Enhancing Single-Phase Grid Integration Capability of PMSG-Based Wind Turbines to Support Grid Operation under Adverse Conditions
Abstract
:1. Introduction
2. System Configuration of a Small PMSG Wind Turbine
2.1. Dynamics of PMSG-Based Wind Turbine
2.2. Diode Rectifier and Boost Converter Modeling
3. Synchronization of Single-Phase Grid-Connected Inverter
3.1. Impact of DC Bias
3.2. Post-DC Bias Cancellation from Signals
4. Proposed Method
5. Leveraging the Proposed PLL for Implementation the LVRT Strategy
5.1. Inverter Control
5.2. LVRT Controller
6. Experimental Results
6.1. Case Study 1: Control Evaluation of PMSG-WPCS under Wind Speed Variation
6.2. Case Study 2: LVRT Performance under Voltage Sag Condition on the Grid
6.3. Comparative Evaluation of Grid Current
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, J.B.; Fu, J.X.; Liu, S.Y.; Hwang, W.S. Assessments of Carbon Footprint and Energy Analysis of Three Wind Farms. J. Clean. Prod. 2020, 254, 120159. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Al Rashid, A.; Raza, S.A.; Zaidi, A.A.; Khan, S.Z.; Koç, M. Feasibility Analysis of Wind Energy Potential along the Coastline of Pakistan. Ain Shams Eng. J. 2022, 13, 101542. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Apostolou, D. Life Cycle Energy and Carbon Footprint of Offshore Wind Energy. Comparison with Onshore Counterpart. Renew. Energy 2017, 108, 72–84. [Google Scholar] [CrossRef]
- Ali, S.W.; Sadiq, M.; Terriche, Y.; Naqvi, S.A.R.; Hoang, L.Q.N.; Mutarraf, M.U.; Hassan, M.A.; Yang, G.; Su, C.L.; Guerrero, J.M. Offshore Wind Farm-Grid Integration: A Review on Infrastructure, Challenges, and Grid Solutions. IEEE Access 2021, 9, 102811–102827. [Google Scholar] [CrossRef]
- Yao, J.; Pei, J.; Xu, D.; Liu, R.; Wang, X.; Wang, C.; Li, Y. Coordinated Control of a Hybrid Wind Farm with DFIG-Based and PMSG-Based Wind Power Generation Systems under Asymmetrical Grid Faults. Renew. Energy 2018, 127, 613–629. [Google Scholar] [CrossRef]
- Yu, J.; Li, J.; Hu, W.; Zhang, G.; Wang, H.; Huang, Q.; Chen, Z. Small-Signal Modeling of Wind Farm with Direct-Drive PMSG Using the Component Connection Method. Energy Rep. 2021, 7, 334–342. [Google Scholar] [CrossRef]
- Artal-Sevil, J.S.; Dufo, R.; Dominguez, J.A.; Bernal-Agustin, J.L. Small Wind Turbines in Smart Grids. Transformation of Electrical Machines in Permanent Magnet Synchronous Generators. In Proceedings of the 2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 10–12 April 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Tang, Z.; Yang, Y.; Blaabjerg, F. Power Electronics: The Enabling Technology for Renewable Energy Integration. CSEE J. Power Energy Syst. 2022, 8, 39–52. [Google Scholar] [CrossRef]
- Fathy, A.; Alharbi, A.G.; Alshammari, S.; Hasanien, H.M. Archimedes Optimization Algorithm Based Maximum Power Point Tracker for Wind Energy Generation System. Ain Shams Eng. J. 2022, 13, 101548. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Lee, D.C. A Novel Current Control Scheme of Grid Converters for Small PMSG Wind Turbines under Grid Voltage Distortion. In Proceedings of the 2012 IEEE Power Electronics and Machines in Wind Applications, Denver, CO, USA, 16–18 July 2012. [Google Scholar] [CrossRef]
- Li, H.; Shi, K.L.; McLaren, P.G. Neural-Network-Based Sensorless Maximum Wind Energy Capture with Compensated Power Coefficient. IEEE Trans. Ind. Appl. 2005, 41, 1548–1556. [Google Scholar] [CrossRef]
- Hu, W.X.; Xiao, X.Y.; Zheng, Z.X. Voltage Sag/Swell Waveform Analysis Method Based on Multi-Dimension Characterisation. IET Gener. Transm. Distrib. 2020, 14, 486–493. [Google Scholar] [CrossRef]
- Döşoğlu, M.K. Enhancement of LVRT Capability in DFIG-Based Wind Turbines with STATCOM and Supercapacitor. Sustainability 2023, 15, 2529. [Google Scholar] [CrossRef]
- López, J.; Sanchis, P.; Roboam, X.; Marroyo, L. Dynamic Behavior of the Doubly Fed Induction Generator during Three-Phase Voltage Dips. IEEE Trans. Energy Convers. 2007, 22, 709–717. [Google Scholar] [CrossRef]
- Gencer, Ö.; Öztürk, S.; Erfidan, T. A New Approach to Voltage Sag Detection Based on Wavelet Transform. Int. J. Electr. Power Energy Syst. 2010, 32, 133–140. [Google Scholar] [CrossRef]
- Jaalam, N.; Rahim, N.A.; Bakar, A.H.A.; Tan, C.K.; Haidar, A.M.A. A Comprehensive Review of Synchronization Methods for Grid-Connected Converters of Renewable Energy Source. Renew. Sustain. Energy Rev. 2016, 59, 1471–1481. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, A.; Ravishankar, J.; Jones, C. Phase-Locked Loop Independent Second-Order Generalized Integrator for Single-Phase Grid Synchronization. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Yang, Y.; Sangwongwanich, A.; Liu, H.; Blaabjerg, F. Low Voltage Ride-through of Two-Stage Grid-Connected Photovoltaic Systems through the Inherent Linear Power-Voltage Characteristic. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 3582–3588. [Google Scholar] [CrossRef] [Green Version]
- Gude, S.; Chu, C.C.; Vedula, S.V. Recursive Implementation of Multiple Delayed Signal Cancellation Operators and Their Applications in Pre-Filtered and in-Loop Filtered PLLs under Adverse Grid Conditions. In Proceedings of the 2018 IEEE Industry Applications Society Annual Meeting (IAS), Portland, OR, USA, 23–27 September 2018. [Google Scholar] [CrossRef]
- Golestan, S.; Guerrero, J.M.; Musavi, F.; Vasquez, J.C. Single-Phase Frequency-Locked Loops: A Comprehensive Review. IEEE Trans. Power Electron. 2019, 34, 11791–11812. [Google Scholar] [CrossRef]
- Freijedo, F.D.; Yepes, A.G.; López, Ó.; Fernández-Comesaña, P.; Doval-Gandoy, J. An Optimized Implementation of Phase Locked Loops for Grid Applications. IEEE Trans. Instrum. Meas. 2011, 60, 3110–3119. [Google Scholar] [CrossRef]
- Sillapawicharn, Y.; Kumsuwan, Y. An Improvement of Synchronously Rotating Reference Frame Based Voltage Sag Detection for Voltage Sag Compensation Applications under Distorted Grid Voltages. In Proceedings of the 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems, Singapore, 5–8 December 2011; pp. 100–103. [Google Scholar] [CrossRef]
- Karimi-Ghartemani, M.; Khajehoddin, S.A.; Jain, P.K.; Bakhshai, A. Derivation and Design of In-Loop Filters in Phase-Locked Loop Systems. IEEE Trans. Instrum. Meas. 2012, 61, 930–940. [Google Scholar] [CrossRef]
- Golestan, S.; Guerrero, J.M.; Vidal, A.; Yepes, A.G.; Doval-Gandoy, J. PLL with MAF-Based Prefiltering Stage: Small-Signal Modeling and Performance Enhancement. IEEE Trans. Power Electron. 2016, 31, 4013–4019. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, Q.; Xiao, L.; Hu, Y.; Wu, Q.; Liu, Z. An Aβ-Frame Moving Average Filter to Improve the Dynamic Performance of Phase-Locked Loop. IEEE Access 2020, 8, 180661–180671. [Google Scholar] [CrossRef]
- Ahmed, H.; Biricik, S.; Benbouzid, M. Linear Kalman Filter-Based Grid Synchronization Technique: An Alternative Implementation. IEEE Trans. Ind. Informatics 2021, 17, 3847–3856. [Google Scholar] [CrossRef]
- Abd-Elkader, A.G.; Allam, D.F.; Tageldin, E. Islanding Detection Method for DFIG Wind Turbines Using Artificial Neural Networks. Int. J. Electr. Power Energy Syst. 2014, 62, 335–343. [Google Scholar] [CrossRef]
- Rahmani, M.; Nodozi, I. Phase-Locked Loops Redesign by the Lyapunov Theory. Electron. Lett. 2015, 51, 1664–1666. [Google Scholar] [CrossRef]
- Xiao, F.; Dong, L.; Li, L.; Liao, X. A Frequency-Fixed SOGI-Based PLL for Single-Phase Grid-Connected Converters. IEEE Trans. Power Electron. 2017, 32, 1713–1719. [Google Scholar] [CrossRef]
- Cao, W.; Liu, K.; Kang, H.; Wang, S.; Fan, D.; Zhao, J. Resonance Detection Strategy for Multi-Parallel Inverter-Based Grid-Connected Renewable Power System Using Cascaded SOGI-FLL. Sustainability 2019, 11, 4839. [Google Scholar] [CrossRef] [Green Version]
- Hasan, S.; Muttaqi, K.M.; Sutanto, D. Detection and Characterization of Time-Variant Nonstationary Voltage Sag Waveforms Using Segmented Hilbert-Huang Transform. IEEE Trans. Ind. Appl. 2020, 56, 4563–4574. [Google Scholar] [CrossRef]
- Nasiri, M.; Arzani, A. Robust Control Scheme for the Braking Chopper of PMSG-Based Wind Turbines–A Comparative Assessment. Int. J. Electr. Power Energy Syst. 2022, 134, 107322. [Google Scholar] [CrossRef]
- Chakraborty, A.; Maity, T. Integrated Control Algorithm for Fast and Accurate Detection of the Voltage Sag with Low Voltage Ride-through (LVRT) Enhancement for Doubly-Fed Induction Generator (DFIG) Based Wind Turbines. Control Eng. Pract. 2023, 131, 105393. [Google Scholar] [CrossRef]
- Ahmed, H.; Biricik, S.; Benbouzid, M. Low-Pass Filtering or Gain Tuning Free Simple DC Offset Rejection Technique for Single and Three-Phase Systems. Electr. Power Syst. Res. 2020, 186, 106422. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Al Hosani, K.; Al Sayari, N. Grid Integration Improvement for Single-Phase Inverters of Small Wind Turbines under Distorted Voltage Conditions. Int. J. Electr. Power Energy Syst. 2017, 87, 144–153. [Google Scholar] [CrossRef]
- Hadjidemetriou, L.; Kyriakides, E.; Yang, Y.; Blaabjerg, F. A Synchronization Method for Single-Phase Grid-Tied Inverters. IEEE Trans. Power Electron. 2016, 31, 2139–2149. [Google Scholar] [CrossRef] [Green Version]
- Hadjidemetriou, L.; Kyriakides, E.; Yang, Y.; Blaabjerg, F. A Synchronization Scheme for Single-Phase Grid-Tied Inverters under Harmonic Distortion and Grid Disturbances. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 3500–3507. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.K.; Subramanian, C.; Jarial, R.K.; Roncero-Sanchez, P.; Rao, U.M. A Robust Lyapunov’s Demodulator for Tracking of Single-/Three-Phase Grid Voltage Variables. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Zammit, D.; Staines, C.S.; Micallef, A.; Apap, M. Wind MPPT for a PMSG SWT in a Grid-Connected DC Microgrid. In Proceedings of the 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 23–26 April 2019; pp. 1006–1012. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Hao, S.; Wu, L.; Wei, W. An Improved Maximum Power Point Tracking Method Based on Decreasing Torque Gain for Large Scale Wind Turbines at Low Wind Sites. Electr. Power Syst. Res. 2019, 176, 105942. [Google Scholar] [CrossRef]
- Rahimi, M. Modeling, Control and Stability Analysis of Grid Connected PMSG Based Wind Turbine Assisted with Diode Rectifier and Boost Converter. Int. J. Electr. Power Energy Syst. 2017, 93, 84–96. [Google Scholar] [CrossRef]
- Robust Adaptive Control—Petros—Google Search. Available online: https://www.google.com/search?q=Robust+Adaptive+Control+-+Petros&rlz=1C1GCEA_enTW987TW988&sxsrf=APwXEdeKQX6XbhhM86hIVv6cVUjOsbJvoA%3A1681715500107&ei=LPE8ZJCUBo_5hwPWmrLwAw&ved=0ahUKEwiQ2vy3rrD-AhWP_GEKHVaNDD4Q4dUDCA8&uact=5&oq=Robust+Adaptive+Control+-+Petros&gs_lcp=Cgxnd3Mtd2l6LXNlcnAQAzIGCAAQFhAeMggIABCKBRCGAzIICAAQigUQhgMyCAgAEIoFEIYDMggIABCKBRCGAzoHCCMQ6gIQJ0oECEEYAFD2Dlj2DmDFFWgBcAF4AIABRYgBRZIBATGYAQCgAQGgAQKwAQrAAQE&sclient=gws-wiz-serp (accessed on 17 April 2023).
- Verma, A.K.; Jarial, R.K.; Rao, U.M.; Roncero-Sanchez, P. A Robust Three-Phase Prefiltered Phase Locked-Loop for the Subcycle Estimation of Fundamental Parameters. IEEE Trans. Ind. Appl. 2021, 57, 6155–6166. [Google Scholar] [CrossRef]
- Stojić, D.; Georgijević, N.; Rivera, M.; Milić, S. Novel Orthogonal Signal Generator for Single Phase PLL Applications. IET Power Electron. 2018, 11, 427–433. [Google Scholar] [CrossRef]
System Parameter | Symbol | Value |
---|---|---|
DC-link capacitor | ||
DC-link voltage | ||
Boost inductor | ||
Grid voltage frequency | ||
Grid voltage amplitude | ||
Inverter output filter inductance | ||
Inverter output filter capacitance | ||
Boost converter switching frequency | ||
Inverter switching frequency | ||
Sampling frequency |
Controller | Parameter | Value |
---|---|---|
DC-link PI controller | 60 | |
250 | ||
PR controller | 20 | |
4500 | ||
Repetitive controller | 6.5 | |
MPPT controller | 0.00167 | |
LVRT controller | 2.839 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.W.; Su, C.-L.; Verma, A.K.; Mellado, C.B.; Gonzalez-Castano, C. Enhancing Single-Phase Grid Integration Capability of PMSG-Based Wind Turbines to Support Grid Operation under Adverse Conditions. Sustainability 2023, 15, 10662. https://doi.org/10.3390/su151310662
Ali SW, Su C-L, Verma AK, Mellado CB, Gonzalez-Castano C. Enhancing Single-Phase Grid Integration Capability of PMSG-Based Wind Turbines to Support Grid Operation under Adverse Conditions. Sustainability. 2023; 15(13):10662. https://doi.org/10.3390/su151310662
Chicago/Turabian StyleAli, Syed Wajahat, Chun-Lien Su, Anant Kumar Verma, Claudio Burgos Mellado, and Catalina Gonzalez-Castano. 2023. "Enhancing Single-Phase Grid Integration Capability of PMSG-Based Wind Turbines to Support Grid Operation under Adverse Conditions" Sustainability 15, no. 13: 10662. https://doi.org/10.3390/su151310662
APA StyleAli, S. W., Su, C.-L., Verma, A. K., Mellado, C. B., & Gonzalez-Castano, C. (2023). Enhancing Single-Phase Grid Integration Capability of PMSG-Based Wind Turbines to Support Grid Operation under Adverse Conditions. Sustainability, 15(13), 10662. https://doi.org/10.3390/su151310662