Evaluating Wheat Suppliers Using Fuzzy MCDM Technique
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Solution Approach
3.1. Suppliers’ Selection Approach (SSA)
3.1.1. Establishing the Requirements
3.1.2. Defining the Selection Criteria
3.1.3. Identifying Possible Suppliers
3.1.4. Evaluation and Selection
3.1.5. Implementation and Monitoring
3.2. Fuzzy VIKOR Approach
- Steps for Fuzzy-VIKOR
4. Case Study Analysis and Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Industry. TRADE and SUPPLY. Available online: https://www.mit.gov.jo/Default/En (accessed on 15 June 2023).
- Ministry of Agriculture. Available online: https://moa.gov.jo/Default/EN (accessed on 15 June 2023).
- Jordan Standards and Metrology Organization (JSMO). Available online: http://www.jsmo.gov.jo/en/Pages/default.aspx (accessed on 15 June 2023).
- GrainFlow. Wheat Standards 2022–2023. Available online: https://www.grainflow.com.au/doc/1432173166045/grainflow-wheat-receival-standards.pdf (accessed on 15 June 2023).
- GrainCorp. Wheat Standards 2022–2023. Available online: https://grains.graincorp.com.au/wp-content/uploads/2022/10/Wheat-Standards-2022_23.pdf (accessed on 15 June 2023).
- Ahmed, G.; Hamrick, D.; Guinn, A.; Abdulsamad, A.; Gereffi, G. Wheat value chains and food security in the Middle East and North Africa region. Soc. Sci. Res. 2013, 1, 1–51. [Google Scholar]
- Reidy, J. Jordan Wheat Imports to Reach 1.3 Million Tonnes. 2022. Available online: https://www.world-grain.com/articles/16775-jordan-wheat-imports-to-reach-13-million-tonnes (accessed on 15 June 2023).
- Khader, B.F.Y.; Yigezu, Y.A.; Duwayri, M.A.; Niane, A.A.; Shideed, K. Where in the value chain are we losing the most food? The case of wheat in Jordan. Food Secur. 2019, 11, 1009–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, M.I. Russia-Ukraine Tensions to Push Grain Prices up—Economist. Jordan Times. 15 June 2022. Available online: https://jordantimes.com/news/local/russia-ukraine-tensions-push-grain-prices-%E2%80%93-economist (accessed on 15 June 2023).
- White House; United States Embassy. Grain and Feed Annual; United States Embassy: New York, NY, USA, 2018.
- Kumaraswamy, P.R.; Singh, M. Jordan’s food security challenges. Mediterr. Q. 2018, 29, 70–95. [Google Scholar] [CrossRef]
- Ministry of Trade. Industry, and Supply, Tender Invitation Announcement No. (29/2020/50). Available online: https://www.mit.gov.jo/Ar/ArchivedTendersDetails/%D8%A5%D8%B9%D9%84%D8%A7%D9%86_%D8%B7%D8%B1%D8%AD_%D8%B9%D8%B7%D8%A7%D8%A1_%D8%B1%D9%82%D9%85_%D8%B4%D8%B1%D8%A7%D8%A1_%D9%82%D9%85%D8%AD (accessed on 15 June 2023).
- Iakovou, E.; Bochtis, D.; Vlachos, D.; Aidonis, D. Supply Chain Management for Sustainable Food Networks; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Gebresenbet, G. Logistics and Supply Chains in Agriculture and Food; Swedish University of Agricultural Sciences: Uppsala, Sweeden, 2012. [Google Scholar]
- Sharma, R.; Shishodia, A.; Kamble, S.; Gunasekaran, A.; Belhadi, A. Agriculture supply chain risks and COVID-19: Mitigation strategies and implications for the practitioners. Int. J. Logist. Res. Appl. 2020, 2020, 1830049. [Google Scholar] [CrossRef]
- Sudha, V.; Akiladevi, R.; Roopa, S.N.; Nancy, P. A study of blockchain technology in agriculture supply chain. In Proceedings of the International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Coimbatore, India, 8–9 October 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Khandelwal, C.; Singhal, M.; Gaurav, G.; Dangayach, G.S.; Meena, M.L. Agriculture supply chain management: A review (2010–2020). Mater. Today Proc. 2021, 47, 3144–3153. [Google Scholar] [CrossRef]
- Kephart, K.D.; Srivastava, A.; Willis, M.; Djonovic, S.; Jackson, A.A. Harnessing microbial and agricultural systems to transform the wheat supply chain. Cereal Foods World 2018, 63, 6. [Google Scholar]
- Raj, S.; Brinkley, C.; Ulimwengu, J. Connected and extracted: Understanding how centrality in the global wheat supply chain affects global hunger using a network approach. PLoS ONE 2022, 17, e0269891. [Google Scholar] [CrossRef]
- Cariappa, A.A.; Acharya, K.K.; Adhav, C.A.; Sendhil, R.; Ramasundaram, P.; Kumar, A.; Singh, S.; Singh, G.P. COVID-19 induced lockdown effect on wheat supply chain and prices in India–Insights from state interventions led resilience. Socio-Econ. Plan. Sci. 2022, 84, 101366. [Google Scholar] [CrossRef]
- Deng, L.; Zhang, H.; Wang, C.; Ma, W.; Zhu, A.; Zhang, F.; Jiao, X. Improving the sustainability of the wheat supply chain through multi-stakeholder engagement. J. Clean. Prod. 2021, 321, 128837. [Google Scholar] [CrossRef]
- Stanco, M.; Nazzaro, C.; Lerro, M.; Marotta, G. Sustainable collective innovation in the Agri-food value chain: The case of the “Aureo” wheat supply chain. Sustainability 2020, 12, 5642. [Google Scholar] [CrossRef]
- Mukherjee, K. Modeling and optimization of traditional supplier selection. In Studies in Systems, Decision and Control; Springer: New Delhi, India, 2017; Volume 88, pp. 31–58. [Google Scholar] [CrossRef]
- Xu, X.; Lin, J. Strategic supplier network for supplier selection. J. Comput. 2010, 5, 979–986. [Google Scholar] [CrossRef]
- Pitchipoo, P.; Venkumar, P.; Rajakarunakaran, S.; Ragavan, R. Decision model for supplier evaluation and selection in process industry: A hybrid DEA approach. Int. J. Ind. Eng. 2018, 25, 1343. [Google Scholar]
- Resende, C.H.L.; Geraldes, C.A.S.; Lima, F.R.L. Decision models for supplier selection in industry 4.0 era: A systematic literature review. Procedia Manuf. 2021, 55, 492–499. [Google Scholar] [CrossRef]
- Gholamian, M.R.; Taghanzadeh, A.H. Integrated network design of wheat supply chain: A real case of Iran. Comput. Electron. Agric. 2017, 140, 139–147. [Google Scholar] [CrossRef]
- Nguyen, V.T.T.; Wang, C.; Yang, F.; Vo, T.M.N. Efficiency evaluation of cyber security based on EBM-DEA model. Epstem 2022, 17, 38–44. [Google Scholar] [CrossRef]
- Kler, R.; Gangurde, R.; Elmirzaev, S.; Hossain, M.S.; Vo, N.V.T.; Nguyen, T.V.T.; Kumar, P.N. Optimization of meat and Poultry farm inventory stock using data analytics for green supply chain network. Discret. Dyn. Nat. Soc. 2022, 2022, 8970549. [Google Scholar] [CrossRef]
- Dang, T.; Nguyen, N.; Nguyen, V.; Dang, L. A two-stage multi-criteria supplier selection model for sustainable automotive supply chain under uncertainty. Axioms 2022, 11, 228. [Google Scholar] [CrossRef]
- Haseli, G.; Sheikh, R.; Sana, S.S. Base-criterion on multi-criteria decision-making method and its applications. Int. J. Manag. Sci. Eng. Manag. 2020, 15, 79–88. [Google Scholar] [CrossRef]
- Haseli, G.; Sheikh, R. Base-criterion method (BCM). In Multiple Criteria Decision Making: Techniques, Analysis and Applications; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Shemshadi, A.; Shirazi, H.; Toreihi, M.; Tarokh, M.J. A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Expert Syst. Appl. 2011, 38, 12160–12167. [Google Scholar] [CrossRef]
- Sanayei, A.; Farid Mousavi, S.F.; Yazdankhah, A. Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Syst. Appl. 2010, 37, 24–30. [Google Scholar] [CrossRef]
- Bahadori, M.; Hosseini, S.M.; Teymourzadeh, E.; Ravangard, R.; Raadabadi, M.; Alimohammadzadeh, K. A supplier selection model for hospitals using a combination of artificial neural network and fuzzy VIKOR. Int. J. Healthc. Manag. 2020, 13, 286–294. [Google Scholar] [CrossRef]
- Zhao, J.; You, X.Y.; Liu, H.C.; Wu, S.M. An extended VIKOR method using intuitionistic fuzzy sets and combination weights for supplier selection. Symmetry 2017, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Sahu, A.K.; Datta, S.; Mahapatra, S.S. Evaluation and selection of resilient suppliers in fuzzy environment: Exploration of fuzzy-VIKOR. Benchmarking 2016, 23, 651–673. [Google Scholar] [CrossRef]
- Jum’a, L.; Zimon, D.; Ikram, M. A relationship between supply chain practices, environmental sustainability and financial performance: Evidence from manufacturing companies in Jordan. Sustainability 2021, 13, 2152. [Google Scholar] [CrossRef]
- Mazzawi, R.; Alawamleh, M. The impact of supply chain performance drivers and value chain on companies: A case study from the food industry in Jordan. Int. J. Netw. Virtual Organ. 2013, 12, 122–132. [Google Scholar] [CrossRef]
- Al-Nawafah, S.S.; Al-Shorman, H.M.; Aityassine, F.L.Y.; Khrisat, F.A.; Hunitie, M.F.A.; Mohammad, A.; Al-Hawary, S.I.S. The effect of supply chain management through social media on competitiveness of the private hospitals in Jordan. Uncertain Supply Chain. Manag. 2022, 10, 737–746. [Google Scholar] [CrossRef]
- Ayoub, H.F.; Abdallah, A.B.; Suifan, T.S. The effect of supply chain integration on technical innovation in Jordan: The mediating role of knowledge management. BIJ 2017, 24, 594–616. [Google Scholar] [CrossRef]
- Hawary, S.I.S.A.; Mohammad, A.S.; Mohammad, A.A.S.; Alsarahni, A.H.H. Supply chain flexibility aspects and their impact on customers satisfaction of pharmaceutical industry in Jordan. IJBPSCM 2017, 9, 326–343. [Google Scholar] [CrossRef]
- Magableh, G.M.; Mistarihi, M.Z. Applications of MCDM approach (ANP-TOPSIS) to evaluate supply chain solutions in the context of COVID-19. Heliyon 2022, 8, e09062. [Google Scholar] [CrossRef]
- Magableh, G.M.; Mistarihi, M.Z. Causes and effects of supply chain nervousness: Mena case study. Acta Logist. 2022, 9, 223–235. [Google Scholar] [CrossRef]
- CLYDE&CO. Managing the Risk of Supply Chain Disruption in the Middle East of the Middle East Insurance Review, 2021st ed.; Clyde & Co.: New York, NY, USA, 2021. [Google Scholar]
- Josaiman, S.K.; Faisal, M.N.; Talib, F. Social sustainability adoption barriers in supply chains: A middle east perspective using interpretive structural modeling. Int. J. Oper. Quant. Manag. 2021, 27, 61–80. [Google Scholar] [CrossRef]
- Ferrer, M.; Santa, R.; Almadani, S.A. The interplay between competitive drivers, outsourcing and supply chain performance: The case of middle east supply chains. Int. J. Acc. Inf. Sci. Leadersh. 2013, 6, 107–117. [Google Scholar]
- Jordan Trade Portal. Jordan Trade Facilitating Portal-Jordan Customs. Available online: https://tradeportal.customs.gov.jo/procedure/921?l=en (accessed on 15 June 2023).
- Ministry of Industry. TRADE and SUPPLY, 2022 Jordan Emergency Food Security Project: Draft Stakeholders Engagement Plan; Ministry of Industry: Amman, Jordan, 2022.
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems; Faculty of Civil Engineering: Belgrade, Serbia, 1998; Volume 2, pp. 5–21. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.H. Fuzzy VIKOR method: A case study of the hospital service evaluation in Taiwan. Inf. Sci. 2014, 271, 196–212. [Google Scholar] [CrossRef]
- Opricovic, S. Fuzzy VIKOR with an application to water resources planning. Expert Syst. Appl. 2011, 38, 12983–12990. [Google Scholar] [CrossRef]
- Salimi, A.H.; Noori, A.; Bonakdari, H.; Masoompour Samakosh, J.; Sharifi, E.; Hassanvand, M.; Gharabaghi, B.; Agharazi, M. Exploring the role of advertising types on improving the water consumption behavior: An application of integrated fuzzy AHP and fuzzy VIKOR method. Sustainability 2020, 12, 1232. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Chung, E.S. Fuzzy VIKOR approach for assessing the vulnerability of the water supply to climate change and variability in South Korea. Appl. Math. Modell. 2013, 37, 9419–9430. [Google Scholar] [CrossRef]
Importance of Criteria | Ratings of Alternatives | ||||
---|---|---|---|---|---|
Linguistic Variables | Abbr. | Corresponding TFNs | Linguistic Variables | Abbr. | Corresponding TFNs |
Very low (VL) | VL | (0.0, 0.0, 0.1) | Very poor | VP | (0.0, 0.1, 0.2) |
Low (L) | L | (0.0, 0.1, 0.2) | Poor | P | (0.1, 0.2, 0.3) |
Medium low (ML) | ML | (0.2, 0.3, 0.4) | Medium poor | MP | (0.2, 0.35, 0.5) |
Medium (M) | M | (0.4, 0.5, 0.6) | Fair | F | (0.4, 0.5, 0.6) |
Medium high (MH) | MH | (0.6, 0.7, 0.8) | Good | G | (0.5, 0.65, 0.8) |
High (H) | H | (0.7, 0.8, 0.9) | Very good | VG | (0.7, 0.8, 0.9) |
Very high (VH) | VH | (0.8, 0.9, 1.0) | Excellent | E | (0.8, 0.9, 1.0) |
Dt/Ci | Q | E | D | S | F | C | R |
---|---|---|---|---|---|---|---|
E1 | VH | VH | H | H | VL | L | H |
(0.8, 0.9, 1) | (0.8, 0.9, 1) | (0.7, 0.8, 0.9) | (0.7, 0.8, 0.9) | (0, 0, 0.1) | (0, 0.1, 0.2) | (0.7, 0.8, 0.9) | |
E2 | H | VH | H | MH | L | H | MH |
(0.7, 0.8, 0.9) | (0.8, 0.9, 1) | (0.7, 0.8, 0.9) | (0.6, 0.7, 0.8) | (0, 0.1, 0.2) | (0.7, 0.8, 0.9) | (0.6, 0.7, 0.8) | |
E3 | VH | H | VH | MH | ML | MH | H |
(0.8, 0.9, 1) | (0.7, 0.8, 0.9) | (0.8, 0.9, 1) | (0.6, 0.7, 0.8) | (0.2, 0.3, 0.4) | (0.6, 0.7, 0.8) | (0.7, 0.8, 0.9) | |
E4 | VH | MH | MH | VH | L | VL | VH |
(0.8, 0.9, 1) | (0.6, 0.7, 0.8) | (0.6, 0.7, 0.8) | (0.8, 0.9, 1) | (0, 0.1, 0.2) | (0, 0, 0.1) | (0.8, 0.9, 1) | |
E5 | VH | VH | MH | VH | L | L | VH |
(0.8, 0.9, 1) | (0.8, 0.9, 1) | (0.6, 0.7, 0.8) | (0.8, 0.9, 1) | (0, 0.1, 0.2) | (0, 0.1, 0.2) | (0.8, 0.9, 1) | |
E6 | H | VH | H | H | VL | L | H |
(0.7, 0.8, 0.9) | (0.8, 0.9, 1) | (0.7, 0.8, 0.9) | (0.7, 0.8, 0.9) | (0, 0, 0.1) | (0, 0.1, 0.2) | (0.7, 0.8, 0.9) | |
E7 | VH | VH | H | H | VL | ML | H |
(0.8, 0.9, 1) | (0.8, 0.9, 1) | (0.7, 0.8, 0.9) | (0.7, 0.8, 0.9) | (0, 0, 0.1) | (0.2, 0.3, 0.4) | (0.7, 0.8, 0.9) | |
E8 | VH | H | MH | MH | L | ML | VH |
(0.8, 0.9, 1) | (0.7, 0.8, 0.9) | (0.6, 0.7, 0.8) | (0.6, 0.7, 0.8) | (0, 0.1, 0.2) | (0.2, 0.3, 0.4) | (0.8, 0.9, 1) | |
E9 | H | H | MH | H | ML | ML | MH |
(0.7, 0.8, 0.9) | (0.7, 0.8, 0.9) | (0.6, 0.7, 0.8) | (0.7, 0.8, 0.9) | (0.2, 0.3, 0.4) | (0.2, 0.3, 0.4) | (0.6, 0.7, 0.8) | |
E10 | MH | VH | H | VH | ML | H | H |
(0.6, 0.7, 0.8) | (0.8, 0.9, 1) | (0.7, 0.8, 0.9) | (0.8, 0.9, 1) | (0.2, 0.3, 0.4) | (0.7, 0.8, 0.9) | (0.7, 0.8, 0.9) | |
E11 | VH | VH | H | MH | L | VL | MH |
(0.8, 0.9, 1) | (0.8, 0.9, 1) | (0.7, 0.8, 0.9) | (0.6, 0.7, 0.8) | (0, 0.1, 0.2) | (0, 0, 0.1) | (0.6, 0.7, 0.8) | |
E12 | VH | H | VH | H | VL | ML | MH |
(0.8, 0.9, 1) | (0.7, 0.8, 0.9) | (0.8, 0.9, 1) | (0.7, 0.8, 0.9) | (0, 0, 0.1) | (0.2, 0.3, 0.4) | (0.6, 0.7, 0.8) | |
(0.76, 0.86, 0.96) | (0.75, 0.85, 0.95) | (0.68, 0.78, 0.88) | (0.69, 0.79, 0.89) | (0.05, 0.12, 0.22) | (0.23, 0.32, 0.42) | (0.69, 0.79, 0.89) |
RU-Q (A1-C1) | Linguistic Scale | Equivalent TFNs | ||
---|---|---|---|---|
l | m | u | ||
Expert 1 | L | 0.1 | 0.2 | 0.3 |
Expert 2 | ML | 0.2 | 0.35 | 0.5 |
Expert 3 | L | 0.1 | 0.2 | 0.3 |
Expert 4 | M | 0.4 | 0.5 | 0.6 |
Expert 5 | L | 0.1 | 0.2 | 0.3 |
Expert 6 | M | 0.4 | 0.5 | 0.6 |
Expert 7 | M | 0.4 | 0.5 | 0.6 |
Expert 8 | L | 0.1 | 0.2 | 0.3 |
Expert 9 | MH | 0.5 | 0.65 | 0.8 |
Expert 10 | L | 0.1 | 0.2 | 0.3 |
Expert 11 | M | 0.4 | 0.5 | 0.6 |
Expert 12 | ML | 0.2 | 0.35 | 0.5 |
Average | 0.25 | 0.3625 | 0.475 |
Q | E | D | S | F | C | R | |
---|---|---|---|---|---|---|---|
RU | (0.25, 0.36, 0.48) | (0.23, 0.36, 0.49) | (0.25, 0.38, 0.5) | (0.27, 0.38, 0.48) | (0.27, 0.39, 0.51) | (0.25, 0.38, 0.5) | (0.22, 0.34, 0.46) |
RO | (0.33, 0.44, 0.54) | (0.38, 0.5, 0.62) | (0.31, 0.43, 0.54) | (0.25, 0.38, 0.5) | (0.41, 0.53, 0.64) | (0.36, 0.48, 0.59) | (0.3, 0.41, 0.53) |
AU | (0.26, 0.39, 0.52) | (0.27, 0.38, 0.48) | (0.42, 0.54, 0.66) | (0.45, 0.56, 0.68) | (0.27, 0.38, 0.48) | (0.31, 0.43, 0.54) | (0.38, 0.5, 0.63) |
UA | (0.38, 0.5, 0.63) | (0.38, 0.5, 0.62) | (0.29, 0.41, 0.53) | (0.22, 0.34, 0.46) | (0.35, 0.48, 0.6) | (0.46, 0.58, 0.69) | (0.42, 0.54, 0.66) |
SY | (0.28, 0.4, 0.53) | (0.34, 0.46, 0.58) | (0.33, 0.44, 0.55) | (0.35, 0.48, 0.6) | (0.29, 0.41, 0.53) | (0.3, 0.41, 0.53) | (0.23, 0.35, 0.47) |
Q | E | D | S | F | C | R | |
---|---|---|---|---|---|---|---|
NB | B | NB | B | B | B | B | |
(0.25, 0.36, 0.48) | (0.38, 0.5, 0.62) | (0.25, 0.38, 0.5) | (0.45, 0.56, 0.68) | (0.41, 0.53, 0.64) | (0.46, 0.58, 0.69) | (0.42, 0.54, 0.66) | |
(0.38, 0.5, 0.63) | (0.23, 0.36, 0.48) | (0.42, 0.54, 0.66) | (0.22, 0.34, 0.46) | (0.27, 0.38, 0.48) | (0.25, 0.38, 0.5) | (0.22, 0.34, 0.46) |
Q | E | D | S | F | C | R | |
---|---|---|---|---|---|---|---|
RU | (0, 0, 0) | (0.23, 0.36, 0.46) | (0, 0, 0) | (0.21, 0.31, 0.43) | (0.27, 0.36, 0.43) | (0.25, 0.38, 0.5) | (0.22, 0.34, 0.46) |
RO | (0.22, 0.24, 0.24) | (0, 0, 0) | (0.11, 0.13, 0.14) | (0.21, 0.31, 0.4) | (0, 0, 0) | (0.17, 0.24, 0.31) | (0.18, 0.26, 0.35) |
AU | (0.02, 0.07, 0.14) | (0.21, 0.34, 0.48) | (0.42, 0.54, 0.66) | (0, 0, 0) | (0.27, 0.38, 0.48) | (0.22, 0.32, 0.42) | (0.08, 0.09, 0.1) |
UA | (0.38, 0.5, 0.63) | (0, 0, 0) | (0.07, 0.1, 0.11) | (0.22, 0.34, 0.46) | (0.14, 0.16, 0.16) | (0, 0, 0) | (0, 0, 0) |
SY | (0.06, 0.11, 0.18) | (0.09, 0.13, 0.15) | (0.15, 0.17, 0.17) | (0.15, 0.18, 0.21) | (0.24, 0.31, 0.36) | (0.23, 0.34, 0.46) | (0.21, 0.33, 0.45) |
RU | 1.17619 | 1.742708 | 2.274905 | 0.266667 | 0.375 | 0.5 |
RO | 0.891425 | 1.177218 | 1.445826 | 0.222222 | 0.3125 | 0.403846 |
AU | 1.208088 | 1.736364 | 2.296598 | 0.416667 | 0.5375 | 0.658333 |
UA | 0.808701 | 1.091026 | 1.353509 | 0.375 | 0.5 | 0.625 |
SY | 1.128242 | 1.560875 | 1.970866 | 0.240196 | 0.335156 | 0.456522 |
0.808701 | 1.091026 | 1.353509 | 0.222222 | 0.3125 | 0.403846 | |
1.208088 | 1.742708 | 2.296598 | 0.416667 | 0.5375 | 0.658333 |
RU | 0.574353 | 0.638889 | 0.677416 |
RO | 0.103563 | 0.066131 | 0.048944 |
AU | 1 | 0.995132 | 1 |
UA | 0.392857 | 0.416667 | 0.434509 |
SY | 0.446258 | 0.410837 | 0.430799 |
Alternative | ||||
---|---|---|---|---|
RU | A1 | 1.734128 | 0.379167 | 0.632387 |
RO | A2 | 1.172922 | 0.312767 | 0.071192 |
AU | A3 | 1.744353 | 0.5375 | 0.997566 |
UA | A4 | 1.086065 | 0.5 | 0.415175 |
SY | A5 | 1.555215 | 0.341758 | 0.424683 |
Rank Based on Q | Rank Based on R | Rank Based on S |
---|---|---|
A2 | A2 | A4 |
A5 | A4 | A2 |
A1 | A5 | A5 |
A4 | A1 | A1 |
A3 | A3 | A3 |
2 | Q(A4) | 0.415175 |
1 | Q(A2) | 0.071192 |
Q(A4)-Q(A2) | 0.343983 | |
DQ | 0.25 | |
Condition 1 | OK | |
A2 is best ranked based on R | A2 | |
Condition 2 | OK | |
The best Alternative | A2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magableh, G.M. Evaluating Wheat Suppliers Using Fuzzy MCDM Technique. Sustainability 2023, 15, 10519. https://doi.org/10.3390/su151310519
Magableh GM. Evaluating Wheat Suppliers Using Fuzzy MCDM Technique. Sustainability. 2023; 15(13):10519. https://doi.org/10.3390/su151310519
Chicago/Turabian StyleMagableh, Ghazi M. 2023. "Evaluating Wheat Suppliers Using Fuzzy MCDM Technique" Sustainability 15, no. 13: 10519. https://doi.org/10.3390/su151310519
APA StyleMagableh, G. M. (2023). Evaluating Wheat Suppliers Using Fuzzy MCDM Technique. Sustainability, 15(13), 10519. https://doi.org/10.3390/su151310519