Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas
Abstract
:1. Introduction
- Identifying suitable green infrastructure that can be incorporated within the built-up areas in the urban setting.
- The identification of sustainable materials that can be integrated with building components to reduce the UHI effect.
- Examining the principle behind those identified techniques and their effectiveness in implementation.
- Identifying the most prevalent obstacles to the widespread implementation of the identified UHI mitigation strategies in urban areas and proposing solutions to these problems.
2. Materials and Methods
3. Incorporation of Green Infrastructure into Buildings
3.1. Green Roofing Techniques
3.2. Green Wall Techniques
3.3. Green Parking, Pavements and Shaded Streets
4. Sustainable Materials for UHI Effect Mitigation
4.1. Innovative Streets and Pavement Systems
4.2. Various Coating Materials
4.2.1. Painting with Light-Colored Materials
4.2.2. Phase-Change Materials (PCMs)
4.2.3. Color-Changing Materials
4.2.4. Fluorescence Materials
4.3. Use of Energy-Efficient Appliances
5. Challenges in Implementing UHI Mitigation Strategies
6. Discussion
7. Conclusions
- The rapidly urbanizing cities around the world necessitate ecologically mindful and sustainable ways to build.
- The UHI effect is a critical urban phenomenon; however, adequate mitigation efforts will lessen the effects on the environment as well as on the safety and health of inhabitants.
- Infrastructure and building materials as well as greening the built environment are crucial in managing UHIs.
- New and existing buildings should include infrastructure with green roofs, walls, façades, green parking, water retaining pavements, and shaded roadways, which have proven benefits toward mitigating UHIs.
- The incorporation of sustainable and environmentally friendly materials into the built environment, such as innovative street and pavement systems, a variety of coating materials, and the use of energy-efficient appliances, has provided a number of benefits and been proven to be highly effective in lowering the UHI effect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazutis, D.; Sweet, L. The Business of Accelerating Sustainable Urban Development: A Systematic Review and Synthesis. J. Clean. Prod. 2022, 357, 131871. [Google Scholar] [CrossRef]
- Naikoo, M.W.; Towfiqul Islam, A.R.M.; Mallick, J.; Rahman, A. Land Use/Land Cover Change and Its Impact on Surface Urban Heat Island and Urban Thermal Comfort in a Metropolitan City. Urban Clim. 2022, 41, 101052. [Google Scholar] [CrossRef]
- Abdulateef, M.F.; Al-Alwan, H.A. The Effectiveness of Urban Green Infrastructure in Reducing Surface Urban Heat Island: Baghdad City as a Case Study. Ain Shams Eng. J. 2022, 13, 101526. [Google Scholar] [CrossRef]
- Yang, L.; Qian, F.; Song, D.X.; Zheng, K.J. Research on Urban Heat-Island Effect. Procedia Eng. 2016, 169, 11–18. [Google Scholar] [CrossRef]
- Irfeey, A.M.M.; Jamei, E.; Chau, H.-W.; Ramasubramanian, B. Enhancing Occupants’ Thermal Comfort in Buildings by Applying Solar-Powered Techniques. Architecture 2023, 3, 213–233. [Google Scholar] [CrossRef]
- Van der Meulen, E.S.; van Oel, P.R.; Rijnaarts, H.H.M.; Sutton, N.B.; van de Ven, F.H.M. Suitability Indices for Assessing Functional Quality of Urban Surface Water. City Environ. Interact. 2022, 13, 100079. [Google Scholar] [CrossRef]
- Voordeckers, D.; Meysman, F.J.R.; Billen, P.; Tytgat, T.; Van Acker, M. The Impact of Street Canyon Morphology and Traffic Volume on NO2 Values in the Street Canyons of Antwerp. Build. Environ. 2021, 197, 107825. [Google Scholar] [CrossRef]
- Santamouris, M.; Yun, G.Y. Recent Development and Research Priorities on Cool and Super Cool Materials to Mitigate Urban Heat Island. Renew. Energy 2020, 161, 792–807. [Google Scholar] [CrossRef]
- Sabrin, S.; Karimi, M.; Nazari, R.; Pratt, J.; Bryk, J. Effects of Different Urban-Vegetation Morphology on the Canopy-Level Thermal Comfort and the Cooling Benefits of Shade Trees: Case-Study in Philadelphia. Sustain. Cities Soc. 2021, 66, 102684. [Google Scholar] [CrossRef]
- Hayes, A.T.; Jandaghian, Z.; Lacasse, M.A.; Gaur, A.; Lu, H.; Laouadi, A.; Ge, H.; Wang, L. Nature-Based Solutions (NBSs) to Mitigate Urban Heat Island (UHI) Effects in Canadian Cities. Buildings 2022, 12, 925. [Google Scholar] [CrossRef]
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the Impact of Urban Geometry and Pedestrian Level Greening on Outdoor Thermal Comfort. Renew. Sustain. Energy Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- Miao, C.; Yu, S.; Hu, Y.; Zhang, H.; He, X.; Chen, W. Review of Methods Used to Estimate the Sky View Factor in Urban Street Canyons. Build. Environ. 2020, 168, 106497. [Google Scholar] [CrossRef]
- Vahmani, P.; Luo, X.; Jones, A.; Hong, T. Anthropogenic Heating of the Urban Environment: An Investigation of Feedback Dynamics between Urban Micro-Climate and Decomposed Anthropogenic Heating from Buildings. Build. Environ. 2022, 213, 108841. [Google Scholar] [CrossRef]
- Ramamurthy, P.; González, J.; Ortiz, L.; Arend, M.; Moshary, F. Impact of Heatwave on a Megacity: An Observational Analysis of New York City during July 2016. Environ. Res. Lett. 2017, 12, 054011. [Google Scholar] [CrossRef] [Green Version]
- Pichelli, E.; Ferretti, R.; Cacciani, M.; Siani, A.M.; Ciardini, V.; Di Iorio, T. The Role of Urban Boundary Layer Investigated with High-Resolution Models and Ground-Based Observations in Rome Area: A Step towards Understanding Parameterization Potentialities. Atmos. Meas. Tech. 2014, 7, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Martilli, A.; Santiago, J.L.; Salamanca, F. On the Representation of Urban Heterogeneities in Mesoscale Models. Environ. Fluid Mech. 2015, 15, 305–328. [Google Scholar] [CrossRef]
- Korhonen, K.; Giannakaki, E.; Mielonen, T.; Pfüller, A.; Laakso, L.; Vakkari, V.; Baars, H.; Engelmann, R.; Beukes, J.P.; Van Zyl, P.G.; et al. Atmospheric Boundary Layer Top Height in South Africa: Measurements with Lidar and Radiosonde Compared to Three Atmospheric Models. Atmos. Chem. Phys. 2014, 14, 4263–4278. [Google Scholar] [CrossRef] [Green Version]
- Shishegar, N. The Impact of Green Areas on Mitigating Urban Heat Island Effect: A Review. Int. J. Environ. Sustain. 2014, 9, 119–130. [Google Scholar] [CrossRef]
- Petzold, J.; Mose, L. Urban Greening as a Response to Climate-Related Heat Risk: A Social–Geographical Review. Sustainability 2023, 15, 4996. [Google Scholar] [CrossRef]
- Sierka, E.; Radosz, Ł.; Ryś, K.; Woźniak, G. Ecosystem Services and Post-Industrial Areas. Green Scenar. Min. Ind. Responses to Environ. Challenges Anthr. Epoch 2022, 2023, 265–274. [Google Scholar] [CrossRef]
- Lin, J.; Qiu, S.; Tan, X.; Zhuang, Y. Measuring the Relationship between Morphological Spatial Pattern of Green Space and Urban Heat Island Using Machine Learning Methods. Build. Environ. 2023, 228, 109910. [Google Scholar] [CrossRef]
- Campagna, M.; Di Cesare, E.A.; Cocco, C. Integrating Green-Infrastructures Design in Strategic Spatial Planning with Geodesign. Sustainability 2020, 12, 1820. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.; Kotamarthi, R.; Wang, J.; Qian, Y.; Chakraborty, T.C. Impact of Different Roofing Mitigation Strategies on Near-Surface Temperature and Energy Consumption over the Chicago Metropolitan Area during a Heatwave Event. Sci. Total Environ. 2023, 860, 160508. [Google Scholar] [CrossRef]
- Shah, I.; Soh, B.; Lim, C.; Lau, E.; Ghahramani, A. Thermal Transfer and Temperature Reductions from Shading Systems on Opaque Facades: Quantifying the Impacts of Influential Factors. Energy Build. 2023, 278, 112604. [Google Scholar] [CrossRef]
- Irfeey, A.M.M.; Nashath, M.N.F.; Sumaiya, M.M.F. Green Roofing: A Potential Solution to Global Warming Problems in Sri Lanka. Reg. Symp. Disaster Risk Manag. 2021, 28–31. [Google Scholar]
- Meili, N.; Acero, J.A.; Peleg, N.; Manoli, G.; Burlando, P.; Fatichi, S. Vegetation Cover and Plant-Trait Effects on Outdoor Thermal Comfort in a Tropical City. Build. Environ. 2021, 195, 107733. [Google Scholar] [CrossRef]
- Bourgeois, I.; Queirós, A.; Oliveira, J.; Rodrigues, H.; Vicente, R.; Ferreira, V.M. Development of an Eco-Design Tool for a Circular Approach to Building Renovation Projects. Sustainability 2022, 14, 8969. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Green Roofs: A Critical Review on the Role of Components, Benefits, Limitations and Trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Faragallah, R.N.; Ragheb, R.A. Evaluation of Thermal Comfort and Urban Heat Island through Cool Paving Materials Using ENVI-Met. Ain Shams Eng. J. 2022, 13, 101609. [Google Scholar] [CrossRef]
- Ward, H.C.; Rotach, M.W.; Gohm, A.; Graus, M.; Karl, T.; Haid, M.; Umek, L.; Muschinski, T. Energy and Mass Exchange at an Urban Site in Mountainous Terrain–the Alpine City of Innsbruck. Atmos. Chem. Phys. 2022, 22, 6559–6593. [Google Scholar] [CrossRef]
- Hesslerová, P.; Pokorný, J.; Huryna, H.; Seják, J.; Jirka, V. The Impacts of Greenery on Urban Climate and the Options for Use of Thermal Data in Urban Areas. Prog. Plann. 2022, 159, 100545. [Google Scholar] [CrossRef]
- Purohit, P.; Höglund-Isaksson, L.; Dulac, J.; Shah, N.; Wei, M.; Rafaj, P.; Schöpp, W. Electricity Savings and Greenhouse Gas Emission Reductions from Global Phase-down of Hydrofluorocarbons. Atmos. Chem. Phys. 2020, 20, 11305–11327. [Google Scholar] [CrossRef]
- Mahmoud, A.S. Overview of Green Roof Technology as a Prospective Energy Preservation Technique in Arid Regions. Eng. Technol. Appl. Sci. Res. 2022, 12, 8982–8989. [Google Scholar] [CrossRef]
- Cascone, S. Green Roof Design: State of the Art on Technology and Materials. Sustainability 2019, 11, 3020. [Google Scholar] [CrossRef] [Green Version]
- Shukla, K.; Mishra, R.; Sarkar, P. Understanding Soilless Engineered Soil as a Sustainable Growing Material for Food Production in a Green Roof. Mater. Today Proc. 2021, 43, 3054–3060. [Google Scholar] [CrossRef]
- Ganguly, A.; Chowdhury, D.; Neogi, S. Performance of Building Roofs on Energy Efficiency—A Review. Energy Procedia 2016, 90, 200–208. [Google Scholar] [CrossRef]
- Besir, A.B.; Cuce, E. Green Roofs and Facades: A Comprehensive Review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Veisten, K.; Smyrnova, Y.; Klæboe, R.; Hornikx, M.; Mosslemi, M.; Kang, J. Valuation of Green Walls and Green Roofs as Soundscape Measures: Including Monetised Amenity Values Together with Noise-Attenuation Values in a Cost-Benefit Analysis of a Green Wall Affecting Courtyards. Int. J. Environ. Res. Public Health 2012, 9, 3770–3778. [Google Scholar] [CrossRef] [Green Version]
- Bandehali, S.; Miri, T.; Onyeaka, H.; Kumar, P. Current State of Indoor Air Phytoremediation Using Potted Plants and Green Walls. Atmosphere 2021, 12, 473. [Google Scholar] [CrossRef]
- ElHady, A.; Elhalafawy, A.M.; Moussa, R.A. Green-Wall Benefits Perception According to the Users’ versus Experts’ Views. Int. J. Eng. Res. Technol. 2019, 12, 3089–3095. [Google Scholar]
- Vosloo, P. Living Walls and Green Facades A Case Study of the UP Plant Sciences Vegetated Wall. ArchitSA. 2016, 80, 42–55. Available online: https://saia.org.za/assets/docs/archsa/ASA80.pdf (accessed on 13 September 2022).
- Lehmann, S. Growing Biodiverse Urban Futures: Renaturalization and Rewilding as Strategies to Strengthen Urban Resilience. Sustainability 2021, 13, 2932. [Google Scholar] [CrossRef]
- Zareba, A.; Krzeminska, A.; Kozik, R. Urban Vertical Farming as an Example of Nature-Based Solutions Supporting a Healthy Society Living in the Urban Environment. Resources 2021, 10, 109. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Barreneche, C.; De Gracia, A.; Urrestarazu, M.; Burés, S.; Cabeza, L.F. Acoustic Insulation Capacity of Vertical Greenery Systems for Buildings. Appl. Acoust. 2016, 110, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Gunawardena, K.; Steemers, K. Living Walls in Indoor Environments. Build. Environ. 2019, 148, 478–487. [Google Scholar] [CrossRef]
- Prodanovic, V.; Hatt, B.; McCarthy, D.; Deletic, A. Green Wall Height and Design Optimisation for Effective Greywater Pollution Treatment and Reuse. J. Environ. Manag. 2020, 261, 110173. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, J.; Wang, Y. Diversification of Land Surface Temperature Change under Urban Landscape Renewal: A Case Study in the Main City of Shenzhen, China. Remote Sens. 2017, 9, 919. [Google Scholar] [CrossRef] [Green Version]
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-Dependent Interactions between Tree Canopy Cover and Impervious Surfaces Reduce Daytime Urban Heat during Summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef] [Green Version]
- Irfeey, A.M.M.; Najim, M.M.; Alotaibi, B.; Traore, A. Groundwater Pollution Impact on Food Security. Sustainability 2023, 15, 4202. [Google Scholar] [CrossRef]
- Kubilay, A.; Allegrini, J.; Strebel, D.; Zhao, Y.; Derome, D.; Carmeliet, J. Advancement in Urban Climate Modelling at Local Scale: Urban Heat Island Mitigation and Building Cooling Demand. Atmosphere 2020, 11, 1313. [Google Scholar] [CrossRef]
- Tzavali, A.; Paravantis, J.P.; Mihalakakou, G.; Fotiadi, A.; Stigka, E. Urban Heat Island Intensity: A Literature Review. Fresenius Environ. Bull. 2015, 24, 4537–4554. [Google Scholar]
- Sha, A.; Liu, Z.; Jiang, W.; Qi, L.; Hu, L.; Jiao, W.; Barbieri, D.M. Advances and Development Trends in Eco-Friendly Pavements. J. Road Eng. 2021, 1, 1–42. [Google Scholar] [CrossRef]
- Anupam, B.R.; Sahoo, U.C.; Chandrappa, A.K.; Rath, P. Emerging Technologies in Cool Pavements: A Review. Constr. Build. Mater. 2021, 299, 123892. [Google Scholar] [CrossRef]
- Ming, T.; De Richter, R.; Liu, W.; Caillol, S. Fighting Global Warming by Climate Engineering: Is the Earth Radiation Management and the Solar Radiation Management Any Option for Fighting Climate Change. Renew. Sustain. Energy Rev. 2014, 31, 792–834. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.M.; Zhang, X.; Yan, Y.; Zhu, J.; Zheng, H.; Zhou, K.; Yao, X.; Tian, Y.; Zhu, Y.; et al. Improved Estimation of Leaf Chlorophyll Content of Row Crops from Canopy Reflectance Spectra through Minimizing Canopy Structural Effects and Optimizing Off-Noon Observation Time. Remote Sens. Environ. 2020, 248, 111985. [Google Scholar] [CrossRef]
- Hardy, J.P.; Melloh, R.; Koenig, G.; Marks, D.; Winstral, A.; Pomeroy, J.W.; Link, T. Solar Radiation Transmission through Conifer Canopies. Agric. For. Meteorol. 2004, 126, 257–270. [Google Scholar] [CrossRef]
- Campillo, C.; Fortes, R.; del Henar Prieto, M. Solar Radiation Effect on Crop Production, Solar Radiation; InTech: London, UK, 2012; ISBN 978-953-51-0384-4. [Google Scholar]
- Niu, G.; Kozai, T.; Sabeh, N. Physical Environmental Factors and Their Properties; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Deng, L.; Deng, Q. The Basic Roles of Indoor Plants in Human Health and Comfort. Environ. Sci. Pollut. Res. 2018, 25, 36087–36101. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Comparing the Transpirational and Shading Effects of Two Contrasting Urban Tree Species. Urban Ecosyst. 2019, 22, 683–697. [Google Scholar] [CrossRef]
- Cheela, V.R.S.; Michele, J.; Wahidul, B.; Prabir, S. Combating Urban Heat Island Effect —A Review of Reflective Pavements and Tree Shading Strategies. Buildings 2021, 11, 93. [Google Scholar] [CrossRef]
- Al-Humairi, S.; Alias, A.; Haron, N.; Hassim, S.; Mohd Jakarni, F. Sustainable Pavement: A Review on the Usage of Pavement as a Mitigation Strategy for UHI. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1075, 012010. [Google Scholar] [CrossRef]
- Crespo, C.H.; Fernández-Gonzalvo, M.; Martín Monerris, M.; rés Doménech, I. Influence of Rainfall Intensity and Pollution Build-up Levels on Water Quality and Quantity Response of Permeable Pavements. Sci. Total Environ. 2019, 684, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, Y.; Sun, Y.; Ren, J.; Zhao, Z.; Zhang, J. Evaluation of Pore Size Distribution and Permeability Reduction Behavior in Pervious Concrete. Constr. Build. Mater. 2021, 290, 123228. [Google Scholar] [CrossRef]
- Qin, Y. A Review on the Development of Cool Pavements to Mitigate Urban Heat Island Effect. Renew. Sustain. Energy Rev. 2015, 52, 445–459. [Google Scholar] [CrossRef]
- Chang, I.; Im, J.; Cho, G.C. Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering. Sustainability 2016, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Alagirisamy, B.; Poornima, R. Smart Sustainable Cities: Principles and Future Trends. Sustain. Cities Resil. Sel. Proc. VCDRR Springer Singap. 2021, 183, 301–316. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Y.; Mu, M.; Feng, L.; Xie, N.; Cui, N. Materials to Mitigate the Urban Heat Island Effect for Cool Pavement: A Brief Review. Buildings 2022, 12, 1221. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.H.; Kaloush, K.E.; Shacat, J. Cool Pavements for Urban Heat Island Mitigation: A Synthetic Review. Renew. Sustain. Energy Rev. 2021, 146, 111171. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Q.; Zhang, L.; Zhang, Y.; He, B.J.; Zheng, S.; Santamouris, M. Impacts of the Water Absorption Capability on the Evaporative Cooling Effect of Pervious Paving Materials. Build. Environ. 2019, 151, 187–197. [Google Scholar] [CrossRef]
- Leng, C.; Lu, G.; Gao, J.; Liu, P.; Xie, X.; Wang, D. Sustainable Green Pavement Using Bio-Based Polyurethane Binder in Tunnel. Materials 2019, 12, 1990. [Google Scholar] [CrossRef] [Green Version]
- Mallick, R.B.; Chen, B.L.; Bhowmick, S.; Hulen, M. Capturing Solar Energy from Asphalt Pavements. In Proceedings of the International Symposium on Asphalt Pavements and Environment, International Society for Asphalt Pavements, Zurich, Switzerland, 2008 August 18; pp. 161–172. [Google Scholar]
- Pasetto, M.; Baliello, A.; Pasquini, E.; Giacomello, G. High Albedo Pavement Materials. In Eco-efficient Materials for Reducing Cooling Needs in Buildings and Construction; Woodhead Publishing: Cambridge, UK, 2021; pp. 15–32. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Z.; Wu, J.; Hou, S.; Liu, M. Field and Laboratory Measurement of Albedo and Heat Transfer for Pavement Materials. Constr. Build. Mater. 2019, 202, 46–57. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.; He, Y.; Chen, Z.; and Li, P. Pavements and Urban Climate. Transp. Res. Rec: J. Trans Res B. 2015, 2523, 145–155. [Google Scholar]
- Kappou, S.; Souliotis, M.; Papaefthimiou, S.; Panaras, G.; Paravantis, J.A.; Michalena, E.; Hills, J.M.; Vouros, A.P.; Dimenou, K.; Mihalakakou, G. Review Cool Pavements: State of the Art and New Technologies. Sustainability 2022, 14, 5159. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Morales, Á.; Zaragoza, A. Effect of Precast Concrete Pavement Albedo on the Climate Change Mitigation in Spain. Sustainability 2021, 13, 11448. [Google Scholar] [CrossRef]
- Winters, D.; Boakye, K.; Simske, S. Toward Carbon-Neutral Concrete through Biochar–Cement–Calcium Carbonate Composites: A Critical Review. Sustainability 2022, 14, 4633. [Google Scholar] [CrossRef]
- Marceau, M.L.; VanGeem, M.G. Solar Reflectance Values for Concrete Intrinsic Material Properties Can Minimize the Heat Island Effect. Concr. Int. 2008, 30, 52–58. [Google Scholar]
- Wang, F.; Xie, T.; Ou, J.; Xue, M.; Li, W. Cement Based Superhydrophobic Coating with Excellent Robustness and Solar Reflective Ability. J. Alloys Compd. 2020, 823, 153702. [Google Scholar] [CrossRef]
- Nwakaire, C.M.; Onn, C.C.; Yap, S.P.; Yuen, C.W.; Onodagu, P.D. Urban Heat Island Studies with Emphasis on Urban Pavements: A Review. Sustain. Cities Soc. 2020, 63, 102476. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, H.; Duan, H.; Shi, C. Improvement of Thermal and Optical Responses of Short-Term Aged Thermochromic Asphalt Binder by Warm-Mix Asphalt Technology. J. Clean. Prod. 2021, 279, 123675. [Google Scholar] [CrossRef]
- Hu, J.; Yu, X. Performance Evaluation of Solar-Responsive Asphalt Mixture with Thermochromic Materials and Nano-TiO2 Scatterers. Constr. Build. Mater. 2020, 247, 118605. [Google Scholar] [CrossRef]
- Hu, J.; Yu, X.B. Adaptive Thermochromic Roof System: Assessment of Performance under Different Climates. Energy Build. 2019, 192, 1–14. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, Y.U.; Jeon, J.; Wi, S.; Chang, S.J.; Kim, S. Effect of Eco-Friendly Pervious Concrete with Amorphous Metallic Fiber on Evaporative Cooling Performance. J. Environ. Manag. 2021, 297, 113269. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Sun, Z.; Bhaskar, N.R. Simulating the Long-Term Performance of Multifunctional Green-Pervious Concrete Pavement in Stormwater Runoff–Induced PAHs Remediation. J. Environ. Eng. 2020, 146, 04020033. [Google Scholar] [CrossRef]
- Debnath, B.; Sarkar, P.P. Pervious Concrete as an Alternative Pavement Strategy: A State-of-the-Art Review. Int. J. Pavement Eng. 2020, 21, 1516–1531. [Google Scholar] [CrossRef]
- Zhang, R.; Jiang, G.; Liang, J. The Albedo of Pervious Cement Concrete Linearly Decreases with Porosity. Adv. Mater. Sci. Eng. 2015, 2015, 746592. [Google Scholar] [CrossRef] [Green Version]
- Vujovic, S.; Haddad, B.; Karaky, H.; Sebaibi, N.; Boutouil, M. Urban Heat Island: Causes, Consequences, and Mitigation Measures with Emphasis on Reflective and Permeable Pavements. CivilEng 2021, 2, 459–484. [Google Scholar] [CrossRef]
- Xie, N.; Akin, M.; Shi, X. Permeable Concrete Pavements: A Review of Environmental Benefits and Durability. J. Clean. Prod. 2019, 210, 1605–1621. [Google Scholar] [CrossRef]
- Wang, X.; Hu, X.; Ji, X.; Chen, B.; Chen, H. Development of Water Retentive and Thermal Resistant Cement Concrete and Cooling Effects Evaluation. Materials 2021, 14, 6141. [Google Scholar] [CrossRef]
- Jiang, W.; Sha, A.; Xiao, J.; Wang, Z.; Apeagyei, A. Experimental Study on Materials Composition Design and Mixture Performance of Water-Retentive Asphalt Concrete. Constr. Build. Mater. 2016, 111, 128–138. [Google Scholar] [CrossRef]
- Moretti, L.; Loprencipe, G. Climate Change and Transport Infrastructures: State of the Art. Sustainability 2018, 10, 4098. [Google Scholar] [CrossRef] [Green Version]
- Ling, Z.; Zhang, Y.; Fang, X.; Zhang, Z. Structure Effect of the Envelope Coupled with Heat Reflective Coating and Phase Change Material in Lowering Indoor Temperature. J. Energy Storage 2021, 41, 102963. [Google Scholar] [CrossRef]
- Pisello, A.L. State of the Art on the Development of Cool Coatings for Buildings and Cities. Sol. Energy 2017, 144, 660–680. [Google Scholar] [CrossRef]
- Manni, M.; Cardinali, M.; Lobaccaro, G.; Goia, F.; Nicolini, A.; Rossi, F. Effects of Retro-Reflective and Angular-Selective Retro-Reflective Materials on Solar Energy in Urban Canyons. Sol. Energy 2020, 209, 662–673. [Google Scholar] [CrossRef]
- Castellani, B.; Morini, E.; Anderini, E.; Filipponi, M.; Rossi, F. Development and Characterization of Retro-Reflective Colored Tiles for Advanced Building Skins. Energy Build. 2017, 154, 513–522. [Google Scholar] [CrossRef]
- Morini, E.; Castellani, B.; Presciutti, A.; Filipponi, M.; Nicolini, A.; Rossi, F. Optic-Energy Performance Improvement of Exterior Paints for Buildings. Energy Build. 2017, 139, 690–701. [Google Scholar] [CrossRef]
- Yuan, J.; Emura, K.; Farnham, C. Potential for Application of Retroreflective Materials Instead of Highly Reflective Materials for Urban Heat Island Mitigation. Urban Stud. Res. 2016, 2016, 3626294. [Google Scholar] [CrossRef] [Green Version]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using Advanced Cool Materials in the Urban Built Environment to Mitigate Heat Islands and Improve Thermal Comfort Conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Farooq, A.S.; Zhang, P.; Gao, Y.; Gulfam, R. Emerging Radiative Materials and Prospective Applications of Radiative Sky Cooling—A Review. Renew. Sustain. Energy Rev. 2021, 144, 110910. [Google Scholar] [CrossRef]
- Rzhepishevska, O.; Hakobyan, S.; Ruhal, R.; Gautrot, J.; Barbero, D.; Ramstedt, M. The Surface Charge of Anti-Bacterial Coatings Alters Motility and Biofilm Architecture. Biomater. Sci. 2013, 1, 589–602. [Google Scholar] [CrossRef] [Green Version]
- Paolini, R.; Borroni, D.; Pedeferri, M.P.; Diamanti, M.V. Self-Cleaning Building Materials: The Multifaceted Effects of Titanium Dioxide. Constr. Build. Mater. 2018, 182, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Janczarek, M.; Klapiszewski, Ł.; Jędrzejczak, P.; Klapiszewska, I.; Ślosarczyk, A.; Jesionowski, T. Progress of Functionalized TiO2-Based Nanomaterials in the Construction Industry: A Comprehensive Review. Chem. Eng. J. 2022, 430, 132062. [Google Scholar] [CrossRef]
- Antonaia, A.; Ascione, F.; Castaldo, A.; D’Angelo, A.; De Masi, R.F.; Ferrara, M.; Vanoli, G.P.; Vitiello, G. Cool Materials for Reducing Summer Energy Consumptions in Mediterranean Climate: In-Lab Experiments and Numerical Analysis of a New Coating Based on Acrylic Paint. Appl. Therm. Eng. 2016, 102, 91–107. [Google Scholar] [CrossRef]
- Uemoto, K.L.; Sato, N.M.N.; John, V.M. Estimating Thermal Performance of Cool Colored Paints. Energy Build. 2010, 42, 17–22. [Google Scholar] [CrossRef]
- Yang, R.; Han, A.; Ye, M.; Chen, X.; Yuan, L. The Influence of Mn/N-Codoping on the Thermal Performance of ZnAl2O4 as High near-Infrared Reflective Inorganic Pigment. J. Alloys Compd. 2017, 696, 1329–1341. [Google Scholar] [CrossRef]
- Sarkodie, B.; Acheampong, C.; Asinyo, B.; Zhang, X.; Tawiah, B. Characteristics of Pigments, Modification, and Their Functionalities. Color Res. Appl. 2019, 44, 396–410. [Google Scholar] [CrossRef]
- Montemor, M.F. Functional and Smart Coatings for Corrosion Protection: A Review of Recent Advances. Surf. Coatings Technol. 2014, 258, 17–37. [Google Scholar] [CrossRef]
- Dwivedi, C.; Bamola, P.; Singh, B.; Sharma, H. Infrared Radiation and Materials Interaction: Active, Passive, Transparent, and Opaque Coatings. In Energy Saving Coating Materials; Dalapati, G.K., Sharma, M., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 33–56. [Google Scholar] [CrossRef]
- Levinson, R.; Berdahl, P.; Akbari, H. Solar Spectral Optical Properties of Pigments—Part II: Survey of Common Colorants. Sol. Energy Mater. Sol. Cells 2005, 89, 351–389. [Google Scholar] [CrossRef]
- Sharma, R.; Tiwari, S.; Tiwari, S.K. Highly Reflective Nanostructured Titania Shell: A Sustainable Pigment for Cool Coatings. ACS Sustain. Chem. Eng. 2018, 6, 2004–2010. [Google Scholar] [CrossRef]
- Dong, S.; Quek, J.Y.; Van Herk, A.M.; Jana, S.; Island, J.; Lakes, M. Polymer Encapsulated TiO 2 for the Improvement of NIR Reflectance and Total Solar Reflectance of Cool Coatings. Ind. Eng. Chem. Res. 2020, 59, 17901–17910. [Google Scholar] [CrossRef]
- Bahi, H.; Radoine, H.; Mastouri, H. Urban Heat Island: State of the Art. In Proceedings of the 2019 7th International Renewable and Sustainable Energy Conference, IRSEC 2019, Agadir, Morocco, 27–30 November 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Paolini, R.; Zani, A.; Poli, T.; Antretter, F.; Zinzi, M. Natural Aging of Cool Walls: Impact on Solar Reflectance, Sensitivity to Thermal Shocks and Building Energy Needs. Energy Build. 2017, 153, 287–296. [Google Scholar] [CrossRef]
- Reyez-Araiza, J.L.; Pineda-Piñón, J.; López-Romero, J.M.; Gasca-Tirado, J.R.; Contreras, M.A.; Correa, J.C.J.; Apátiga-Castro, L.M.; Rivera-Muñoz, E.M.; Velazquez-Castillo, R.R.; de Jesús Pérez Bueno, J.; et al. Thermal Energy Storage by the Encapsulation of Phase Change Materials in Building Elements—A Review. Materials 2021, 14, 1420. [Google Scholar] [CrossRef]
- Marani, A.; Nehdi, M.L. Integrating Phase Change Materials in Construction Materials: Critical Review. Constr. Build. Mater. 2019, 217, 36–49. [Google Scholar] [CrossRef]
- Anupam, B.R.; Sahoo, U.C.; Rath, P. Phase Change Materials for Pavement Applications: A Review. Constr. Build. Mater. 2020, 247, 118553. [Google Scholar] [CrossRef]
- Ikutegbe, C.A.; Farid, M.M. Application of Phase Change Material Foam Composites in the Built Environment: A Critical Review. Renew. Sustain. Energy Rev. 2020, 131, 110008. [Google Scholar] [CrossRef]
- Athukorallage, B.; Dissanayaka, T.; Senadheera, S.; James, D. Performance Analysis of Incorporating Phase Change Materials in Asphalt Concrete Pavements. Constr. Build. Mater. 2018, 164, 419–432. [Google Scholar] [CrossRef]
- Bueno, M.; Kakar, M.R.; Refaa, Z.; Worlitschek, J.; Stamatiou, A.; Partl, M.N. Modification of Asphalt Mixtures for Cold Regions Using Microencapsulated Phase Change Materials. Sci. Rep. 2019, 9, 20342. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wang, H.; Xie, P. Pavement Temperature Prediction: Theoretical Models and Critical Affecting Factors. Appl. Therm. Eng. 2019, 158, 113755. [Google Scholar] [CrossRef]
- Al-Yasiri, Q.; Szabó, M. Incorporation of Phase Change Materials into Building Envelope for Thermal Comfort and Energy Saving: A Comprehensive Analysis. J. Build. Eng. 2021, 36, 102122. [Google Scholar] [CrossRef]
- Isapour, G.; Lattuada, M. Bioinspired Stimuli-Responsive Color-Changing Systems. Adv. Mater. 2018, 30, 1707069. [Google Scholar] [CrossRef]
- Kvítek, O.; Siegel, J.; Hnatowicz, V.; Švorčík, V. Noble Metal Nanostructures Influence of Structure and Environment on Their Optical Properties. J. Nanomater. 2013, 2013, 743684. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, X.; Chen, Y.; Yang, X.; Ma, J.; Wang, J.; Wang, L.; Feng, W. Bioinspired Color-Changing Photonic Polymer Coatings Based on Three-Dimensional Blue Phase Liquid Crystal Networks. ACS Appl. Mater. Interfaces 2021, 13, 41102–41111. [Google Scholar] [CrossRef]
- Fleischmann, C.; Lievenbrück, M.; Ritter, H. Polymers and Dyes: Developments and Applications. Polymers 2015, 7, 717–746. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Fan, Q.; Zhu, G.; Shi, G.; Ma, H.; Li, W.; Wu, T.; Chen, J.; Yin, Y.; and Guan, J. Dual Responsive Photonic Liquid for Independent Modulation of Color Brightness and Hue. Mater. Horiz. 2021, 8, 2023–2040. [Google Scholar] [CrossRef] [PubMed]
- Isapour, G.; Benjamin Harvey Miller, A.; Kolle, M. Modular Assembly of Mechanoresponsive Color-Changing Materials from Hydrogel-Based Photonic Crystal Microspheres. Adv. Photonics Res. 2022, 3, 2100043. [Google Scholar] [CrossRef]
- Tözüm, M.S.; Alay Aksoy, S.; Alkan, C. Development of Reversibly Color Changing Textile Materials by Applying Some Thermochromic Microcapsules Containing Different Color Developers. J. Text. Inst. 2021, 113, 2159–2168. [Google Scholar] [CrossRef]
- Geng, X.; Li, W.; Yin, Q.; Wang, Y.; Han, N.; Wang, N.; Bian, J.; Wang, J.; Zhang, X. Design and Fabrication of Reversible Thermochromic Microencapsulated Phase Change Materials for Thermal Energy Storage and Its Antibacterial Activity. Energy 2018, 159, 857–869. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, B.; Yan, D. Recent Advances on Molecular Crystalline Luminescent Materials for Optical Waveguides. Adv. Opt. Mater. 2021, 9, 2001768. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, X.; Duan, N.; Ren, Y.; Yan, F. Shape- And Color-Switchable Polyurethane Thermochromic Actuators Based on Metal-Containing Ionic Liquids. ACS Appl. Mater. Interfaces 2021, 13, 28878–28888. [Google Scholar] [CrossRef]
- Garshasbi, S.; Santamouris, M. Using Advanced Thermochromic Technologies in the Built Environment: Recent Development and Potential to Decrease the Energy Consumption and Fight Urban Overheating. Sol. Energy Mater. Sol. Cells 2019, 191, 21–32. [Google Scholar] [CrossRef]
- de Jager, T.L.; Cockrell, A.E.; Du Plessis, S.S. Ultraviolet Light Induced Generation of Reactive Oxygen Species. Adv. Exp. Med. Biol. 2017, 996, 15–23. [Google Scholar] [CrossRef]
- You, Y.; Tong, X.; Wang, W.; Sun, J.; Yu, P.; Ji, H.; Niu, X.; Wang, Z.M. Eco-Friendly Colloidal Quantum Dot-Based Luminescent Solar Concentrators. Adv. Sci. 2019, 6, 1801967. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.M.; Tsai, D.S.; Tsai, J.T.J.; Chou, C.C. Coloring the Aluminum Alloy Surface in Plasma Electrolytic Oxidation with the Green Pigment Colloid. Surf. Coatings Technol. 2017, 321, 164–170. [Google Scholar] [CrossRef]
- Levinson, R.; Ban-Weiss, G.; Berdahl, P.; Chen, S.; Destaillats, H.; Dumas, N.; Gilbert, H.; Goudey, H.; de l’Aulnoit, S.H.; Kleissl, J.; et al. Solar-reflective “cool” walls: Benefits, technologies, and implementation (CEC-500-2019-040; also LBNL-2001296). Indoor Environ. Berkely Lab. 2019, 2019, 1–953. [Google Scholar] [CrossRef]
- Fabiani, C.; Pisello, A.L. Passive cooling by means of adaptive cool materials. In Eco-Efficient Materials for Reducing Cooling Needs in Buildings and Construction; Woodhead Publishing: London, UK, 2021; pp. 439–457. [Google Scholar]
- Johnson-McDaniel, D.; Salguero, T.T. Exfoliation of Egyptian Blue and Han Blue, Two Alkali Earth Copper Silicate-Based Pigments. J. Vis. Exp. 2014, 3, 51686. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Reddy, G.K.; Banerjee, D. Pitch-Black Nanostructured Copper Oxide as an Alternative to Carbon Black for Autonomous Environments. Adv. Intell. Syst. 2021, 3, 2100049. [Google Scholar] [CrossRef]
- Roxon, J.; Ulm, F.J.; Pellenq, R.J.M. Urban Heat Island Impact on State Residential Energy Cost and CO2 Emissions in the United States. Urban Clim. 2020, 31, 100546. [Google Scholar] [CrossRef]
- Akkose, G.; Meral Akgul, C.; Dino, I.G. Educational Building Retrofit under Climate Change and Urban Heat Island Effect. J. Build. Eng. 2021, 40, 102294. [Google Scholar] [CrossRef]
- Fumo, N. A Review on the Basics of Building Energy Estimation. Renew. Sustain. Energy Rev. 2014, 31, 53–60. [Google Scholar] [CrossRef]
- Zamorano, M. Special Issue: Recent Advances in Energy Efficiency of Buildings. Appl. Sci. 2022, 12, 6669. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.H.; Kaloush, K.E.; Shacat, J. Perceptions of Urban Heat Island Mitigation and Implementation Strategies: Survey and Gap Analysis. Sustain. Cities Soc. 2021, 66, 102687. [Google Scholar] [CrossRef]
- Aczel, M.; Heap, R.; Workman, M.; Hall, S.; Armstrong, H.; Makuch, K. Anticipatory Regulation: Lessons from Fracking and Insights for Greenhouse Gas Removal Innovation and Governance. Energy Res. Soc. Sci. 2022, 90, 102683. [Google Scholar] [CrossRef]
- Nick, B.; Preston, I.; Banks, N.; Hargreaves, K.; Kazmierczak, A.; Lucas, K.; Mayne, R.; Downing, C.; Street, R. Climate Change and Social Justice: An Evidence Review. 2014. Available online: https://www.jrf.org.uk/report/climate-change-and-social-justice-evidence-review (accessed on 13 September 2022).
- Mayrand, F.; Clergeau, P. Green Roofs and Greenwalls for Biodiversity Conservation: A Contribution to Urban Connectivity? Sustainability 2018, 10, 985. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.C.M.; Dhuyvetter, K.C.; Kastens, T.L.; Dietrich, L.; Smith, L.M. Economics of Precision Agricultural Technologies Across the Great Plains. J. Am. Soc. Farm Manag. Rural Apprais. 2013, 76, 185–206. [Google Scholar]
- Flyvbjerg, B. Policy and Planning for Large Infrastructure Projects Problems, Causes, Cures. Environ. Plan. B Plan. Des. 2005, 34, 578–597. [Google Scholar] [CrossRef] [Green Version]
- Andenæs, E.; Time, B.; Muthanna, T.; Asphaug, S.; Kvande, T. Risk Reduction Framework for Blue-Green Roofs. Buildings 2021, 11, 185. [Google Scholar] [CrossRef]
No | UHI Mitigation Strategies | Description | |
---|---|---|---|
1 | Green infrastructure | Green roofs | Rooftop of a building that is partially or fully covered with vegetation and a substrate for plant growth. |
Green walls | Vertical walls that are either completely or partially covered in plants. Consists of panels attached to an internal or external vertical structure. | ||
Green façades | Natural climber plants are grown on the exterior of a building with the help of an auxiliary framework. | ||
Green parking, Pavements, and shaded streets | The amount of solar energy absorbed decreases as the percentage of vegetative cover increases, allowing for the use of evaporative cooling on roads, parking areas, and sidewalks using water-retentive pavements and permeable porous pavers. | ||
2 | Sustainable materials | Reflective street pavements | In order to reduce the surface temperature and sensible heat emissions, reflective pavements that have a higher albedo (than regular pavements) are used. |
Coating materials | Various materials can be integrated into the interior or exterior of building structures, as well as other urban components, with the aim of mitigating the impacts of UHIs. | ||
The ability of retro-reflective materials to redirect light to their original source is a useful and unique attribute. | |||
Materials that store and release latent heat to boost the apparent thermal capacity of buildings and urban structures and lower their peak surface temperatures. | |||
Materials that undergo a thermochromic color change in response to temperature. | |||
Capture the photovoltaic energy of solar radiation, release the light emission, and aid in increasing the surface’s ability to reflect light. | |||
Reducing energy consumption and running costs and lowering greenhouse gas emissions. |
Journal Name (Short Form) | No. of Reviewed Papers | Green Infrastructure | Sustainable Materials | No. of Times Cited in Other Sections of This Paper | Total no. of Times Cited in This Paper | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Green Roofs | Green Walls | Green Parking, Pavements, and Shaded Streets | Innovative Streets and Pavements | Light-Colored Paint | PCM | Color-Changing Materials | Fluorescence Materials | Energy-Efficient Appliances | ||||
J. Alloys Compd | 2 | 1 | 1 | 2 | ||||||||
J. Build. Eng. | 1 | 1 | 1 | 2 | ||||||||
J. Nanomater | 1 | 1 | 1 | |||||||||
J. Vis. Exp | 1 | 1 | 1 | |||||||||
Sustain. Cities Soc | 1 | 1 | 1 | |||||||||
Woodhead Publishing | 1 | 1 | 1 | |||||||||
ACS Appl. Mater. Interfaces | 2 | 2 | 2 | |||||||||
ACS Sustain. Chem. Eng | 1 | 1 | 1 | |||||||||
Adv. Exp. Med. Biol. | 1 | 1 | 1 | 2 | ||||||||
Adv. Intell. Syst. | 1 | 1 | 1 | |||||||||
Adv. Mater | 1 | 1 | 1 | |||||||||
Adv. Mater. Sci. Eng. | 1 | 1 | 1 | |||||||||
Adv. Opt. Mater | 1 | 1 | 1 | |||||||||
Adv. Photonics Res | 1 | 1 | 1 | |||||||||
Adv. Sci | 1 | 2 | 1 | 3 | ||||||||
Agric. For. Meteorol | 1 | 1 | 1 | |||||||||
Ain Shams Eng. J | 2 | 1 | 1 | 2 | ||||||||
Appl. Acoust | 1 | 1 | 1 | |||||||||
Appl. Sci | 1 | 1 | 1 | |||||||||
Appl. Therm. Eng | 2 | 1 | 1 | 2 | ||||||||
Archit. South Africa | 1 | 1 | 1 | |||||||||
Architecture | 1 | 1 | ||||||||||
Atmos. Chem. Phys | 3 | 2 | 2 | |||||||||
Atmos. Meas. Tech | 1 | 1 | ||||||||||
Atmosphere | 2 | 1 | 1 | 2 | ||||||||
Biomater. Sci. | 1 | 1 | 1 | |||||||||
Build. Environ. | 7 | 1 | 1 | 1 | 1 | 4 | ||||||
Buildings | 4 | 2 | 2 | 4 | ||||||||
Chem. Eng. J | 1 | 1 | 1 | |||||||||
City Environ. Interact | 1 | 1 | ||||||||||
CivilEng | 1 | 1 | 1 | |||||||||
Color Res. Appl. | 1 | 1 | 1 | |||||||||
Concr. Int. | 1 | 1 | 1 | |||||||||
Conference Proceedings | 3 | 1 | 1 | 3 | 1 | 5 | ||||||
Constr. Build. Mater | 9 | 2 | 4 | 1 | 3 | 10 | ||||||
Elsevier book chapters | 3 | 1 | 1 | 1 | 3 | |||||||
Energy | 1 | 1 | 1 | |||||||||
Energy Build | 3 | 1 | 3 | 4 | ||||||||
Energy Procedia | 1 | 1 | 1 | |||||||||
Energy Res. Soc. Sci. | 1 | 1 | ||||||||||
Energy Rev. | 1 | 1 | ||||||||||
Eng. Technol. Appl. Sci. Res | 1 | 1 | 1 | |||||||||
Environ. Fluid Mech | 1 | 1 | ||||||||||
Environ. Plan. B Plan. Des. | 1 | 1 | ||||||||||
Environ. Res. Lett. | 1 | 1 | ||||||||||
Environ. Sci. Pollut. Res | 1 | 1 | 1 | |||||||||
Epoch book chapter | 1 | 1 | ||||||||||
Fresenius Environ. Bull | 1 | 1 | 1 | |||||||||
Ind. Eng. Chem. Res | 1 | 1 | 1 | |||||||||
Indoor Environment, Berkely Lab | 1 | 1 | 1 | |||||||||
Int. J. Eng. Res. Technol | 1 | 1 | 1 | |||||||||
Int. J. Environ. Res. Public Health | 1 | 1 | 1 | |||||||||
Int. J. Environ. Sustain | 1 | 1 | ||||||||||
Int. J. Pavement Eng | 1 | 1 | 1 | |||||||||
InTech | 1 | 1 | 1 | |||||||||
IOP Conf. Ser. Mater. Sci. Eng | 1 | 1 | 1 | 2 | ||||||||
J. Am. Soc. Farm Manag. Rural Apprais | 1 | 1 | ||||||||||
J. Build. Eng | 1 | 1 | 1 | |||||||||
J. Clean. Prod | 3 | 2 | 2 | |||||||||
J. Energy Storage | 1 | 1 | 1 | 2 | ||||||||
J. Environ. Eng. | 1 | 1 | 1 | |||||||||
J. Environ. Manage | 2 | 1 | 1 | 2 | ||||||||
J. Road Eng | 1 | 1 | 1 | |||||||||
J. Text. Inst. | 1 | 1 | 1 | |||||||||
Mater. Horizons | 1 | 1 | 1 | |||||||||
Mater. Today Proc | 1 | 1 | 1 | |||||||||
Materials | 3 | 1 | 2 | 1 | 4 | |||||||
Polymers | 1 | 1 | 1 | |||||||||
Proc. Natl. Acad. Sci. USA | 1 | 1 | 1 | |||||||||
Procedia Eng. | 1 | 1 | ||||||||||
Prog. Plann | 1 | 1 | 1 | |||||||||
Transportation Res. Rec. | 1 | 2 | 2 | |||||||||
Remote Sens | 1 | 1 | 1 | |||||||||
Remote Sens. Environ | 1 | 1 | 1 | |||||||||
Renew. Energy | 1 | 1 | 1 | 1 | 1 | 4 | ||||||
Renew. Sustain. Energy Rev | 7 | 2 | 3 | 2 | 1 | 1 | 1 | 10 | ||||
Resources | 1 | 1 | 1 | 2 | ||||||||
Sci. Rep | 1 | 1 | 1 | |||||||||
Sci. Total Environ | 2 | 1 | 1 | |||||||||
Sol. Energy | 3 | 3 | 3 | |||||||||
Sol. Energy Mater. Sol. Cells | 2 | 1 | 1 | 1 | 3 | |||||||
Surf. Coatings Technol. | 2 | 1 | 1 | 2 | ||||||||
Sustain. Cities Soc | 2 | 1 | 1 | |||||||||
Sustain. Energy Rev | 1 | 1 | 1 | |||||||||
Sustainability | 15 | 2 | 1 | 2 | 3 | 1 | 9 | |||||
Sustainable Cities and Innovation | 1 | 1 | ||||||||||
Urban Clim | 2 | 1 | 1 | |||||||||
Urban Ecosyst | 1 | 1 | 1 | |||||||||
Urban Stud. Res | 1 | 1 | 1 | |||||||||
Total references | 152 |
No | Type of Green Wall | Description | Benefits | Limitations |
---|---|---|---|---|
1 | Modular Panel Façade | Made of steel, box arrangement, panel depth between 6 and 25 cm based on plants and planting shrubs | Planting in containers Long irrigation interval Ease of moving boxes Quick growth Drip irrigation No need for ground support | Less possibility of plasticity stress to the plant with height from earth Certain plants only |
2 | Modular Trellis Panel Façade | Strong, 3D galvanized steel wire; plants not attached directly to the green façade. limited growth with multiple tendril supports | Large area Can make curved shapes Less stress on the plant Normal irrigation | Concrete wall is needed Speed of growth depends on wall size Ground base needed |
3 | Cable–Tensile Façade System | Cable system, planting is possible in ground or between floors or on roof | Suitable for public spaces Stress depends on planting location Normal irrigation Air corridor on the wall Can construct in many directions | Short distance to the hub Long duration of growth |
4 | Cable Façade System | Cable Suitable for rapid-growing plants Ground/cable base | Wire net system Wall support Less stress on the plant Normal irrigation Air corridor on the wall | Short distance to the hub Long duration of growth Ground base needed |
5 | Wire Net Façade System | Cable Suitable for slow-growing plants Needs support | Integrate with cable systems Easy installation Ability to create different sizes and patterns More flexible Less stress on plants Normal irrigation | Less distance to grids Long duration of growth |
6 | Stainless Steel Frame Façade | Less weight-bearing wall Independent structures Gap between façade and frame | Firmly on the ground Airflow to wall Normal irrigation | Long duration for growth |
7 | Living Felt Wall | Felt made of non-decaying materials, placing plants in felt pumps and picker irrigation plant in the ground, then transferred to the location | Weight-bearing Allowing airflow Quick growth | Pump for irrigation of plants |
8 | Active Living Wall System | Biological filter mechanical ventilation Pull fresh air through a vent Places plant roots between two layers Fertilize through water | Similar to green roof system Increase in air purification capacity Hydroponic system | Ventilation system needed Frequent maintenance |
9 | Passive Living Wall System | Light systems Modular panels Drip irrigation system No air circulation needed | Using of hydroponic system | Air purification capacity low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irfeey, A.M.M.; Chau, H.-W.; Sumaiya, M.M.F.; Wai, C.Y.; Muttil, N.; Jamei, E. Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas. Sustainability 2023, 15, 10767. https://doi.org/10.3390/su151410767
Irfeey AMM, Chau H-W, Sumaiya MMF, Wai CY, Muttil N, Jamei E. Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas. Sustainability. 2023; 15(14):10767. https://doi.org/10.3390/su151410767
Chicago/Turabian StyleIrfeey, Abdul Munaf Mohamed, Hing-Wah Chau, Mohamed Mahusoon Fathima Sumaiya, Cheuk Yin Wai, Nitin Muttil, and Elmira Jamei. 2023. "Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas" Sustainability 15, no. 14: 10767. https://doi.org/10.3390/su151410767