Determinants of Aboveground Carbon Storage of Woody Vegetation in an Urban–Rural Transect in Shanghai, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Demarcating the Study Area
2.2. Sampling and Collecting Field Data
2.3. Measuring Aboveground Carbon Storage and Key Vegetation Traits
2.3.1. Key Vegetation Traits
2.3.2. Carbon Storage Estimation Methodology
2.4. Machine Learning Methods
2.4.1. Building the Random Forest Model
2.4.2. Optimizing Model Parameters by the Bayesian Optimization Algorithm
2.4.3. Evaluating Model Accuracy
3. Results and Discussion
3.1. Key Vegetation Traits and Aboveground Carbon Storage of Urban Woody Vegetation
3.1.1. Key Vegetation Traits
3.1.2. Aboveground Carbon Storage of Urban Woody Vegetation
3.2. Correlations between Key Vegetation Traits and Aboveground Carbon Storage of Urban Woody Vegetation
3.3. The Partial Dependency and Importance Scores of the Key Vegetation Traits vis-a-vis Aboveground Carbon Storage by Random Forest Model
3.3.1. The Accuracy of Random Forest Model
3.3.2. The Partial Dependency and Importance Scores of the Key Vegetation Traits vis-a-vis Aboveground Carbon Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.; Shen, J.; Zhang, X.; Skitmore, M.; Lu, W. Reprint of: The impact of urbanization on carbon emissions in developing countries: A Chinese study based on the U-Kaya method. J. Clean. Prod. 2017, 163, S284–S298. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef]
- Ren, Z.; Zheng, H.; He, X.; Zhang, D.; Shen, G.; Zhai, C. Changes in spatio-temporal patterns of urban forest and its above-ground carbon storage: Implication for urban CO2 emissions mitigation under China’s rapid urban expansion and greening. Environ. Int. 2019, 129, 438–450. [Google Scholar] [CrossRef]
- David, J.; Nowak, D.E.C.J.; Bond, J. A Ground-Based Method of Assessing Urban Forest Structure and Ecosystem Services. Arboric. Urban. For. 2008, 6, 347–358. [Google Scholar]
- Tian, Y.; Jim, C.Y. Development potential of sky gardens in the compact city of Hong Kong. Urban. For. Urban. Green 2012, 11, 223–233. [Google Scholar] [CrossRef]
- Tian, Y.; Jim, C.Y.; Wang, H. Assessing the landscape and ecological quality of urban green spaces in a compact city. Landsc. Urban. Plan. 2014, 121, 97–108. [Google Scholar] [CrossRef]
- Harris, V.; Kendal, D.; Hahs, A.K.; Threlfall, C.G. Green space context and vegetation complexity shape people’s preferences for urban public parks and residential gardens. Landsc. Res. 2018, 43, 150–162. [Google Scholar] [CrossRef]
- Akbar, K.F.; Hale, W.H.G.; Headley, A.D. Assessment of scenic beauty of the roadside vegetation in northern England. Landsc. Urban. Plan. 2003, 63, 139–144. [Google Scholar] [CrossRef]
- Desjardins, D.; Nissim, W.G.; Pitre, F.E.; Naud, A.; Labrecque, M. Distribution patterns of spontaneous vegetation and pollution at a former decantation basin in southern Québec, Canada. Ecol. Eng. 2014, 64, 385–390. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, W.W.; Wang, G.; Pereira, P. Afforestation changes the trade-off between soil moisture and plant species diversity in different vegetation zones on the Loess Plateau. Catena 2022, 219, 106583. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, X.; Yin, S.; Shen, G.; Han, Y.; Liu, C. Characteristics of carbon storage in Shanghai’s urban forest. Chin. Sci. Bull. 2013, 58, 1130–1138. [Google Scholar] [CrossRef]
- Godefroid, S.; Koedam, N. Urban plant species patterns are highly driven by density and function of built-up areas. Landsc. Ecol. 2007, 22, 1227–1239. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.Q.; Liu, S.; Oeding, J. A meta-analysis on the impacts of partial cutting on forest structure and carbon storage. Biogeosciences 2013, 10, 3691–3703. [Google Scholar] [CrossRef]
- Osei, R.; Titeux, H.; Bielak, K.; Bravo, F.; Collet, C.; Cools, C.; Cornelis, J.; Heym, M.; Korboulewsky, N.; Löf, M.; et al. Tree species identity drives soil organic carbon storage more than species mixing in major two-species mixtures (pine, oak, beech) in Europe. For. Ecol. Manag. 2021, 481, 118752. [Google Scholar] [CrossRef]
- Li, Y.; Dong, S.; Liu, S.; Su, X.; Wang, X.; Zhang, Y.; Zhao, Z.; Gao, X.; Li, S.; Tang, L. Relationships between plant diversity and biomass production of alpine grasslands are dependent on the spatial scale and the dimension of biodiversity. Ecol. Eng. 2019, 127, 375–382. [Google Scholar] [CrossRef]
- Ruiz-Jaen, M.C.; Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 2011, 189, 978–987. [Google Scholar] [CrossRef]
- Ali, A.; Mattsson, E.; Nissanka, S.P.; Wang, L. Topmost trees and foremost species underlie tropical forest structure, diversity and biomass through opposing mechanisms. For. Ecol. Manag. 2020, 473, 118299. [Google Scholar] [CrossRef]
- Baul, T.K.; Chowdhury, A.I.; Uddin, M.J.; Hasan, M.K.; Kilpeläinen, A.; Nandi, R.; Sultana, T. Forest carbon stocks under three canopy densities in Sitapahar natural forest reserve in Chittagong Hill Tracts of Bangladesh. For. Ecol. Manag. 2021, 492, 119217. [Google Scholar] [CrossRef]
- Shah, S.K.; Acharya, H. Modelling the relationship between canopy projection area and above-ground carbon stock of intermingled canopy trees using high-resolution satellite imagery. Banko Janakari 2016, 23, 20–29. [Google Scholar] [CrossRef]
- Larreguy, C.; Carrera, A.L.; Bertiller, M.B. Effects of long-term grazing disturbance on the belowground storage of organic carbon in the Patagonian Monte, Argentina. J. Environ. Manag. 2014, 134, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Chalcraft, D.R.; Wilsey, B.J.; Bowles, C.; Willig, M.R. The relationship between productivity and multiple aspects of biodiversity in six grassland communities. Biodivers. Conserv. 2009, 18, 91–104. [Google Scholar] [CrossRef]
- Hofhansl, F.; Chacón-Madrigal, E.; Fuchslueger, L.; Jenking, D.; Morera-Beita, A.; Plutzar, C.; Silla, F.; Andersen, K.M.; Buchs, D.M.; Dullinger, S.; et al. Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Sci. Rep. 2020, 10, 1–11. [Google Scholar]
- Li, X.; Wang, X.; Jiang, X.; Han, J.; Wang, Z.; Wu, D.; Lin, Q.; Li, L.; Zhang, S.; Dong, Y. Prediction of riverside greenway landscape aesthetic quality of urban canalized rivers using environmental modeling. J. Clean. Prod. 2022, 367, 133066. [Google Scholar] [CrossRef]
- Frescino, E.A.F.A. Evaluating effectiveness of down-sampling for stratified designs and unbalanced prevalence in Random Forest models of tree species distributions in Nevada. Ecol. Model. 2012, 233, 1–10. [Google Scholar]
- Grossmann, E.; Ohmann, J.; Kagan, J.; May, H.; Gregory, M. Mapping ecological systems with a random foret model: Tradeoffs between errors and bias. Gap Anal. Bull. 2010, 17, 16–22. [Google Scholar]
- Hasanuzzaman, M.; Islam, A.; Bera, B.; Shit, P.K. A comparison of performance measures of three machine learning algorithms for flood susceptibility mapping of river Silabati (tropical river, India). Phys. Chem. Earth Parts A/B/C 2022, 127, 103198. [Google Scholar] [CrossRef]
- Zhang, M.; Du, H.; Zhou, G.; Li, X.; Mao, F.; Dong, L.; Zheng, J.; Liu, H.; Huang, Z.; He, S. Estimating Forest Aboveground Carbon Storage in Hang-Jia-Hu Using Landsat TM/OLI Data and Random Forest Model. Forests 2019, 10, 1004. [Google Scholar] [CrossRef]
- Yao, X.; Zhao, M.; Escobedo, F.J. What Causal Drivers Influence Carbon Storage in Shanghai, China’s Urban and Peri-Urban Forests? Sustainability 2017, 9, 577. [Google Scholar] [CrossRef]
- Timilsina, N.; Staudhammer, C.L.; Escobedo, F.J.; Lawrence, A. Tree biomass, wood waste yield, and carbon storage changes in an urban forest. Landsc. Urban. Plan. 2014, 127, 18–27. [Google Scholar] [CrossRef]
- Zhao, M.; Escobedo, F.J.; Wang, R.; Zhou, Q.; Lin, W.; Gao, J. Woody Vegetation Composition and Structure in Peri-urban Chongming Island, China. Environ. Manag. 2013, 51, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, S.; Wang, L.; Samui, P.; Chwała, M.; He, Y. Landslide Susceptibility Research Combining Qualitative Analysis and Quantitative Evaluation: A Case Study of Yunyang County in Chongqing, China. Forests 2022, 13, 1055. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, X.; Ma, M.; Shen, J. Assessment of NO2 population exposure from 2005 to 2020 in China. Environ. Sci. Pollut. Res. 2022, 29, 80257–80271. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Mao, F.; Zhou, G.; Li, X.; Xu, X.; Ge, H.; Cui, L.; Liu, Y.; Zhu, D.E.; Li, Y. Estimating and Analyzing the Spatiotemporal Pattern of Aboveground Carbon in Bamboo Forest by Combining Remote Sensing Data and Improved BIOME-BGC Model. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 2282–2295. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, H.; Zhou, Y. Compressive Strength Prediction of Fly Ash Concrete Using Machine Learning Techniques. Buildings 2022, 12, 690. [Google Scholar] [CrossRef]
- Riccardo, G.; Anna, M.; Salvatore, R.; Franco, T.; Fosca, G.; Dino, P. A Survey of Methods For Explaining Black Box Models. ACM Comput. Surv. 2018, 51, 1–42. [Google Scholar]
- Didion, M.; Kupferschmid, A.D.; Bugmann, H. Long-term effects of ungulate browsing on forest composition and structure. For. Ecol. Manag. 2009, 258, S44–S55. [Google Scholar] [CrossRef]
- Escobedo, F.; Varela, S.; Staudhammer, C.; Thompson, B.; Jarratt, A.J. Pensacola and Southern Escambia County, Florida’s Urban Forests. School For. Resour. Conserv. Available online: https://edis.ifas.ufl.edu (accessed on 11 May 2022).
- Mensah, S.; Veldtman, R.; Assogbadjo, A.E.; Kakaï, R.G.; Seifert, T. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol. Evol. 2016, 6, 7546–7557. [Google Scholar] [CrossRef]
- Liu, C.F.; Li, X.M. Carbon storage and sequestration by urban forests in Shenyang, China. Urban. For. Urban. Green. 2012, 11, 121–128. [Google Scholar] [CrossRef]
- Wekesa, C.; Leley, N.; Maranga, E.; Kirui, B.; Muturi, G.; Mbuvi, M.; Chikamai, B. Effects of Forest Disturbance on Vegetation Structure and Above-Ground Carbon in Three Isolated Forest Patches of Taita Hills. Open. J. For. 2016, 6, 142–161. [Google Scholar] [CrossRef]
- Timilsina, N.; Escobedo, F.J.; Staudhammer, C.L.; Brandeis, T. Analyzing the causal factors of carbon stores in a subtropical urban. Ecol. Complex. 2014, 20, 23–32. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Tóta, J.; Fitzjarrald, D.R.; Staebler, R.M.; Sakai, R.K.; Moraes, O.; Acevedo, O.C.; Wofsy, S.C.; Manzi, A.O. Amazon rain forest subcanopy flow and the carbon budget: Santarém LBA-ECO site. J. Geophys. Res. 2008, 113, 1–16. [Google Scholar] [CrossRef]
- Wei, S.; Chen, Q.; Wu, W.; Ma, J. Quantifying the indirect effects of urbanization on urban vegetation carbon uptake in the megacity of Shanghai, China. Environ. Res. Lett. 2021, 16, 064088. [Google Scholar] [CrossRef]
Tree Species | a | b |
---|---|---|
Broadleaf tree | 0.727 | −0.0012 |
Cedarwood | 1.749 | −0.00002 |
Cypress | 1.125 | 0.0002 |
Pine | 1.393 | 0.0008 |
Tree Species | c | d | f |
---|---|---|---|
Broadleaf tree | 0.000050479055 | 1.9085054000 | 0.9907650700 |
Cedarwood | 0.000058777042 | 1.9699831 | 0.89646157 |
Cypress | 0.000057173591 | 1.8818805 | 0.99568845 |
Rank | Tree Species | Shrub Species |
---|---|---|
1 | Cinnamomum camphora (L.) Presl | Osmanthus sp. |
2 | Metasequoia glyptostroboides Hu and W. C. Cheng | Cedrus deodara |
3 | Magnolia grandiflora Linn | Ginkgo biloba L. |
4 | Populus L. | Trachycarpus fortunei |
5 | Ilex latifolia Thunb | Elaeocarpus decipiens |
n | Mean (CV) | ||||
---|---|---|---|---|---|
Tree Density (Tree/ha) | Canopy Cover (%) | Species Diversity | Species Evenness | ||
City center | 32 | 262.5 (182.4%) | 34.91 (110.2%) | 0.49 (111.7%) | 0.37 (105.8%) |
Pudong new area | 40 | 339.4 (192.4%) | 39.13 (85.3%) | 0.87 (64.2%) | 0.63 (54.3%) |
Minhang area | 69 | 247.5 (144.7%) | 42.42 (80.8%) | 0.88 (84.6%) | 0.61 (81.4%) |
Fengxian area | 128 | 247.9 (161.0%) | 33.67 (93.0%) | 0.76 (92.2%) | 0.54 (76.1%) |
Total | 269 | 264.03 (168.1%) | 36.95 (91.6%) | 0.78 (88.7%) | 0.55 (78.3%) |
n | Mean | SE | CV | |
---|---|---|---|---|
City center | 32 | 18.06 | 7.59 | 237.8% |
Pudong new area | 40 | 24.60 | 5.70 | 146.6% |
Minhang area | 69 | 21.51 | 3.01 | 116.3% |
Fengxian area | 128 | 19.93 | 2.36 | 133.8% |
Total | 269 | 20.87 | 1.83 | 143.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Jim, C.-Y.; Gao, J.; Zhao, M. Determinants of Aboveground Carbon Storage of Woody Vegetation in an Urban–Rural Transect in Shanghai, China. Sustainability 2023, 15, 8574. https://doi.org/10.3390/su15118574
Wei Y, Jim C-Y, Gao J, Zhao M. Determinants of Aboveground Carbon Storage of Woody Vegetation in an Urban–Rural Transect in Shanghai, China. Sustainability. 2023; 15(11):8574. https://doi.org/10.3390/su15118574
Chicago/Turabian StyleWei, Yanyan, Chi-Yung Jim, Jun Gao, and Min Zhao. 2023. "Determinants of Aboveground Carbon Storage of Woody Vegetation in an Urban–Rural Transect in Shanghai, China" Sustainability 15, no. 11: 8574. https://doi.org/10.3390/su15118574
APA StyleWei, Y., Jim, C.-Y., Gao, J., & Zhao, M. (2023). Determinants of Aboveground Carbon Storage of Woody Vegetation in an Urban–Rural Transect in Shanghai, China. Sustainability, 15(11), 8574. https://doi.org/10.3390/su15118574