Optimal Resource Allocation for Carbon Mitigation
Abstract
:1. Introduction
2. Model
2.1. Energy Demand: Fossil Fuels vs. Clean Energy
2.2. Energy Constraints and Irreducible Fossil Fuel Share
2.3. CO Budget
2.4. Economics of the Energy Transition: Investments and Technological Growth
3. Optimal Control Problem
3.1. Cost Function
3.2. Intertemporal Optimization
3.3. Application of the Maximum Principle
4. Results and Discussion
4.1. Optimal Strategies
4.2. Need for Rapid Investments
4.3. The Reward of the Farsighted
4.4. Urgency of Clean Energy Expansion
4.5. The Uncertain Potential of NET
4.6. Higher Mitigation Budget Decreases the Total Cost
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Symbol | Unit | Value | |
---|---|---|---|
Energy demand | EJ | 556 a | |
Current emissions | GtCO/yr | a | |
Depreciation rate clean energy capital | − | 0.03 b | |
Depreciation rate NET capital | − | 0.03 b | |
Energy carbon efficiency | GtCO / EJ | a c f h | |
Natural sink efficiency | - | c i | |
Clean energy efficiency | EJ/$billion | d | |
NET efficiency | GtCO/ $ billion | e | |
Social cost of carbon | $billion/GtCO | ||
Irreducible fossil fuel energy | EJ | ||
Max annual investment | $billion | f | |
Max clean energy investment share | - | 1 | |
Emission concentration conversion | ppm/ GtCO | c | |
Discount rate | - | ||
Adjustment cost coefficient | - | g | |
Initial level | ppm | 419 | |
Pre-industrial level | ppm | 280 | |
Initial level | EJ | 32 a | |
Initial level | GtCO | f |
References
- van Soest, H.L.; den Elzen, M.G.J.; van Vuuren, D.P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement. Nat. Commun. 2021, 12, 2140. [Google Scholar] [CrossRef] [PubMed]
- Scheffers, B.R.; De Meester, L.; Bridge, T.C.L.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.M.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D.; et al. The broad footprint of climate change from genes to biomes to people. Science 2016, 354, aaf7671. [Google Scholar] [CrossRef] [PubMed]
- Dietz, S.; Hope, C.; Patmore, N. Some economics of ‘dangerous’ climate change: Reflections on the Stern Review. Glob. Environ. Chang. 2007, 17, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Schaeffer, M.; Meinshausen, M.; Knutti, R.; Alcamo, J.; Riahi, K.; Hare, W. Zero emission targets as long-term global goals for climate protection. Environ. Res. Lett. 2015, 10, 105007. [Google Scholar] [CrossRef]
- Deutch, J. Is Net Zero Carbon 2050 Possible? Joule 2020, 4, 2237–2240. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; O’Neill, B.C. The Paris Agreement zero-emissions goal is not always consistent with the 1.5 °C and 2 °C temperature targets. Nat. Clim. Chang. 2018, 8, 319–324. [Google Scholar] [CrossRef]
- Jewell, J.; Cherp, A. On the political feasibility of climate change mitigation pathways: Is it too late to keep warming below 1.5 °C? WIREs Clim. Chang. 2020, 11, e621. [Google Scholar] [CrossRef] [Green Version]
- BP. Statistical Review of World Energy|Energy economics|Home. 2021. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 28 May 2023).
- Roser, M. Future Population Growth. Our World Data 2013. Available online: https://ourworldindata.org/future-population-growth (accessed on 28 May 2023).
- Jackson, R.B.; Quéré, C.L.; Andrew, R.M.; Canadell, J.G.; Korsbakken, J.I.; Liu, Z.; Peters, G.P.; Zheng, B. Global energy growth is outpacing decarbonization. Environ. Res. Lett. 2018, 13, 120401. [Google Scholar] [CrossRef]
- Hoffert, M.I.; Caldeira, K.; Jain, A.K.; Haites, E.F.; Harvey, L.D.D.; Potter, S.D.; Schlesinger, M.E.; Schneider, S.H.; Watts, R.G.; Wigley, T.M.L.; et al. Energy implications of future stabilization of atmospheric CO2 content. Nature 1998, 395, 881–884. [Google Scholar] [CrossRef]
- Rasmussen, T.N. CO2 abatement policy with learning-by-doing in renewable energy. Resour. Energy Econ. 2001, 23, 297–325. [Google Scholar] [CrossRef]
- IRENA. World Energy Transitions Outlook: 1.5 °C Pathway. Hydrog. Knowl. Cent. 2021, 312. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jun/IRENA_World_Energy_Transitions_Outlook_2021.pdf?rev=71105a4b8682418297cd220c007da1b9 (accessed on 15 March 2012).
- Walsh, B.; Ciais, P.; Janssens, I.A.; Peñuelas, J.; Riahi, K.; Rydzak, F.; van Vuuren, D.P.; Obersteiner, M. Pathways for balancing CO2 emissions and sinks. Nat. Commun. 2017, 8, 14856. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Post, T.W. Pace of climate change shown in new report has humanity on ‘suicidal’ path, U.N. leader warns. Washington Post 2021. [Google Scholar]
- Fuss, S.; Canadell, J.G.; Ciais, P.; Jackson, R.B.; Jones, C.D.; Lyngfelt, A.; Peters, G.P.; Van Vuuren, D.P. Moving toward Net-Zero Emissions Requires New Alliances for Carbon Dioxide Removal. ONE Earth 2020, 3, 145–149. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Hauck, J.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; Le Quéré, C.; et al. Global Carbon Budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef] [Green Version]
- Waldhoff, S.; Anthoff, D.; Rose, S.; Tol, R.S.J. The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND. Economics 2014, 8, 2014-31. [Google Scholar] [CrossRef] [Green Version]
- Nordhaus, W.D. Rolling the ‘DICE’: An optimal transition path for controlling greenhouse gases. Resour. Energy Econ. 1993, 15, 27–50. [Google Scholar] [CrossRef] [Green Version]
- Kellett, C.M.; Weller, S.R.; Faulwasser, T.; Grüne, L.; Semmler, W. Feedback, dynamics, and optimal control in climate economics. Annu. Rev. Control 2019, 47, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Nordhaus, W.D. Revisiting the social cost of carbon. Proc. Natl. Acad. Sci. USA 2017, 114, 1518–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Liberzon, D. Calculus of variations and optimal control theory. In Calculus of Variations and Optimal Control Theory; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Arnette, A.N. Renewable energy and carbon capture and sequestration for a reduced carbon energy plan: An optimization model. Renew. Sustain. Energy Rev. 2017, 70, 254–265. [Google Scholar] [CrossRef]
- Smith, S.M. A case for transparent net-zero carbon targets. Commun. Earth Environ. 2021, 2, 24. [Google Scholar] [CrossRef]
- Casillas, C.E.; Kammen, D.M. The Energy-Poverty-Climate Nexus. Science 2010, 330, 1181–1182. [Google Scholar] [CrossRef]
- Moser, E.; Grass, D.; Tragler, G. A non-autonomous optimal control model of renewable energy production under the aspect of fluctuating supply and learning by doing. Or Spectrum 2016, 38, 545–575. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.N.; Lim, L.L.; Owen, B.; Sausen, R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef] [Green Version]
- Cherp, A.; Vinichenko, V.; Tosun, J.; Gordon, J.A.; Jewell, J. National growth dynamics of wind and solar power compared to the growth required for global climate targets. Nat. Energy 2021, 6, 742–754. [Google Scholar] [CrossRef]
- Rogelj, J.; Shindell, D.; Jiang, K.; Fifita, S.; Forster, P.; Ginzburg, V.; Handa, C.; Kobayashi, S.; Kriegler, E.; Mundaca, L.; et al. Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development. In Global Warming of 1.5 °C; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018; p. 82. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- DeVries, T.; Quéré, C.L.; Andrews, O.; Berthet, S.; Hauck, J.; Ilyina, T.; Landschützer, P.; Lenton, A.; Lima, I.D.; Nowicki, M.; et al. Decadal trends in the ocean carbon sink. Proc. Natl. Acad. Sci. USA 2019, 116, 11646–11651. [Google Scholar] [CrossRef] [Green Version]
- Knorr, W. Is the airborne fraction of anthropogenic CO2 emissions increasing? Geophys. Res. Lett. 2009, 36, L21710. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell Environ. 2007, 30, 258–270. [Google Scholar] [CrossRef]
- Prentice, I.C.; Farquhar, G.D.; Fasham, M.J.R.; Goulden, M.L.; Heimann, M.; Jaramillo, V.J.; Kheshgi, H.S.; Le Quéré, C.; Scholes, R.J.; Wallace, D.W. The carbon cycle and atmospheric carbon dioxide. In Climate Change 2001: The Scientific Basis; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2001. [Google Scholar]
- King, A.W.; Gunderson, C.A.; Post, W.M.; Weston, D.J.; Wullschleger, S.D. Plant Respiration in a Warmer World. Science 2006, 312, 536–537. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.G.; Grosse, G.; Kuhry, P.; Hugelius, G.; Koven, C.; et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- Phillips, O.L.; Lewis, S.L.; Baker, T.R.; Chao, K.J.; Higuchi, N. The changing Amazon forest. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1819–1827. [Google Scholar] [CrossRef] [Green Version]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; Garcia, W.d.O.; Hartmann, J.; Khanna, T.; et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef] [Green Version]
- Pianta, S.; Rinscheid, A.; Weber, E.U. Carbon Capture and Storage in the United States: Perceptions, preferences, and lessons for policy. Energy Policy 2021, 151, 112149. [Google Scholar] [CrossRef]
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 2016, 6, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Fuglestvedt, J.; Rogelj, J.; Millar, R.J.; Allen, M.; Boucher, O.; Cain, M.; Forster, P.M.; Kriegler, E.; Shindell, D. Implications of possible interpretations of ‘greenhouse gas balance’ in the Paris Agreement. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20160445. [Google Scholar] [CrossRef]
- Almeida, E.; Aminetzah, D.; Denis, N.; Henderson, K.; Katz, J.; Kitchel, H.; Mannion, P.; Ahmed, J. Agriculture and Climate Change; McKinsey & Company: Atlanta, GA, USA, 2020; p. 52. [Google Scholar]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [Green Version]
- Bertagni, M.B.; Porporato, A. The carbon-capture efficiency of natural water alkalinization: Implications for enhanced weathering. Sci. Total Environ. 2022, 838, L156524. [Google Scholar] [CrossRef]
- Dresp, S.; Thanh, T.N.; Klingenhof, M.; Brückner, S.; Hauke, P.; Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 2020, 13, 1725–1729. [Google Scholar] [CrossRef]
- Buesseler, K.O.; Doney, S.C.; Karl, D.M.; Boyd, P.W.; Caldeira, K.; Chai, F.; Coale, K.H.; De Baar, H.J.; Falkowski, P.G.; Johnson, K.S. Ocean Iron Fertilization–moving forward in a sea of uncertainty. Science 2008, 319, 162. [Google Scholar] [CrossRef] [PubMed]
- Bretschger, L.; Karydas, C. Optimum Growth and Carbon Policies with Lags in the Climate System. Environ. Resour. Econ. 2018, 70, 781–806. [Google Scholar] [CrossRef] [Green Version]
- Lenton, T.M.; Held, H.; Kriegler, E.; Hall, J.W.; Lucht, W.; Rahmstorf, S.; Schellnhuber, H.J. Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA 2008, 105, 1786–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barro, R.J.; Sala-i Martin, X. Economic Growth, 2nd ed.; MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Yin, J.; Molini, A.; Porporato, A. Impacts of solar intermittency on future photovoltaic reliability. Nat. Commun. 2020, 11, 4781. [Google Scholar] [CrossRef] [PubMed]
- Savic, D. Single-objective vs. Multiobjective Optimisation for Inte- grated Decision Support. Int. Congr. Environ. Model. Softw. 2002, 119, 6. [Google Scholar]
- Diaz, D.; Moore, F. Quantifying the economic risks of climate change. Nat. Clim. Chang. 2017, 7, 774–782. [Google Scholar] [CrossRef]
- Nordhaus, W.D. A Sketch of the Economics of the Greenhouse Effect; American Economic Association: Nashville, TN, USA, 2021; p. 6. [Google Scholar]
- Haines, A.; Patz, J.A. Health Effects of Climate Change. JAMA 2004, 291, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Chemnick, C. Cost of Carbon Pollution Pegged at $51 a Ton. E&E News, 1 March 2021. [Google Scholar]
- Kikstra, J.S.; Waidelich, P.; Rising, J.; Yumashev, D.; Hope, C.; Brierley, C.M. The social cost of carbon dioxide under climate-economy feedbacks and temperature variability. Environ. Res. Lett. 2021, 16, 094037. [Google Scholar] [CrossRef]
- Stainforth, D.A. ‘Polluter pays’ policy could speed up emission reductions and removal of atmospheric CO2. Nature 2021, 596, 346–347. [Google Scholar] [CrossRef]
- Guerriero, C. Cost-Benefit Analysis of Environmental Health Interventions; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Torres, J.L. Introduction to Dynamic Macroeconomic General Equilibrium models; Vernon Press: Wilmington, DE, USA, 2020. [Google Scholar]
- Cooper, R.W. On the Nature of Capital Adjustment Costs. Rev. Econ. Stud. 2006, 73, 611–633. [Google Scholar] [CrossRef]
- Larson, E.; Greig, C.; Jenkins, J.; Mayfield, E.; Pascale, A.; Zhang, C.; Drossman, J.; Williams, R.; Pacala, S.; Socolow, R. Net-Zero America: Potential Pathways, Infrastructure, and Impacts; Interim Report; Princeton University: Princeton, NJ, USA, 2020. [Google Scholar]
- Bout, C.; Gregg, J.S.; Haselip, J.; Ellis, G. How Is Social Acceptance Reflected in National Renewable Energy Plans? Evidence from Three Wind-Rich Countries. Energies 2021, 14, 3999. [Google Scholar] [CrossRef]
- Segreto, M.; Principe, L.; Desormeaux, A.; Torre, M.; Tomassetti, L.; Tratzi, P.; Paolini, V.; Petracchini, F. Trends in Social Acceptance of Renewable Energy Across Europe—A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 9161. [Google Scholar] [CrossRef]
- Perri, S.; Levin, S.; Hedin, L.O.; Wunderling, N.; Porporato, A. Socio-Political Feedback on the Path to Net Zero. arXiv 2022, arXiv:2204.11101. [Google Scholar] [CrossRef]
- Cousse, J. Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies. Renew. Sustain. Energy Rev. 2021, 145, 111107. [Google Scholar] [CrossRef]
- Kopp, R.E. Pontryagin Maximum Principle. In Mathematics in Science and Engineering; Leitmann, G., Ed.; Elsevier: Amsterdam, The Netherlands, 1962; Volume 5, pp. 255–279. [Google Scholar] [CrossRef]
- Chiang, A.C. Elements of Dynamic Optimization; Waveland Press: Long Grove, IL, USA, 1999; Google-Books-ID: IcMSAAAAQBAJ. [Google Scholar]
- King, L.C.; van den Bergh, J.C.J.M. Implications of net energy-return-on-investment for a low-carbon energy transition. Nat. Energy 2018, 3, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Bataille, C.; Guivarch, C.; Hallegatte, S.; Rogelj, J.; Waisman, H. Carbon prices across countries. Nat. Clim. Chang. 2018, 8, 648–650. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Tang, Y.; Liu, L.; Zhou, D. Optimal investment portfolio strategies for power enterprises under multi-policy scenarios of renewable energy. Renew. Sustain. Energy Rev. 2022, 154, 111879. [Google Scholar] [CrossRef]
- Pye, S.; Li, F.G.N.; Price, J.; Fais, B. Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era. Nat. Energy 2017, 2, 17024. [Google Scholar] [CrossRef]
- Haas, R.; Panzer, C.; Resch, G.; Ragwitz, M.; Reece, G.; Held, A. A historical review of promotion strategies for electricity from renewable energy sources in EU countries. Renew. Sustain. Energy Rev. 2011, 15, 1003–1034. [Google Scholar] [CrossRef]
- Bersalli, G.; Menanteau, P.; El-Methni, J. Renewable energy policy effectiveness: A panel data analysis across Europe and Latin America. Renew. Sustain. Energy Rev. 2020, 133, 110351. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R.; Kharecha, P.; Lacis, A.; Miller, R.; Nazarenko, L.; Lo, K.; Schmidt, G.A.; Russell, G.; et al. Dangerous human-made interference with climate: A GISS modelE study. Atmos. Chem. Phys. 2007, 7, 2287–2312. [Google Scholar] [CrossRef] [Green Version]
- Emmerling, J.; Drouet, L.; Wijst, K.I.v.d.; Vuuren, D.v.; Bosetti, V.; Tavoni, M. The role of the discount rate for emission pathways and negative emissions. Environ. Res. Lett. 2019, 14, 104008. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2020; IRENA: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- Otto, I.M.; Donges, J.F.; Cremades, R.; Bhowmik, A.; Hewitt, R.J.; Lucht, W.; Rockström, J.; Allerberger, F.; McCaffrey, M.; Doe, S.S.P.; et al. Social tipping dynamics for stabilizing Earth’s climate by 2050. Proc. Natl. Acad. Sci. USA 2020, 117, 2354–2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bednar, J.; Obersteiner, M.; Baklanov, A.; Thomson, M.; Wagner, F.; Geden, O.; Allen, M.; Hall, J.W. Operationalizing the net-negative carbon economy. Nature 2021, 596, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Grant, N.; Hawkes, A.; Napp, T.; Gambhir, A. Cost reductions in renewables can substantially erode the value of carbon capture and storage in mitigation pathways. ONE Earth 2021, 4, 1588–1601. [Google Scholar] [CrossRef]
- IEA. World Energy Investment 2020. IEA Paris, 2020. Available online: https://www.iea.org/reports/world-energy-investment-2020 (accessed on 1 May 2023).
- Kavlak, G.; McNerney, J.; Trancik, J.E. Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy 2018, 123, 700–710. [Google Scholar] [CrossRef] [Green Version]
- Glanemann, N.; Willner, S.N.; Levermann, A. Paris Climate Agreement passes the cost-benefit test. Nat. Commun. 2020, 11, 110. [Google Scholar] [CrossRef] [Green Version]
- Artzrouni, M. The mathematics of Ponzi schemes. Math. Soc. Sci. 2009, 58, 190–201. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, U. The optimal design of Ponzi schemes in finite economies. J. Financ. Intermediation 2003, 12, 2–24. [Google Scholar] [CrossRef]
- Cerasoli, S.; Porporato, A. California’s groundwater overdraft: An environmental Ponzi scheme? J. Hydrol. 2023, 129081. [Google Scholar] [CrossRef]
- Haurie, A.; Hung, N.M. Turnpike Properties for the Optimal Use of a Natural Resource. Rev. Econ. Stud. 1977, 44, 329. [Google Scholar] [CrossRef]
- Cai, Y.; Judd, K.L.; Lenton, T.M.; Lontzek, T.S.; Narita, D. Environmental tipping points significantly affect the cost benefit assessment of climate policies. Proc. Natl. Acad. Sci. USA 2015, 112, 4606–4611. [Google Scholar] [CrossRef] [Green Version]
- Lemoine, D.; Traeger, C. Watch Your Step: Optimal Policy in a Tipping Climate. Am. Econ. J. Econ. Policy 2014, 6, 137–166. [Google Scholar] [CrossRef]
- Beal, L.; Hill, D.; Martin, R.; Hedengren, J. GEKKO Optimization Suite. Processes 2018, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- OECD. Investing in Climate, Investing in Growth; OECD: Paris, France, 2017. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Rosado, P. CO2 and Greenhouse Gas Emissions. Our World Data. 2020. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 1 May 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerasoli, S.; Porporato, A. Optimal Resource Allocation for Carbon Mitigation. Sustainability 2023, 15, 10291. https://doi.org/10.3390/su151310291
Cerasoli S, Porporato A. Optimal Resource Allocation for Carbon Mitigation. Sustainability. 2023; 15(13):10291. https://doi.org/10.3390/su151310291
Chicago/Turabian StyleCerasoli, Sara, and Amilcare Porporato. 2023. "Optimal Resource Allocation for Carbon Mitigation" Sustainability 15, no. 13: 10291. https://doi.org/10.3390/su151310291