Non-Forest Woody Vegetation: A Critical Resource for Pollinators in Agricultural Landscapes—A Review
Abstract
:1. Introduction
2. Methods
3. Food Resources
3.1. Nectar and Pollen
3.2. Seasonal Availability of Food Resources during the Flowering Season
4. Nectar and Pollen Insect Collectors
5. Nesting Niches
6. Refuge Areas and No-Spray Buffer Zones
7. Environmental Effects
7.1. Mitigation of Climate Warming
7.2. Landscape Scale Connectivity
8. Management Strategies
9. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Ollerton, J.; Winfree, R.; Tarrant, S. How Many Flowering Plants Are Pollinated by Animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M.A.; Bommarco, R.; Cunningham, S.A.; Kremen, C.; Carvalheiro, L.G.; Harder, L.D.; Afik, O. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science 2013, 339, 1608–1611. [Google Scholar] [CrossRef]
- Bugin, G.; Lenzi, L.; Ranzani, G.; Barisan, L.; Porrini, C.; Zanella, A.; Bolzonella, C. Agriculture and Pollinating Insects, No Longer a Choice but a Need: EU Agriculture’s Dependence on Pollinators in the 2007–2019 Period. Sustainability 2022, 14, 3644. [Google Scholar] [CrossRef]
- Klatt, B.K.; Holzschuh, A.; Westphal, C.; Clough, Y.; Smit, I.; Pawelzik, E.; Tscharntke, T. Bee Pollination Improves Crop Quality, Shelf Life and Commercial Value. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132440. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, P.G.; Martins, H.L.; Pinto, B.C.; Franco, A.L.; Amaral, L.S.; de Castro, C.V. The Significance of Pollination for Global Food Production and the Guarantee of Nutritional Security: A Literature Review. Environ. Sci. Proc. 2022, 15, 7. [Google Scholar]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; Vanbergen, A.J. The Assessment Report on Pollinators, Pollination and Food Production: Summary for Policymakers; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016; ISBN 92-807-3568-3. [Google Scholar]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J. Safeguarding Pollinators and Their Values to Human Well-Being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Kremen, C.; Williams, N.M.; Thorp, R.W. Crop Pollination from Native Bees at Risk from Agricultural Intensification. Proc. Natl. Acad. Sci. USA 2002, 99, 16812–16816. [Google Scholar] [CrossRef]
- Giannini, T.C.; Maia-Silva, C.; Acosta, A.L.; Jaffe, R.; Carvalho, A.T.; Martins, C.F.; Zanella, F.C.; Carvalho, C.A.; Hrncir, M.; Saraiva, A.M. Protecting a Managed Bee Pollinator against Climate Change: Strategies for an Area with Extreme Climatic Conditions and Socioeconomic Vulnerability. Apidologie 2017, 48, 784–794. [Google Scholar] [CrossRef]
- Hoiss, B.; Krauss, J.; Steffan-Dewenter, I. Interactive Effects of Elevation, Species Richness and Extreme Climatic Events on Plant–Pollinator Networks. Global Chang. Biol. 2015, 21, 4086–4097. [Google Scholar] [CrossRef]
- Owens, A.C.; Cochard, P.; Durrant, J.; Farnworth, B.; Perkin, E.K.; Seymoure, B. Light Pollution Is a Driver of Insect Declines. Biol. Conserv. 2020, 241, 108259. [Google Scholar] [CrossRef]
- Filipiak, M.; Kuszewska, K.; Asselman, M.; Denisow, B.; Stawiarz, E.; Woyciechowski, M.; Weiner, J. Ecological Stoichiometry of the Honeybee: Pollen Diversity and Adequate Species Composition Are Needed to Mitigate Limitations Imposed on the Growth and Development of Bees by Pollen Quality. PLoS ONE 2017, 12, e0183236. [Google Scholar] [CrossRef] [PubMed]
- Dicks, L.V.; Breeze, T.D.; Ngo, H.T.; Senapathi, D.; An, J.; Aizen, M.A.; Basu, P.; Buchori, D.; Galetto, L.; Garibaldi, L.A. A Global-Scale Expert Assessment of Drivers and Risks Associated with Pollinator Decline. Nat. Ecol. Evol. 2021, 5, 1453–1461. [Google Scholar] [CrossRef]
- CEC. Council Regulation EEC No. 797/85 of 12 March 1985 on Improving the Efficiency of Agricultural Structures. Off. J. 1985, 93, 1–18. [Google Scholar]
- Busch, G. Future European Agricultural Landscapes—What Can We Learn from Existing Quantitative Land Use Scenario Studies? Agric. Ecosyst. Environ. 2006, 114, 121–140. [Google Scholar] [CrossRef]
- Batáry, P.; Dicks, L.V.; Kleijn, D.; Sutherland, W.J. The Role of Agri-environment Schemes in Conservation and Environmental Management. Conserv. Biol. 2015, 29, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batáry, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F. Landscape Moderation of Biodiversity Patterns and Processes-eight Hypotheses. Biol. Rev. 2012, 87, 661–685. [Google Scholar] [CrossRef]
- Lundberg, J.; Moberg, F. Mobile Link Organisms and Ecosystem Functioning: Implications for Ecosystem Resilience and Management. Ecosystems 2003, 6, 0087–0098. [Google Scholar] [CrossRef]
- Brown, M.J.; Dicks, L.V.; Paxton, R.J.; Baldock, K.C.; Barron, A.B.; Chauzat, M.-P.; Freitas, B.M.; Goulson, D.; Jepsen, S.; Kremen, C. A Horizon Scan of Future Threats and Opportunities for Pollinators and Pollination. PeerJ 2016, 4, e2249. [Google Scholar] [CrossRef] [PubMed]
- Donkersley, P. Trees for Bees. Agric. Ecosyst. Environ. 2019, 270, 79–83. [Google Scholar] [CrossRef]
- Geppert, C.; Hass, A.; Földesi, R.; Donkó, B.; Akter, A.; Tscharntke, T.; Batáry, P. Agri-environment Schemes Enhance Pollinator Richness and Abundance but Bumblebee Reproduction Depends on Field Size. J. Appl. Ecol. 2020, 57, 1818–1828. [Google Scholar] [CrossRef]
- Underwood, E.; Darwin, G.; Gerritsen, E. Pollinator Initiatives in EU Member States: Success Factors and Gaps; Report Under Contract for Provision of Technical Support Related to Target 2 of the EU Biodiversity Strategy to 2020; Institute for European Environmental Policy: Brussels, Belgium, 2017. [Google Scholar]
- Stevenson, P. Turning the Commission’s Farm to Fork Strategy into a Far-Reaching Reform of EU Agriculture. In dA Derecho Animal: Forum of Animal Law Studies; Universitat Autonoma de Barcelona: Bellaterra, Spain, 2020; Volume 11, pp. 177–187. [Google Scholar]
- Kennedy, C.M.; Lonsdorf, E.; Neel, M.C.; Williams, N.M.; Ricketts, T.H.; Winfree, R.; Bommarco, R.; Brittain, C.; Burley, A.L.; Cariveau, D. A Global Quantitative Synthesis of Local and Landscape Effects on Wild Bee Pollinators in Agroecosystems. Ecol. Lett. 2013, 16, 584–599. [Google Scholar] [CrossRef]
- Carré, G.; Roche, P.; Chifflet, R.; Morison, N.; Bommarco, R.; Harrison-Cripps, J.; Krewenka, K.; Potts, S.G.; Roberts, S.P.; Rodet, G. Landscape Context and Habitat Type as Drivers of Bee Diversity in European Annual Crops. Agric. Ecosyst. Environ. 2009, 133, 40–47. [Google Scholar] [CrossRef]
- Beck, T. Principles of Ecological Landscape Design; Island Press: Washington, DC, USA, 2013; ISBN 1-59726-702-3. [Google Scholar]
- DemKová, K.; LipsKý, Z. Changes in the Extent of Non-Forest Woody Vegetation in the Novodvorsko and Žehušicko Region (Central Bohemia, Czech Republic). AUC Geogr. 2013, 48, 5–13. [Google Scholar] [CrossRef]
- Ruttan, A.; Lortie, C.J.; Haas, S.M. Shrubs as Magnets for Pollination: A Test of Facilitation and Reciprocity in a Shrub-Annual Facilitation System. Curr. Res. Insect Sci. 2021, 1, 100008. [Google Scholar] [CrossRef]
- Macdonald, K.J.; Kelly, D.; Tylianakis, J.M. Do Local Landscape Features Affect Wild Pollinator Abundance, Diversity and Community Composition on Canterbury Farms? N. Z. J. Ecol. 2018, 42, 262–268. [Google Scholar] [CrossRef]
- Mallinger, R.E.; Gibbs, J.; Gratton, C. Diverse Landscapes Have a Higher Abundance and Species Richness of Spring Wild Bees by Providing Complementary Floral Resources over Bees’ Foraging Periods. Landsc. Ecol. 2016, 31, 1523–1535. [Google Scholar] [CrossRef]
- Martins, K.T.; Albert, C.H.; Lechowicz, M.J.; Gonzalez, A. Complementary Crops and Landscape Features Sustain Wild Bee Communities. Ecol. Appl. 2018, 28, 1093–1105. [Google Scholar] [CrossRef]
- Persson, A.S.; Smith, H.G. Seasonal Persistence of Bumblebee Populations Is Affected by Landscape Context. Agric. Ecosyst. Environ. 2013, 165, 201–209. [Google Scholar] [CrossRef]
- Garratt, M.P.; Senapathi, D.; Coston, D.J.; Mortimer, S.R.; Potts, S.G. The Benefits of Hedgerows for Pollinators and Natural Enemies Depends on Hedge Quality and Landscape Context. Agric. Ecosyst. Environ. 2017, 247, 363–370. [Google Scholar] [CrossRef]
- Varah, A.; Jones, H.; Smith, J.; Potts, S.G. Enhanced Biodiversity and Pollination in UK Agroforestry Systems. J. Sci. Food Agric. 2013, 93, 2073–2075. [Google Scholar] [CrossRef] [PubMed]
- Hannon, L.E.; Sisk, T.D. Hedgerows in an Agri-Natural Landscape: Potential Habitat Value for Native Bees. Biol. Conserv. 2009, 142, 2140–2154. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for Ecosystem Services and Environmental Benefits: An Overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Burel, F. Hedgerows and Their Role in Agricultural Landscapes. Crit. Rev. Plant Sci. 1996, 15, 169–190. [Google Scholar] [CrossRef]
- Nikolova, I.; Georgieva, N.; Kirilov, A.; Mladenova, R. Dynamics of Dominant Bees-Pollinators and Influence of Temperature, Relative Humidity and Time of Day on Their Abundance in Forage Crops in Pleven Region, Bulgaria. J. Global Agric. Ecol. 2016, 5, 200–209. [Google Scholar]
- Dainese, M.; Montecchiari, S.; Sitzia, T.; Sigura, M.; Marini, L. High Cover of Hedgerows in the Landscape Supports Multiple Ecosystem Services in M Editerranean Cereal Fields. J. Appl. Ecol. 2017, 54, 380–388. [Google Scholar] [CrossRef]
- Castle, D.; Grass, I.; Westphal, C. Fruit Quantity and Quality of Strawberries Benefit from Enhanced Pollinator Abundance at Hedgerows in Agricultural Landscapes. Agric. Ecosyst. Environ. 2019, 275, 14–22. [Google Scholar] [CrossRef]
- Campagne, P.; Affre, L.; Baumel, A.; Roche, P.; Tatoni, T. Fine-Scale Response to Landscape Structure in Primula Vulgaris Huds.: Does Hedgerow Network Connectedness Ensure Connectivity through Gene Flow? Popul. Ecol. 2009, 51, 209–219. [Google Scholar] [CrossRef]
- Jachuła, J.; Denisow, B.; Wrzesień, M.; Ziółkowska, E. The Need for Weeds: Man-Made, Non-Cropped Habitats Complement Crops and Natural Habitats in Providing Honey Bees and Bumble Bees with Pollen Resources. Sci. Total Environ. 2022, 840, 156551. [Google Scholar] [CrossRef]
- Esther Julier, H.; Roulston, T.H. Wild Bee Abundance and Pollination Service in Cultivated Pumpkins: Farm Management, Nesting Behavior and Landscape Effects. J. Econ. Entomol. 2009, 102, 563–573. [Google Scholar] [CrossRef]
- Kremen, C.; M’Gonigle, L.K.; Ponisio, L.C. Pollinator Community Assembly Tracks Changes in Floral Resources as Restored Hedgerows Mature in Agricultural Landscapes. Front. Ecol. Evol. 2018, 6, 170. [Google Scholar] [CrossRef]
- Sardiñas, H.S.; Ponisio, L.C.; Kremen, C. Hedgerow Presence Does Not Enhance Indicators of Nest-site Habitat Quality or Nesting Rates of Ground-nesting Bees. Restor. Ecol. 2016, 24, 499–505. [Google Scholar] [CrossRef]
- Potts, S.G.; Vulliamy, B.; Roberts, S.; O’Toole, C.; Dafni, A.; Ne’eman, G.; Willmer, P. Role of Nesting Resources in Organising Diverse Bee Communities in a Mediterranean Landscape. Ecol. Entomol. 2005, 30, 78–85. [Google Scholar] [CrossRef]
- Fussell, M.; Corbet, S.A. The Nesting Places of Some British Bumble Bees. J. Apic. Res. 1992, 31, 32–41. [Google Scholar] [CrossRef]
- Kells, A.R.; Goulson, D. Preferred Nesting Sites of Bumblebee Queens (Hymenoptera: Apidae) in Agroecosystems in the UK. Biol. Conserv. 2003, 109, 165–174. [Google Scholar] [CrossRef]
- Svensson, B.; Lagerlöf, J.; Svensson, B.G. Habitat Preferences of Nest-Seeking Bumble Bees (Hymenoptera: Apidae) in an Agricultural Landscape. Agric. Ecosyst. Environ. 2000, 77, 247–255. [Google Scholar] [CrossRef]
- Osborne, J.L.; Martin, A.P.; Carreck, N.L.; Swain, J.L.; Knight, M.E.; Goulson, D.; Hale, R.J.; Sanderson, R.A. Bumblebee Flight Distances in Relation to the Forage Landscape. J. Anim. Ecol. 2008, 77, 406–415. [Google Scholar] [CrossRef]
- Filipiak, M.; Weiner, J. Plant–Insect Interactions: The Role of Ecological Stoichiometry. Acta Agrobot. 2017, 70, 1710. [Google Scholar] [CrossRef]
- Vaudo, A.D.; Tooker, J.F.; Grozinger, C.M.; Patch, H.M. Bee Nutrition and Floral Resource Restoration. Curr. Opin. Insect Sci. 2015, 10, 133–141. [Google Scholar] [CrossRef]
- Filipiak, M. Key Pollen Host Plants Provide Balanced Diets for Wild Bee Larvae: A Lesson for Planting Flower Strips and Hedgerows. J. Appl. Ecol. 2019, 56, 1410–1418. [Google Scholar] [CrossRef]
- Rodney, S.; Purdy, J. Dietary Requirements of Individual Nectar Foragers, and Colony-Level Pollen and Nectar Consumption: A Review to Support Pesticide Exposure Assessment for Honey Bees. Apidologie 2020, 51, 163–179. [Google Scholar] [CrossRef]
- Enkegaard, A.; Kryger, P.; Boelt, B. Determinants of Nectar Production in Heather. J. Apic. Res. 2016, 55, 100–106. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, G. Method for Conducting Systematic Literature Review and Meta-Analysis for Environmental Science Research. MethodsX 2020, 7, 100777. [Google Scholar] [CrossRef] [PubMed]
- Bentrup, G.; Hopwood, J.; Adamson, N.L.; Powers, R.; Vaughan, M. The Role of Temperate Agroforestry Practices in Supporting Pollinators. In Agroforestry and Ecosystem Services; Springer: Berlin/Heidelberg, Germany, 2021; pp. 275–304. [Google Scholar]
- Morandin, L.A.; Kremen, C. Hedgerow Restoration Promotes Pollinator Populations and Exports Native Bees to Adjacent Fields. Ecol. Appl. 2013, 23, 829–839. [Google Scholar] [CrossRef]
- Filipiak, Z.M.; Denisow, B.; Stawiarz, E.; Filipiak, M. Unravelling the Dependence of a Wild Bee on Floral Diversity and Composition Using a Feeding Experiment. Sci. Total Environ. 2022, 820, 153326. [Google Scholar] [CrossRef]
- Faegri, K.; Van Der Pijl, L. Principles of Pollination Ecology; Pergamon Press: Oxford, UK, 2013. [Google Scholar]
- Denisow, B. Pollen Production of Selected Ruderal Plant Species in the Lublin Area; WUP Wydawnictwo Uniwersytetu Przyrodniczego: Lublin, Poland, 2011. [Google Scholar]
- Raine, N.E.; Chittka, L. Nectar Production Rates of 75 Bumblebee-Visited Flower Species in a German Flora (Hymenoptera: Apidae: Bombus Terrestris). Entomol. Gen. 2005, 30, 191. [Google Scholar] [CrossRef]
- Sulborska, A. Rośliny Pożytkowe; Bee & Honey: Klecza Dolna, Poland, 2019; ISBN 83-953017-2-3. [Google Scholar]
- Drescher, N.; Klein, A.-M.; Schmitt, T.; Leonhardt, S.D. A Clue on Bee Glue: New Insight into the Sources and Factors Driving Resin Intake in Honeybees (Apis mellifera). PLoS ONE 2019, 14, e0210594. [Google Scholar] [CrossRef]
- Nicolson, S.W. Bee Food: The Chemistry and Nutritional Value of Nectar, Pollen and Mixtures of the Two. Afr. Zool. 2011, 46, 197–204. [Google Scholar] [CrossRef]
- Pacini, E.; Nepi, M.; Vesprini, J. Nectar Biodiversity: A Short Review. Plant Syst. Evol. 2003, 238, 7–21. [Google Scholar] [CrossRef]
- Dmitruk, M.; Strzałkowska-Abramek, M.; Bożek, M.; Denisow, B. Plants Enhancing Urban Pollinators: Nectar Rather than Pollen Attracts Pollinators of Cotoneaster Species. Urban For. Urban Green. 2022, 74, 127651. [Google Scholar] [CrossRef]
- Somme, L.; Moquet, L.; Quinet, M.; Vanderplanck, M.; Michez, D.; Lognay, G.; Jacquemart, A.-L. Food in a Row: Urban Trees Offer Valuable Floral Resources to Pollinating Insects. Urban Ecosyst. 2016, 19, 1149–1161. [Google Scholar] [CrossRef]
- Naef, R.; Jaquier, A.; Velluz, A.; Bachofen, B. From the Linden Flower to Linden Honey–Volatile Constituents of Linden Nectar, the Extract of Bee-stomach and Ripe Honey. In Perspectives in Flavor and Fragrance Research; Wiley: Hoboken, NJ, USA, 2005; pp. 31–40. [Google Scholar]
- Pamminger, T.; Becker, R.; Himmelreich, S.; Schneider, C.W.; Bergtold, M. The Nectar Report: Quantitative Review of Nectar Sugar Concentrations Offered by Bee Visited Flowers in Agricultural and Non-Agricultural Landscapes. PeerJ 2019, 7, e6329. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, B.; Koltowski, Z. Nektarowanie i Wydajnosc Miodowa Robinii Akacjowej [Robinia pseudoacacia L.]. Pszczel. Pol. 1992, 3, 9. [Google Scholar]
- Jablonski, B.; Koltowski, Z. Nektarowanie Roznych Gatunkow i Mieszancow Lipy [Tilia L.]. Pszczel. Zesz. Nauk. 1999, 43, 279–290. [Google Scholar]
- Szklanowska, K. Nektarowanie i Wydajnosc Miodowa Maliny Wlasciwej (Rubus idaeus L.) i Jezyn (Rubus fruticosus L.) w Srodowisku Lesnym. Pszczel. Zesz. Nauk 1972, 16, 133–145. [Google Scholar]
- Gyan, K.Y.; Woodell, S. Nectar Production, Sugar Content, Amino Acids and Potassium in Prunus spinosa L., Crataegus Monogyna Jacq. and Rubus fruticosus L. at Wytham, Oxfordshire. Funct. Ecol. 1987, 1, 251–259. [Google Scholar] [CrossRef]
- Szklanowska, K.; Strzałkowska, M. Blooming Biology and Pollen Exposure of Horse Chestnut Trees (Aesculus L.). Ann. Univ. Mariae Curie-Skłodowska Sect. EEE Hortic. 2000, 8, 107–116. [Google Scholar]
- Farkas, Á.; Zajácz, E. Nectar Production for the Hungarian Honey Industry. Eur. J. Plant Sci. Biotechnol. 2007, 1, 125–151. [Google Scholar]
- Weryszko-Chmielewska, E.; Masierowska, M.; Konarska, A. Characteristics of Floral Nectaries and Nectar in Two Species of Crataegus (Rosaceae). Plant Syst. Evol. 2003, 238, 33–41. [Google Scholar] [CrossRef]
- Dmitruk, M. Flowering, Nectar Secretion, and Structure of the Nectary in the Flowers of Acer Pseudoplatanus L. Acta Agrobot. 2019, 72, 1787. [Google Scholar] [CrossRef]
- Gill, M.C.; Walters, K.F. Potential Use of Floral Nectar Sugar Characteristics in Plant Selection for Pollinator Habitats. J. Apic. Res. 2022, 62, 266–273. [Google Scholar] [CrossRef]
- Bozek, M. Nectar Production and Spectrum of Insect Visitors in Six Varieties of Highbush Blueberry (Vaccinium Corymbosum L.) in SE Poland. Acta Agrobot. 2021, 74, 7410. [Google Scholar] [CrossRef]
- Carruthers, J.M.; Cook, S.M.; Wright, G.A.; Osborne, J.L.; Clark, S.J.; Swain, J.L.; Haughton, A.J. Oilseed Rape (Brassica napus) as a Resource for Farmland Insect Pollinators: Quantifying Floral Traits in Conventional Varieties and Breeding Systems. GCB Bioenergy 2017, 9, 1370–1379. [Google Scholar] [CrossRef]
- Timberlake, T.P.; Vaughan, I.P.; Memmott, J. Phenology of Farmland Floral Resources Reveals Seasonal Gaps in Nectar Availability for Bumblebees. J. Appl. Ecol. 2019, 56, 1585–1596. [Google Scholar] [CrossRef]
- Szklanowska, K.; Teper, D. Wydajnosc Pylkowa Roznych Gatunkow i Mieszancow Lipy [Tilia L.]. Pszczel. Zesz. Nauk. 1999, 43, 291–302. [Google Scholar]
- Di Pasquale, G.; Salignon, M.; Le Conte, Y.; Belzunces, L.P.; Decourtye, A.; Kretzschmar, A.; Suchail, S.; Brunet, J.-L.; Alaux, C. Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter? PLoS ONE 2013, 8, e72016. [Google Scholar] [CrossRef]
- Vaudo, A.D.; Patch, H.M.; Mortensen, D.A.; Tooker, J.F.; Grozinger, C.M. Macronutrient Ratios in Pollen Shape Bumble Bee (Bombus Impatiens) Foraging Strategies and Floral Preferences. Proc. Natl. Acad. Sci. USA 2016, 113, E4035–E4042. [Google Scholar] [CrossRef]
- Brodschneider, R.; Crailsheim, K. Nutrition and Health in Honey Bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Dmitruk, M.; Wrzesień, M.; Strzałkowska-Abramek, M.; Denisow, B. Pollen Food Resources to Help Pollinators. A Study of Five Ranunculaceae Species in Urban Forest. Urban For. Urban Green. 2021, 60, 127051. [Google Scholar] [CrossRef]
- Zuraw, B.; Sulborska, A.; Stawiarz, E.; Weryszko-Chmielewska, E. Flowering Biology and Pollen Production of Four Species of the Genus Rosa L. Acta Agrobot. 2015, 68, 267–278. [Google Scholar] [CrossRef]
- Scott-Brown, A.S.; Arnold, S.E.; Kite, G.C.; Farrell, I.W.; Farman, D.I.; Collins, D.W.; Stevenson, P.C. Mechanisms in Mutualisms: A Chemically Mediated Thrips Pollination Strategy in Common Elder. Planta 2019, 250, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Rabie, A.L.; Wells, J.D.; Dent, L.K. The Nitrogen Content of Pollen Protein. J. Apic. Res. 1983, 22, 119–123. [Google Scholar] [CrossRef]
- Day, S.; Beyer, R.; Mercer, A.; Ogden, S. The Nutrient Composition of Honeybee-Collected Pollen in Otago, New Zealand. J. Apic. Res. 1990, 29, 138–146. [Google Scholar] [CrossRef]
- Roulston, T.H.; Cane, J.H. Pollen Nutritional Content and Digestibility for Animals. Plant Syst. Evol. 2000, 222, 187–209. [Google Scholar] [CrossRef]
- Weiner, C.N.; Hilpert, A.; Werner, M.; Linsenmair, K.E.; Blüthgen, N. Pollen Amino Acids and Flower Specialisation in Solitary Bees. Apidologie 2010, 41, 476–487. [Google Scholar] [CrossRef]
- Liolios, V.; Tananaki, C.; Papaioannou, A.; Kanelis, D.; Rodopoulou, M.-A.; Argena, N. Mineral Content in Monofloral Bee Pollen: Investigation of the Effect of the Botanical and Geographical Origin. J. Food Meas. Charact. 2019, 13, 1674–1682. [Google Scholar] [CrossRef]
- Bukovinszky, T.; Rikken, I.; Evers, S.; Wäckers, F.L.; Biesmeijer, J.C.; Prins, H.H.; Kleijn, D. Effects of Pollen Species Composition on the Foraging Behaviour and Offspring Performance of the Mason Bee Osmia Bicornis (L.). Basic Appl. Ecol. 2017, 18, 21–30. [Google Scholar] [CrossRef]
- Denisow, B.; Strzałkowska-Abramek, M.; Bożek, M.; Jeżak, A. Early Spring Nectar and Pollen and Insect Visitor Behavior in Two Corydalis Species (Papaveraceae). J. Apic. Sci. 2014, 58, 93–102. [Google Scholar] [CrossRef]
- Jachuła, J.; Denisow, B.; Wrzesień, M. Validation of Floral Food Resources for Pollinators in Agricultural Landscape in SE Poland. J. Sci. Food Agric. 2018, 98, 2672–2680. [Google Scholar] [CrossRef]
- Dicks, L.V.; Baude, M.; Roberts, S.P.M.; Phillips, J.; Green, M.; Carvell, C. How Much Flower-Rich Habitat Is Enough for Wild Pollinators? Answering a Key Policy Question with Incomplete Knowledge. Ecol. Entomol. 2015, 40, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Jachuła, J.; Denisow, B.; Strzałkowska-Abramek, M. Does an Invader Have a Bright Side? Floral Reward in Two Solidago Species. J. Apic. Res. 2020, 59, 599–608. [Google Scholar] [CrossRef]
- Piotrowska, K. Ecological Features of Flowers and the Amount of Pollen Released in Corylus Avellana [L.] and Alnus Glutinosa [L.] Gaertn. Acta Agrobotanica 2008, 61, 1. [Google Scholar] [CrossRef]
- M’Gonigle, L.K.; Ponisio, L.C.; Cutler, K.; Kremen, C. Habitat Restoration Promotes Pollinator Persistence and Colonization in Intensively Managed Agriculture. Ecol. Appl. 2015, 25, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Scheper, J.; Holzschuh, A.; Kuussaari, M.; Potts, S.G.; Rundlöf, M.; Smith, H.G.; Kleijn, D. Environmental Factors Driving the Effectiveness of European Agri-environmental Measures in Mitigating Pollinator Loss–a Meta-analysis. Ecol. Lett. 2013, 16, 912–920. [Google Scholar] [CrossRef]
- Kay, S.; Kühn, E.; Albrecht, M.; Sutter, L.; Szerencsits, E.; Herzog, F. Agroforestry Can Enhance Foraging and Nesting Resources for Pollinators with Focus on Solitary Bees at the Landscape Scale. Agrofor. Syst. 2020, 94, 379–387. [Google Scholar] [CrossRef]
- Jachuła, J.; Denisow, B.; Wrzesień, M. Habitat Heterogeneity Helps to Mitigate Pollinator Nectar Sugar Deficit and Discontinuity in an Agricultural Landscape. Sci. Total Environ. 2021, 782, 146909. [Google Scholar] [CrossRef]
- Wood, T.J.; Kaplan, I.; Szendrei, Z. Wild Bee Pollen Diets Reveal Patterns of Seasonal Foraging Resources for Honey Bees. Front. Ecol. Evol. 2018, 6, 210. [Google Scholar] [CrossRef]
- Stawiarz, E.; Żuraw, R.; Marut, A. Pollen Sources in the Bojanów Forest Complex Identified on Honeybee Pollen Load by Microscopic Analysis. Acta Agrobot. 2017, 70, 1724. [Google Scholar] [CrossRef]
- McLellan, A. Factors Affecting Pollen Harvesting by the Honeybee. J. Appl. Ecol. 1976, 801–811. [Google Scholar] [CrossRef]
- Coffey, M.F.; Breen, J. Seasonal Variation in Pollen and Nectar Sources of Honey Bees in Ireland. J. Apic. Res. 1997, 36, 63–76. [Google Scholar] [CrossRef]
- Kołtowski, Z.; Miśkiewicz, I. Wielki Atlas Roślin Miododajnych; Przedsiębiorstwo Wydawnicze Rzeczpospolita: Warszawa, Poland, 2006; ISBN 83-60192-13-8. [Google Scholar]
- Van Der Kooi, C.J.; Vallejo-Marín, M.; Leonhardt, S.D. Mutualisms and (A) Symmetry in Plant–Pollinator Interactions. Curr. Biol. 2021, 31, R91–R99. [Google Scholar] [CrossRef] [PubMed]
- Horridge, A. What Does an Insect See? J. Exp. Biol. 2009, 212, 2721–2729. [Google Scholar] [CrossRef] [PubMed]
- Vaudo, A.D.; Tooker, J.F.; Patch, H.M.; Biddinger, D.J.; Coccia, M.; Crone, M.K.; Fiely, M.; Francis, J.S.; Hines, H.M.; Hodges, M. Pollen Protein: Lipid Macronutrient Ratios May Guide Broad Patterns of Bee Species Floral Preferences. Insects 2020, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- Pernal, S.F.; Currie, R.W. The Influence of Pollen Quality on Foraging Behavior in Honeybees (Apis mellifera L.). Behav. Ecol. Sociobiol. 2001, 51, 53–68. [Google Scholar] [CrossRef]
- Dötterl, S.; Vereecken, N. The Chemical Ecology and Evolution of Bee–Flower Interactions: A Review and Perspectives. Can. J. Zool. 2010, 88, 668–697. [Google Scholar] [CrossRef]
- Miñarro, M.; Prida, E. Hedgerows Surrounding Organic Apple Orchards in North-west S Pain: Potential to Conserve Beneficial Insects. Agric. For. Entomol. 2013, 15, 382–390. [Google Scholar] [CrossRef]
- Ponisio, L.C.; Gaiarsa, M.P.; Kremen, C. Opportunistic Attachment Assembles Plant–Pollinator Networks. Ecol. Lett. 2017, 20, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Rollin, O.; Bretagnolle, V.; Decourtye, A.; Aptel, J.; Michel, N.; Vaissière, B.E.; Henry, M. Differences of Floral Resource Use between Honey Bees and Wild Bees in an Intensive Farming System. Agric. Ecosyst. Environ. 2013, 179, 78–86. [Google Scholar] [CrossRef]
- Aronne, G.; Giovanetti, M.; Guarracino, M.R.; de Micco, V. Foraging Rules of Flower Selection Applied by Colonies of A Pis Mellifera: Ranking and Associations of Floral Sources. Funct. Ecol. 2012, 26, 1186–1196. [Google Scholar] [CrossRef]
- Teper, D. Food Plants of the Red Mason Bee (Osmia rufa L.) Determined Based on a Palynological Analysis of Faeces. J. Apic. Sci. 2007, 51, 55–62. [Google Scholar]
- Schindler, M.; Peters, B. Mason Bees Osmia Bicornis and Osmia Cornuta as Suitable Orchard Pollinators? Erwerbsobstbau 2011, 52, 111–116. [Google Scholar]
- Cole, L.J.; Brocklehurst, S.; Robertson, D.; Harrison, W.; McCracken, D.I. Exploring the Interactions between Resource Availability and the Utilisation of Semi-Natural Habitats by Insect Pollinators in an Intensive Agricultural Landscape. Agric. Ecosyst. Environ. 2017, 246, 157–167. [Google Scholar] [CrossRef]
- Ssymank, A.; Kearns, C.; Pape, T.; Thompson, F.C. Pollinating Flies (Diptera): A Major Contribution to Plant Diversity and Agricultural Production. Biodiversity 2008, 9, 86–89. [Google Scholar] [CrossRef]
- Dunn, L.; Lequerica, M.; Reid, C.R.; Latty, T. Dual Ecosystem Services of Syrphid Flies (Diptera: Syrphidae): Pollinators and Biological Control Agents. Pest Manag. Sci. 2020, 76, 1973–1979. [Google Scholar] [CrossRef]
- Fijen, T.P.; Read, S.F.; Walker, M.K.; Gee, M.; Nelson, W.R.; Howlett, B.G. Different Landscape Features within a Simplified Agroecosystem Support Diverse Pollinators and Their Service to Crop Plants. Landsc. Ecol. 2022, 37, 1787–1799. [Google Scholar] [CrossRef]
- Saunders, M.E. Insect Pollinators Collect Pollen from Wind-pollinated Plants: Implications for Pollination Ecology and Sustainable Agriculture. Insect Conserv. Divers. 2018, 11, 13–31. [Google Scholar] [CrossRef]
- Ssymank, A.; Gilbert, F. Anemophilous Pollen in the Diet of Syrphid Flies with Special Reference to the Leaf Feeding Strategy Occurring in Xylotini.(Diptera, Syrphidae). Dtsch. Entomol. Z. 1993, 40, 245–258. [Google Scholar] [CrossRef]
- Fowler, J. Specialist Bees of the Northeast: Host Plants and Habitat Conservation. Northeast. Nat. 2016, 23, 305–320. [Google Scholar] [CrossRef]
- Cane, J.H. A Brief Review of Monolecty in Bees and Benefits of a Broadened Definition. Apidologie 2021, 52, 17–22. [Google Scholar] [CrossRef]
- Vanderplanck, M.; Vereecken, N.J.; Grumiau, L.; Esposito, F.; Lognay, G.; Wattiez, R.; Michez, D. The Importance of Pollen Chemistry in Evolutionary Host Shifts of Bees. Sci. Rep. 2017, 7, 43058. [Google Scholar] [CrossRef]
- Jacquemin, F.; Violle, C.; Munoz, F.; Mahy, G.; Rasmont, P.; Roberts, S.P.; Vray, S.; Dufrene, M. Loss of Pollinator Specialization Revealed by Historical Opportunistic Data: Insights from Network-Based Analysis. PLoS ONE 2020, 15, e0235890. [Google Scholar] [CrossRef]
- Kremen, C.; M’Gonigle, L.K. EDITOR’S CHOICE: Small-scale Restoration in Intensive Agricultural Landscapes Supports More Specialized and Less Mobile Pollinator Species. J. Appl. Ecol. 2015, 52, 602–610. [Google Scholar] [CrossRef]
- Kalivodová, M.; Kanka, R.; Miklós, P.; Sládkovičová, V.H.; Žiak, D. Importance of Wetland Refugia in Agricultural Landscape Provided Based on the Community Characteristics of Small Terrestrial Mammals. Ekológia 2018, 37, 358–368. [Google Scholar] [CrossRef]
- Haight, J.; Hammill, E. Protected Areas as Potential Refugia for Biodiversity under Climatic Change. Biol. Conserv. 2020, 241, 108258. [Google Scholar] [CrossRef]
- Cane, J.H.; Griswold, T.; Parker, F.D. Substrates and Materials Used for Nesting by North American Osmia Bees (Hymenoptera: Apiformes: Megachilidae). Ann. Entomol. Soc. Am. 2007, 100, 350–358. [Google Scholar] [CrossRef]
- Westerfelt, P.; Widenfalk, O.; Lindelöw, Å.; Gustafsson, L.; Weslien, J. Nesting of Solitary Wasps and Bees in Natural and Artificial Holes in Dead Wood in Young Boreal Forest Stands. Insect Conserv. Divers. 2015, 8, 493–504. [Google Scholar] [CrossRef]
- Lye, G.; Park, K.; Osborne, J.; Holland, J.; Goulson, D. Assessing the Value of Rural Stewardship Schemes for Providing Foraging Resources and Nesting Habitat for Bumblebee Queens (Hymenoptera: Apidae). Biol. Conserv. 2009, 142, 2023–2032. [Google Scholar] [CrossRef]
- Tallamy, D.W.; Shropshire, K.J. Ranking Lepidopteran Use of Native versus Introduced Plants. Conserv. Biol. 2009, 23, 941–947. [Google Scholar] [CrossRef]
- Staton, T.; Walters, R.J.; Smith, J.; Girling, R.D. Evaluating the Effects of Integrating Trees into Temperate Arable Systems on Pest Control and Pollination. Agric. Syst. 2019, 176, 102676. [Google Scholar] [CrossRef]
- Whitehorn, P.R.; O’connor, S.; Wackers, F.L.; Goulson, D. Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production. Science 2012, 336, 351–352. [Google Scholar] [CrossRef] [PubMed]
- Kjær, C.; Bruus, M.; Bossi, R.; Løfstrøm, P.; Andersen, H.V.; Nuyttens, D.; Larsen, S.E. Pesticide Drift Deposition in Hedgerows from Multiple Spray Swaths. J. Pestic. Sci. 2014, 39, 14–21. [Google Scholar] [CrossRef]
- Schmitz, J.; Schäfer, K.; Brühl, C.A. Agrochemicals in Field Margins—Field Evaluation of Plant Reproduction Effects. Agric. Ecosyst. Environ. 2014, 189, 82–91. [Google Scholar] [CrossRef]
- Ward, L.T.; Hladik, M.L.; Guzman, A.; Winsemius, S.; Bautista, A.; Kremen, C.; Mills, N.J. Pesticide Exposure of Wild Bees and Honey Bees Foraging from Field Border Flowers in Intensively Managed Agriculture Areas. Sci. Total Environ. 2022, 831, 154697. [Google Scholar] [CrossRef]
- Douglas, M.R.; Baisley, P.; Soba, S.; Kammerer, M.; Lonsdorf, E.V.; Grozinger, C.M. Putting Pesticides on the Map for Pollinator Research and Conservation. Sci. Data 2022, 9, 571. [Google Scholar] [CrossRef] [PubMed]
- Sutter, L.; Albrecht, M.; Jeanneret, P. Landscape Greening and Local Creation of Wildflower Strips and Hedgerows Promote Multiple Ecosystem Services. J. Appl. Ecol. 2018, 55, 612–620. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; et al. Synthesis Report of the IPCC Sixth Assessment Report (AR6): Summary for Policymakers. Intergovernmental Panel on Climate Change. 2023. Available online: https://pubs.giss.nasa.gov/abs/le05900r.html (accessed on 16 May 2023).
- Descamps, C.; Quinet, M.; Jacquemart, A.-L. Climate Change–Induced Stress Reduce Quantity and Alter Composition of Nectar and Pollen from a Bee-Pollinated Species (Borago Officinalis, Boraginaceae). Front. Plant Sci. 2021, 12, 755843. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, M.A.; Burkle, L.A.; Manson, J.S.; Runyon, J.B.; Trowbridge, A.M.; Zientek, J. Global Change Effects on Plant–Insect Interactions: The Role of Phytochemistry. Curr. Opin. Insect Sci. 2017, 23, 70–80. [Google Scholar] [CrossRef]
- Gérard, M.; Vanderplanck, M.; Wood, T.; Michez, D. Global Warming and Plant–Pollinator Mismatches. Emerg. Top. Life Sci. 2020, 4, 77–86. [Google Scholar]
- Scaven, V.L.; Rafferty, N.E. Physiological Effects of Climate Warming on Flowering Plants and Insect Pollinators and Potential Consequences for Their Interactions. Curr. Zool. 2013, 59, 418–426. [Google Scholar] [CrossRef]
- Takkis, K.; Tscheulin, T.; Petanidou, T. Differential Effects of Climate Warming on the Nectar Secretion of Early-and Late-Flowering Mediterranean Plants. Front. Plant Sci. 2018, 9, 874. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed]
- Pacini, E.; Dolferus, R. Pollen Developmental Arrest: Maintaining Pollen Fertility in a World with a Changing Climate. Front. Plant Sci. 2019, 10, 679. [Google Scholar] [CrossRef] [PubMed]
- Burkle, L.A.; Runyon, J.B. Drought and Leaf Herbivory Influence Floral Volatiles and Pollinator Attraction. Glob. Change Biol. 2016, 22, 1644–1654. [Google Scholar] [CrossRef]
- Di Pasquale, G.; Alaux, C.; Le Conte, Y.; Odoux, J.-F.; Pioz, M.; Vaissière, B.E.; Belzunces, L.P.; Decourtye, A. Variations in the Availability of Pollen Resources Affect Honey Bee Health. PLoS ONE 2016, 11, e0162818. [Google Scholar] [CrossRef]
- Hanski, I. Habitat Loss, the Dynamics of Biodiversity, and a Perspective on Conservation. Ambio 2011, 40, 248–255. [Google Scholar] [CrossRef]
- Ponisio, L.C.; de Valpine, P.; M’Gonigle, L.K.; Kremen, C. Proximity of Restored Hedgerows Interacts with Local Floral Diversity and Species’ Traits to Shape Long-term Pollinator Metacommunity Dynamics. Ecol. Lett. 2019, 22, 1048–1060. [Google Scholar] [CrossRef]
- Montgomery, I.; Caruso, T.; Reid, N. Hedgerows as Ecosystems: Service Delivery, Management, and Restoration. Annu. Rev. Ecol. Evol. Syst. 2020, 51, 81–102. [Google Scholar] [CrossRef]
- Wix, N.; Reich, M.; Schaarschmidt, F. Butterfly Richness and Abundance in Flower Strips and Field Margins: The Role of Local Habitat Quality and Landscape Context. Heliyon 2019, 5, e01636. [Google Scholar] [CrossRef]
- Turner, M.G.; Gardner, R.H. Organisms and Landscape Pattern. In Landscape Ecology in Theory and Practice; Springer: New York, NY, USA, 2015; pp. 229–285. [Google Scholar]
- Gannon, D.G. Plant-Pollinator Interactions in a Changing World: Cryptic Specialization, Pollinator Movement, and Landscape Genetics of Pollinator-Dependent Plants. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2022. [Google Scholar]
- Cranmer, L.; McCollin, D.; Ollerton, J. Landscape Structure Influences Pollinator Movements and Directly Affects Plant Reproductive Success. Oikos 2012, 121, 562–568. [Google Scholar] [CrossRef]
- Klaus, F.; Bass, J.; Marholt, L.; Müller, B.; Klatt, B.; Kormann, U. Hedgerows Have a Barrier Effect and Channel Pollinator Movement in the Agricultural Landscape. J. Landsc. Ecol. 2015, 8, 22–31. [Google Scholar] [CrossRef]
- Ouin, A.; Burel, F. Influence of Herbaceous Elements on Butterfly Diversity in Hedgerow Agricultural Landscapes. Agric. Ecosyst. Environ. 2002, 93, 45–53. [Google Scholar] [CrossRef]
- Földesi, R.; Kovács-Hostyánszki, A. Hoverfly (Diptera: Syrphidae) Community of a Cultivated Arable Field and the Adjacent Hedgerow near Debrecen, Hungary. Biologia 2014, 69, 381–388. [Google Scholar] [CrossRef]
- Haenke, S.; Kovács-Hostyánszki, A.; Fründ, J.; Batáry, P.; Jauker, B.; Tscharntke, T.; Holzschuh, A. Landscape Configuration of Crops and Hedgerows Drives Local Syrphid Fly Abundance. J. Appl. Ecol. 2014, 51, 505–513. [Google Scholar] [CrossRef]
- Joyce, K.; Holland, J.; Doncaster, C. Influences of Hedgerow Intersections and Gaps on the Movement of Carabid Beetles. Bull. Entomol. Res. 1999, 89, 523–531. [Google Scholar] [CrossRef]
- Rands, S.A. Landscape Fragmentation and Pollinator Movement within Agricultural Environments: A Modelling Framework for Exploring Foraging and Movement Ecology. PeerJ 2014, 2, e269. [Google Scholar] [CrossRef]
- Carvell, C.; Roy, D.B.; Smart, S.M.; Pywell, R.F.; Preston, C.D.; Goulson, D. Declines in Forage Availability for Bumblebees at a National Scale. Biol. Conserv. 2006, 132, 481–489. [Google Scholar] [CrossRef]
- Requier, F.; Odoux, J.-F.; Tamic, T.; Moreau, N.; Henry, M.; Decourtye, A.; Bretagnolle, V. Honey Bee Diet in Intensive Farmland Habitats Reveals an Unexpectedly High Flower Richness and a Major Role of Weeds. Ecol. Appl. 2015, 25, 881–890. [Google Scholar] [CrossRef]
- Carvalheiro, L.G.; Kunin, W.E.; Keil, P.; Aguirre-Gutiérrez, J.; Ellis, W.N.; Fox, R.; Groom, Q.; Hennekens, S.; Van Landuyt, W.; Maes, D. Species Richness Declines and Biotic Homogenisation Have Slowed down for NW-European Pollinators and Plants. Ecol. Lett. 2013, 16, 870–878. [Google Scholar] [CrossRef]
- Nichols, R.N.; Goulson, D.; Holland, J.M. The Best Wildflowers for Wild Bees. J. Insect Conserv. 2019, 23, 819–830. [Google Scholar] [CrossRef]
- Anderson, J.T.; Wadgymar, S.M. Climate Change Disrupts Local Adaptation and Favours Upslope Migration. Ecol. Lett. 2020, 23, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Stout, J.C.; Morales, C.L. Ecological Impacts of Invasive Alien Species on Bees. Apidologie 2009, 40, 388–409. [Google Scholar] [CrossRef]
- Junge, X.; Schüpbach, B.; Walter, T.; Schmid, B.; Lindemann-Matthies, P. Aesthetic Quality of Agricultural Landscape Elements in Different Seasonal Stages in Switzerland. Landsc. Urban Plan. 2015, 133, 67–77. [Google Scholar] [CrossRef]
Service Type | Characteristic | References |
---|---|---|
Contribution to sugar and pollen resource quantity | Relatively high sugar and pollen amounts related to abundant flowering. | [9,14,63,64,65,66,68,69,70,71,75,76,77,78,79,80,81,82,83,84] |
Contribution to resource quality | Woody species (e.g., Salix spp.—willow, Prunus spp.—plum) produce high-quality pollen, important for proper insect pollinator nutrition. | [15,46,54,56,64,68,69,73,74,75,86,87,91,92,93,98] |
Seasonal importance—early and summer resources | Woody species in temperate regions provide important early-season (Salix spp.—willows, Acer spp.—maple, Prunus spp.—plum) sources of pollen and nectar and summer food resources (Robinia pseudoaccacia—black locust, Tilia spp.—lime tree). | [21,33,34,35,45,64,65,78,79,85,86,99,102,107,109,110,111,112] |
Other resources—resins, oils (e.g., Alnus spp.—alder, Aesculus spp.—horse chestnut, Betula spp.—birch, Fagus spp.—beech, Pinus spp.—pine, Populus spp.—poplar, Ulmus spp.—elm) | Honey bees (Apis mellifera) collect resins from tree buds to make propolis; wild bees use resins for lining brood cells. | [67] |
Nesting niches | Non-forest woody vegetation offers (i) stable (undisturbed by agricultural practices) nesting sites for ground-nesting species; (ii) nesting sites for wild species that use left plant stems (Sambucus spp.—elderberry, Rubus spp.—blackberry; Rhus spp.—sumac). | [7,46,47,48,50,51,52,53,99,134,135,136,138,139,176] |
Refuge areas | NFWV can provide buffer zones, safe from pesticides and other chemicals. Such areas are necessary to safeguard the stability of pollination services. | [36,89,146,147] |
Mitigation of climate warming effects | In the scenario of an air temperature increase above optimum, trees and shrubs reduce air temperature within apiaries and have a positive impact on pollinator activity and pollination service; the shade positively influences nectar secretion in annual and perennial species. | [2,40,41,64,67,112,148,149,152,153,155,157] |
Landscape connectivity | NFWV enhances pollinator movement across the landscape at multiple spatial scales, providing connectivity between feeding and nesting habitats. | [41,158,159,160,161,162,163,164,165,166,167,168] |
Barrier/corridor | NFWV can act as a barrier or a corridor for pollinator movements and pollen dispersal. The barrier/corridor effect depends on the landscape type, pollinator type, and course of NFWV rows. | [42,44,47,127,164,165,170] |
Crop pollination | NFWV can increase pollination effectiveness (increase in crop yield, crop quality), which is related to increased nesting and food availability, and the number and activity of pollinators. | [42,43,163,170] |
Other benefits | Wind speed reduction has a positive impact on pollinator movements and reduces honey bee mortality in apiaries. | [14,45,176] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bożek, M.; Denisow, B.; Strzałkowska-Abramek, M.; Chrzanowska, E.; Winiarczyk, K. Non-Forest Woody Vegetation: A Critical Resource for Pollinators in Agricultural Landscapes—A Review. Sustainability 2023, 15, 8751. https://doi.org/10.3390/su15118751
Bożek M, Denisow B, Strzałkowska-Abramek M, Chrzanowska E, Winiarczyk K. Non-Forest Woody Vegetation: A Critical Resource for Pollinators in Agricultural Landscapes—A Review. Sustainability. 2023; 15(11):8751. https://doi.org/10.3390/su15118751
Chicago/Turabian StyleBożek, Małgorzata, Bożena Denisow, Monika Strzałkowska-Abramek, Ewelina Chrzanowska, and Krystyna Winiarczyk. 2023. "Non-Forest Woody Vegetation: A Critical Resource for Pollinators in Agricultural Landscapes—A Review" Sustainability 15, no. 11: 8751. https://doi.org/10.3390/su15118751