.; Jasa, P.; Klopp, H. How does no-till affect soil-profile compactibility in the long term? Geoderma 2022, 425, 116016. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Feng, X.; Yang, H.; Li, Y.; Yakov, K.; Liu, S.; Li, F.-M. Effects of tillage on soil organic carbon and crop yield under straw return. Agric. Ecosys. Environ. 2023, 354, 108543. [Google Scholar] [CrossRef]
- Rosinger, C.; Keiblinger, K.; Bieber, M.; Bernardini, L.G.; Huber, S.; Mentler, A.; Sae-Tun, O.; Scharf, B.; Bodner, G. On-farm soil organic carbon sequestration potentials are dominated by site effects, not by management practices. Geoderma 2023, 433, 116466. [Google Scholar] [CrossRef]
- Paye, W.S.; Thapa, V.R.; Ghimire, R. Limited impacts of occasional tillage on dry aggregate size distribution and soil carbon and nitrogen fractions in semi-arid drylands. Int. Soil Water Conser. R. 2023. [Google Scholar] [CrossRef]
- Zhu, R.; Zheng, Z.; Li, T.; He, S.; Zhang, X.; Wang, Y.; Liu, T. Effect of tea plantation age on the distribution of glomalin-related soil protein in soil water-stable aggregates in southwestern China. Environ. Sci. Pollut. R. 2018, 26, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-C.; Wu, W.; Li, J.-W.; Liu, H.-B. Climate and topography controls on soil water-stable aggregates at regional scale: Independent and interactive effects. Catena 2023, 228, 107170. [Google Scholar] [CrossRef]
- Xiong, L.; Liu, X.; Vinci, G.; Sun, B.; Drosos, M.; Li, L.; Piccolo, A. Genxing Pan Aggregate fractions shaped molecular composition change of soil organic matter in a rice paddy under elevated CO2 and air warming. Soil Biol. Biochem. 2021, 159, 108289. [Google Scholar] [CrossRef]
- Yu, P.; Liu, J.; Tang, H.; Ci, E.; Tang, X.; Liu, S.; Ding, Z.; Ma, M. The increased soil aggregate stability and aggregate-associated carbon by farmland use change in a karst region of Southwest China. Catena 2023, 231, 107284. [Google Scholar] [CrossRef]
- Lugato, E.; Simonetti, G.; Morari, F.; Nardi, S.; Berti, A.; Giardini, L. Distribution of organic and humic carbon in wet-sieved aggregates of different soils under long-term fertilization experiment. Geoderma 2010, 157, 80–85. [Google Scholar] [CrossRef]
- Guidi, P.; Falsone, G.; Wilson, C.; Cavani, L.; Ciavatta, C. New insights into organic carbon stabilization in soil macroaggregates: An in situ study by optical microscopy and SEM-EDS technique. Geoderma 2021, 397, 115101. [Google Scholar] [CrossRef]
- Safar, F.; Whalen, J.K. Mechanical stability of newly-formed soil macroaggregates influenced by calcium concentration and the calcium counter-anion. Geoderma 2023, 430, 116333. [Google Scholar] [CrossRef]
- de Melo, T.R.; Figueiredo, A.; Filho, J.T. Clay behaviour following macroaggregate breakdown in Ferralsols. Soil Till. Res. 2021, 207, 104862. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Jastrow, J.D.; Boutton, T.W.; Miller, R.M. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Sci. Soc. Am. J. 1996, 60, 801–807. [Google Scholar] [CrossRef]
- Artemyeva, Z.; Danchenko, N.; Kolyagin, Y.; Zazovskaya, E.; Kogut, B. Variations in the chemical structure and Carbon-13 natural abundance in water-stable macro- and microaggregates in Haplic Chernozem under the contrasting land use variants. Environ. Res. 2022, 213, 113701. [Google Scholar] [CrossRef]
- Schweizer, S.A.; Bucka, F.B.; Graf-Rosenfellner, M.; Kögel-Knabnera, I. Soil microaggregate size composition and organic matter distribution as affected by clay content. Geoderma 2019, 355, 113901. [Google Scholar] [CrossRef]
- Whalen, J.K.; Chang, C. Macroaggregate characteristics in cultivated soils after 25 annual manure applications. Soil Sci. Soc. Am. J. 2002, 66, 1637–1647. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Shukla, M.K. Principles of Soil Physics; CRC Press: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Pieri, C. Fertility of Soils: A Future for Farming in the West African Savannah; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Hillel, D. Soil Structure and Aggregation. Introduction to Environmental Soil Physics; Elsevier Academic Press: Burlington, MA, USA, 2004; 498p. [Google Scholar]
- Valla, M.; Kozák, J.; Ondráček, V. Vulnerability of aggregates separated from selected anthrosols developed on reclaimed dumpsites. Rostl. Výroba 2000, 46, 563–568. [Google Scholar]
- Fulajtár, E. Physical Properties of Soils; VUPOP: Bratislava, Slovakia, 2006; 142 p. [Google Scholar]
- Alexakis, D.E.; Bathrellos, G.D.; Skilodimou, H.D.; Gamvroula, D.E. Land Suitability Mapping Using Geochemical and Spatial Analysis Methods. Appl. Sci. 2021, 11, 5404. [Google Scholar] [CrossRef]
- Korec, P.; Lauko, V.; Tolmáči, L.; Zubrický, G.; Mičietová, E. Region and Districts of Slovakia. A New Administrative Structure; Q111: Bratislava, Slovakia, 1997; 391p. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for NAMING SOILS and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; 236p. [Google Scholar]
- GKÚ. 2019. Available online: https://zbgis.skgeodesy.sk/mkzbgis/sk/zakladna-mapa?pos=48.444609,18.364076,10 (accessed on 8 July 2023).
- Bielek, P.; Jurčová, O. Methodology of Soil Organic Matter Balance and Determining the Need of Organic Fertilization of Agricultural Soils; Výskumný Ústav Pôdoznalectva a Ochrany Pôdy: Bratislava, Slovakia, 2010; 145p. [Google Scholar]
- Sarkar, D.; Haldar, A. Physical and Chemical Methods in Soil Analysis; New Age International (P) Ltd.: New Delhi, Delhi, 2005; 228p. [Google Scholar]
- van Reeuwijk, L.P. Procedures for Soil Analysis; International Soil Reference and Information Centre: Wageningen, The Netherlands, 2002; 119p. [Google Scholar]
- Orlov, D.S.; Grišina, L.A. Chemical Analysis of Humus; IMU: Moscow, Russia, 1981; 272p. [Google Scholar]
- Loginov, W.; Wisniewski, W.; Gonet, S.S.; Ciescinska, B. Fractionation of organic carbon based on susceptibility to oxidation. Pol. J. Soil Sci. 1987, 20, 47–52. [Google Scholar]
- Ghani, A.; Dexter, M.; Perrott, K.W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol. Biochem. 2003, 35, 1231–1243. [Google Scholar] [CrossRef]
- Blair, G.J.; Lefroy, R.D.B.; Lisle, L. Soil carbon fractions, based on their degree of oxidation, and the development of a Carbon Management Index for agricultural systems. Aust. J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Standford, G.; Smith, S.J. Oxidative release of potentially mineralizable soil nitrogen by acid permanganate extraction. Soil Sci. 1978, 126, 210–218. [Google Scholar] [CrossRef]
- Wang, B.; Xu, G.; Ma, T.; Chen, L.; Cheng, Y.; Li, P.; Li, Z.; Zhang, Y. Effects of vegetation restoration on soil aggregates, organic carbon, and nitrogen in the Loess Plateau of China. Catena 2023, 231, 107340. [Google Scholar] [CrossRef]
- Gao, L.; Becker, E.; Liang, G.; Houssou, A.A.; Wu, H.; Wu, X.; Cai, D.; Degré, A. Effect of different tillage systems on aggregate structure and inner distribution of organic carbon. Geoderma 2016, 288, 97–104. [Google Scholar] [CrossRef]
- Aranda, V.; Ayora-Cañada, M.J.; Domínguez-Vidal, A.; Martín-García, J.M.; Calero, J.; Delgado, R.; Verdejo, T.; González-Vila, F.J. Effect of soil type and management (organic vs. conventional) on soil organic matter quality in olive groves in a semi-arid environment in Sierra Mágina natural park (S Spain). Geoderma 2011, 164, 54–63. [Google Scholar] [CrossRef]
- Machado, W.; Franchini, J.C.; Guimarães, M.F.; Filho, J.T. Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil. Heliyon 2020, 6, e04078. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wu, X.; Zeng, R.; Cai, C.; Guo, Z. Spatial variations of aggregate-associated humic substance in heavy-textured soils along a climatic gradient. Soil Till. Res. 2020, 197, 104497. [Google Scholar] [CrossRef]
- Ai, S.; Meng, X.; Zhang, Z.; Li, R.; Teng, W.; Cheng, K.; Yang, F. Artificial humic acid regulates the impact of fungal community on soil macroaggregates formation. Chemosphere 2023, 332, 138822. [Google Scholar] [CrossRef]
- Zhu, D.; Cong, R.; Ren, T.; Lu, Z.; Lu, J.; Li, X. Straw incorporation improved the adsorption of potassium by increasing the soil humic acid in macroaggregates. J. Environ. Manag. 2022, 310, 114665. [Google Scholar] [CrossRef]
- Zhao, K.; Yang, Y.; Peng, H.; Zhang, L.; Zhou, Y.; Zhang, J.; Du, C.; Liu, J.; Lin, X.; Wang, N.; et al. Silicon fertilizers, humic acid and their impact on physicochemical properties, availability and distribution of heavy metals in soil and soil aggregates. Sci. Total Environ. 2022, 822, 153483. [Google Scholar] [CrossRef]
- Sparling, G.; Vojvodić-Vuković, M.; Schipper, L.A. Hot-water-soluble C as a simple measure of labile soil organic matter: The relationship with microbial biomass C. Soil. Biol. Biochem. 1998, 30, 1469–1472. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, Y.; Zhou, Y.; Zhou, X.; Zhou, W. Soil organic carbon and soil aggregate stability associated with aggregate fractions in a chronosequence of citrus orchards plantations. J. Environ. Manag. 2021, 293, 112847. [Google Scholar] [CrossRef]
- Briedis, C.; de Moraes, S.J.C.; Lal, R.; de Oliveira Ferreira, A.; Franchini, J.C.; Pereira Milori, D.M.B. Preservation of labile organic compounds is the pathway for carbon storage in a 23-year continuous no-till system on a Ferralsol in southern Brazil. Geoderma Reg. 2023, 33, e00643. [Google Scholar] [CrossRef]
- Bucka, F.B.; Kölbl, A.; Uteau, D.; Peth, S.; Kögel-Knabner, I. Organic matter input determines structure development and aggregate formation in artificial soils. Geoderma 2019, 354, 113881. [Google Scholar] [CrossRef]
- Wang, J.; Wei, H.; Huang, J.; He, T.; Deng, Y. Soil aggregate stability and its response to overland runoff–sediment transport in karst peak–cluster depressions. J. Hydrol. 2023, 620, 129437. [Google Scholar] [CrossRef]
- Chenu, C.; Le Bissonnais, Y.; Arrouays, D. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J. 2000, 64, 1479–1486. [Google Scholar] [CrossRef]
- Fernandes, M.M.H.; da Silva, M.F.; Ferraudo, A.S.; Fernandes, C. Soil structure under tillage systems with and without cultivation in the off-season. Agric. Ecosyst. Environ. 2023, 342, 108237. [Google Scholar] [CrossRef]
- Wei, Y.; Cai, C.; Guo, Z.; Wang, J. Linkage between aggregate stability of granitic soils and the permanent gully erosion in subtropical China. Soil Till. Res. 2022, 221, 105411. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Y.; Wang, Y.; Wang, S.; Le, L. Factors affecting the stability of soil aggregates of plinthosols in the middle reaches of the Yangtze River. Catena 2023, 228, 107159. [Google Scholar] [CrossRef]
- Ma, R.; Hu, F.; Xu, C.; Liu, J.; Zhao, S. Response of soil aggregate stability and splash erosion to different breakdown mechanisms along natural vegetation restoration. Catena 2022, 208, 105775. [Google Scholar] [CrossRef]
- Eze, S.; Magilton, M.; Magnone, D.; Varga, S.; Gould, I.; Mercer, T.G.; Goddard, M.R. Meta-analysis of global soil data identifies robust indicators for short-term changes in soil organic carbon stock following land use change. Sci. Total Environ. 2023, 860, 160484. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Zhang, W.; Hu, P.; Xiao, D.; Yang, R.; Ye, Y.; Wang, K. The formation of large macroaggregates induces soil organic carbon sequestration in short-term cropland restoration in a typical karst area. Sci. Total Environ. 2021, 801, 149588. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Stevenson, B.; Morari, F.; Müller, K. Long-term tillage and irrigation effects on aggregation and soil organic carbon stabilization mechanisms. Geoderma 2023, 432, 116398. [Google Scholar] [CrossRef]
- Ranst, E.V.; Dumon, M.; Tolossa, A.R.; Cornelis, J.-T.; Stoops, G.; Vandenberghe, R.E.; Deckers, J. Revisiting ferrolysis processes in the formation of Planosols for rationalizing the soils with stagnic properties in WRB. Geoderma 2011, 163, 265–274. [Google Scholar] [CrossRef]
- Barbiero, L.; Mohan Kumar, M.S.; Violette, A.; Oliva, P.; Braun, J.J.; Kumar, C.; Furian, S.; Babic, M.; Riotte, J.; Valles, V. Ferrolysis induced soil transformation by natural drainage in Vertisols of sub-humid South India. Geoderma 2010, 156, 173–188. [Google Scholar] [CrossRef]
- de la Torre-Robles, L.; Muñoz-Robles, C.; Huber-Sannwald, E.; Reyes-Agüero, J.A. Functional stability: From soil aggregates to landscape scale in a region severely affected by gully erosion in semi-arid central Mexico. Catena 2023, 222, 106864. [Google Scholar] [CrossRef]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Benítez, C.; Lozano-García, B. Effects of land management change on soil aggregates and organic carbon in Mediterranean olive groves. Catena 2020, 195, 104840. [Google Scholar] [CrossRef]
- An, S.; Mentler, A.; Mayer, H.; Blum, W.E.H. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena 2010, 81, 226–233. [Google Scholar] [CrossRef]
- Canellas, L.P.; Baldotto, M.A.; Busato, J.G.; Marciano, C.R.; Menezes, S.C.; Silva, N.M.; Rumjanek, V.M.; Velloso, A.C.X.; Simões, M.L.; Martin-Neto, L. Estoque e qualidade da matéria orgânica de um solo cultivado com cana-de-açúcar por longo tempo. Rev. Bras. Cienc. Solo. 2007, 31, 331–340. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Huang, W.; Chen, J.; Wu, F.; Jia, Y.; Han, Y.; Wang, G.; Feng, L.; Li, X.; et al. Cover crops and N fertilization affect soil ammonia volatilization and N2O emission by regulating the soil labile carbon and nitrogen fractions. Agric. Ecosyst. Environ. 2022, 340, 108188. [Google Scholar] [CrossRef]
- Ontl, T.A.; Cambardella, C.A.; Schulte, L.A.; Kolka, R.K. Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient. Geoderma 2015, 255–256, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Halder, M.; Ahmad, S.J.; Rahman, T.; Joardar, J.C.; Siddique, A.B.; Islam, M.S.; Islam, M.U.; Liu, S.; Rabbi, S.; Peng, X. Effects of straw incorporation and straw-burning on aggregate stability and soil organic carbon in a clay soil of Bangladesh. Geoderma Reg. 2023, 32, e00620. [Google Scholar] [CrossRef]
- Sodhi, G.P.S.; Beri, V.; Benbi, D.K. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice–wheat system. Soil Tillage Res. 2009, 103, 412–418. [Google Scholar] [CrossRef]
- Xiao, S.-S.; Ye, Y.-Y.; Xiao, D.; Chen, W.-R.; Zhang, W.; Wang, K.-L. Effects of tillage on soil N availability, aggregate size, and microbial biomass in a subtropical karst region. Soil Till. Res. 2019, 192, 187–195. [Google Scholar] [CrossRef]
Soil Type | Locality | Coordinates Lat./Long. | A (m) | Climatic Region | Parent Material |
---|---|---|---|---|---|
EF | Trebišov | 48°38′ N/21°43′ E | 98–252 | moderately warm | River sediments |
MF | Nové Zámky | 47°59′ N/18°09′ E | 110–202 | warm | River sediments |
HC | Piešťany | 48°35′ N/17°50′ E | 150–229 | warm | Neogene sediments |
HL | Vráble | 48°14′ N/18°18′ E | 160–458 | moderately warm | Neogene sediments |
ER | Šaľa | 48°09′ N/17°52′ E | 111–135 | warm | Neogene sediments |
EG | Michalovce | 48°44′ N/21°54′ E | 330–823 | moderately warm | Proterozoic rocks |
DS | Sobrance | 48°44′ N/22°10′ E | 194–850 | moderately warm | Palaeozoic rocks |
Soil Type | CL (g/kg) | CNL (g/kg) | pH/CaCl2 | Clay (%) |
---|---|---|---|---|
EF | 1.766 ± 0.413 bc | 19.56 ± 2.52 b | 5.52 ± 0.47 c | 34.28 ± 3.05 a |
MF | 2,971 ± 0.104 a | 29.52 ± 1.57 a | 7.00 ± 0.92 a | 32.31 ± 5.94 a |
HC | 1.965 ± 0.471 bc | 16.12 ± 4.03 b | 6.07 ± 1.12 bc | 25.60 ± 1.60 b |
HL | 1.713 ± 0.438 bc | 15.16 ± 2.78 b | 6.19 ± 0.74 bc | 22.95 ± 4.48 b |
ER | 2.089 ± 0.558 bc | 16.41 ± 2.42 b | 6.43 ± 0.89 ab | 13.59 ± 3.88 c |
EG | 2.349 ± 1.302 ab | 19.94 ± 4.49 b | 6.09 ± 0.69 bc | 32.46 ± 5.34 a |
DS | 1.565 ± 0.448 c | 15.20 ± 3.04 b | 5.66 ± 0.95 c | 21.55 ± 4.49 b |
Inputs | Variable | Units | Outputs |
---|---|---|---|
Soil structure | Fractions of dry-sieved macroaggregates (>7; 5–7; 3–5; 1–3; 0.5–1; 0.25–0.5 mm) | % | Index of crusting, Critical content of soil organic matter, Mean weight diameter, Coefficient of soil structure vulnerability, Coefficient of water-resistant soil aggregates, Coefficient of structure, Index of aggregate stability, Aggregate stability of small wet-sieved macroaggregates, Aggregate stability of large wet-sieved macroaggregates |
Fractions of wet-sieved macroaggregates (>5; 3–5; 2–3; 1–2; 0.5–1; 0.25–0.5 mm) | % | ||
Soil texture | Sand (coarse 0.25–2 mm; fine 0.05–0.25 mm) | % | |
Silt (coarse 0.01–0.05 mm; fine 0.001–0.01 mm) | % | ||
Clay (<0.001 mm) | % | ||
Parameters of carbon | Total organic carbon | mg/kg | |
Labile carbon oxidisable by potassium permanganate | mg/kg | ||
Cold and hot water extractable organic carbons | mg/kg | ||
Optical parameters of humus substances and humic acids | mg/kg | ||
Fractions of humus substances (humic acids free and bound with mobile R2O3, humic acids bound with bivalent cations, mainly Ca2+, humic acids bound with mineral components of the soil and stabile R2O3, free aggressive fulvic acids, fulvic acids free and bound with mobile R2O3, fulvic acids bound with bivalent cations, mainly Ca2+, fulvic acids bound with mineral components of the soil and stabile R2O3) | % |
TOC | CL | CWEOC | HWEOC | NL | CL/NL | QHS465/650 | QHA465/650 | |
---|---|---|---|---|---|---|---|---|
Kv | −0.313 ** | −0.215 * | ns | ns | ns | −0.181 * | −0.346 ** | −0.349 ** |
Sw | ns | ns | ns | ns | ns | ns | ns | ns |
Ic | −0.537 ** | −0.457 ** | −0.282 ** | −0.338 ** | −0.297 ** | −0.366 ** | 0.224 * | ns |
St | 0.961 ** | 0.793 ** | 0.324 ** | 0.621 ** | 0.528 ** | 0.440 ** | ns | ns |
MWDD | ns | ns | ns | ns | ns | ns | 0.255 * | 0.360 ** |
MWDW | 0.281 ** | 0.227 * | ns | ns | ns | 0.239 * | 0.405 ** | 0.469 ** |
Kst | ns | ns | ns | 0.196 * | 0.271 * | ns | −0.293 ** | −0.303 ** |
Kw | ns | ns | ns | ns | ns | ns | 0.270 * | 0.310 ** |
WSA 0.5–3 mm | −0.183 * | −0.193 * | ns | ns | ns | −0.314 ** | −0.299 ** | −0.343 ** |
HA1 | HA2 | HA3 | ΣHA | FA1a | FA1 | FA2 | FA3 | ΣFA | |
---|---|---|---|---|---|---|---|---|---|
Kv | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Sw | ns | ns | 0.381 * | ns | ns | ns | ns | 0.377 * | ns |
Ic | 0.631 ** | ns | ns | ns | 0.778 ** | 0.614 ** | ns | ns | ns |
St | −0.327 * | ns | ns | ns | ns | −0.486 ** | ns | ns | ns |
MWDD | ns | ns | −0.330* | ns | ns | ns | −0.455 ** | ns | −0.382 * |
MWDW | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Kst | ns | ns | 0.562 ** | 0.388 * | ns | ns | 0.665 ** | ns | 0.384 * |
Kw | −0.443 ** | ns | ns | −0.339 * | ns | ns | ns | ns | ns |
WSA 0.5–3 mm | ns | ns | 0.335 * | ns | ns | ns | ns | ns | ns |
pH/CaCl2 | H | sand | silt | clay | |
---|---|---|---|---|---|
HA1 | −0.385 * | 0.437 ** | ns | 0.364 * | −0.689 ** |
HA2 | ns | ns | ns | ns | ns |
HA3 | ns | −0.493 ** | 0.515 ** | −0.478 ** | ns |
ΣHA | ns | ns | 0.516 ** | ns | −0.335 * |
FA1a | −0.465 ** | 0.395 * | ns | 0.487 ** | −0.551 ** |
FA1 | −0.468 ** | 0.737 ** | ns | −0.424 * | −0.527 ** |
FA2 | ns | −0.365 * | ns | −0.386 * | 0.367 * |
FA3 | ns | ns | 0.340 * | ns | ns |
ΣFA | ns | ns | ns | ns | ns |
Kv | Sw | Ic | St | MWDD | MWDW | Kst | Kw | WSA 0.5–3 mm | ||
---|---|---|---|---|---|---|---|---|---|---|
EF | RT | 1.57 a | 0.98 a | 0.83 a | 2.45 a | 3.90 a | 2.50 a | 1.37 a | 14.68 a | 40.74 b |
CT | 1.69 a | 1.01 a | 0.89 a | 2.14b | 3.21 b | 1.92 b | 2.14 a | 16.58 a | 58.35 a | |
MF | RT | 1.60 a | 1.11 a | 0.78 a | 3.26 a | 4.27 a | 2.69 a | 1.27 b | 13.77 a | 36.97 b |
CT | 1.61 a | 1.07 a | 0.61 a | 4.51 a | 2.77 b | 1.74 b | 2.48 a | 12.95 a | 58.59 a | |
HC | RT | 2.91 b | 0.89 a | 0.95 b | 2.44 a | 3.30 a | 1.18 a | 1.58 b | 2.91 b | 49.77 b |
CT | 4.66 a | 0.88 a | 1.12 a | 1.70 b | 3.01a | 0.68 b | 1.90 a | 4.66 a | 56.76 a | |
HL | RT | 2.37 a | 1.33 a | 0.94 a | 2.74 a | 2.69 b | 1.24 a | 1.51 a | 6.53 a | 58.33 a |
CT | 2.71 a | 0.99 b | 1.12 a | 1.82 b | 3.90 a | 1.49 a | 1.25 a | 8.32 a | 59.25 a | |
ER | RT | 2.90 a | 1.00 a | 1.11 a | 2.36 a | 3.50 a | 1.37 a | 1.45 a | 6.78 a | 53.67 a |
CT | 2.43 a | 0.96 a | 1.06 a | 1.94 b | 3.17 a | 1.29 a | 1.92 a | 6.32 a | 58.85 a | |
EG | RT | 1.64 a | 0.97 b | 0.83 a | 2.46 a | 3.88 b | 2.44 a | 1.27 a | 13.26 a | 43.2 4a |
CT | 1.73 a | 1.12 a | 0.90 a | 2.56 a | 4.15 a | 2.45 a | 1.11 a | 17.73 a | 46.47 a | |
DS | RT | 1.70 a | 1.05 a | 1.68 a | 1.71 b | 3.25 b | 1.92 b | 1.29 a | 9.72 a | 52.29 a |
CT | 1.44 b | 1.01 a | 1.15 b | 2.08 a | 3.88 a | 2.69 a | 1.35 a | 17.09 a | 38.23 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobiašová, E.; Lemanowicz, J.; Dębska, B.; Kunkelová, M.; Sakáč, J. Suitability of Various Parameters for the Determination of the Condition of Soil Structure with Dependence to the Quantity and Quality of Soil Organic Matter. Sustainability 2023, 15, 11047. https://doi.org/10.3390/su151411047
Tobiašová E, Lemanowicz J, Dębska B, Kunkelová M, Sakáč J. Suitability of Various Parameters for the Determination of the Condition of Soil Structure with Dependence to the Quantity and Quality of Soil Organic Matter. Sustainability. 2023; 15(14):11047. https://doi.org/10.3390/su151411047
Chicago/Turabian StyleTobiašová, Erika, Joanna Lemanowicz, Bożena Dębska, Martina Kunkelová, and Juraj Sakáč. 2023. "Suitability of Various Parameters for the Determination of the Condition of Soil Structure with Dependence to the Quantity and Quality of Soil Organic Matter" Sustainability 15, no. 14: 11047. https://doi.org/10.3390/su151411047