Evolution of Urban Ecosystem Service Value and a Scenario Analysis Based on Land Utilization Changes: A Case Study of Hangzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Research Methods and Data Preprocessing
2.3.1. Dynamic Degree of Land Use
2.3.2. CA–Markov Model
2.3.3. Analysis of Driving Factors of Land Use Change Based on Random Forest Regression
2.3.4. Setting of the Multi-Scenario Development Model
2.3.5. Calculation of the ESV
3. Results
3.1. Characteristics of Land Use Evolution in the Study Area from 2000 to 2020
3.2. Characteristics of Variation in the ESV in the Study Area from 2000 to 2020
3.3. Analysis of Land Use Evolution and Ecological Value under Multi-Scenario Simulations
3.3.1. Analysis of Driving Factors of Land Use
3.3.2. Model Accuracy Verification
3.3.3. Characteristics of the ESV in the Study Area under Multiple Scenarios
4. Discussion
4.1. Change in Land Use and Ecosystem Services
4.2. Land Use and Ecosystem Services under Multi-Scenario Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Chi, G. Urbanization and ecosystem services: The multi-scale spatial spillover effects and spatial variations. Land Use Policy 2022, 114, 105964. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef]
- Zahoor, A.; Wasif, Z.M.; Sajid, A. Danish, Linking urbanization, human capital, and the ecological footprint in G7 countries: An empirical analysis. Sustain. Cities Soc. 2020, 55, 102064. [Google Scholar] [CrossRef]
- Adams, S.; Adom, P.K.; Klobodu, E.K.M. Urbanization, regime type and durability, and environmental degradation in Ghana. Environ. Sci. Pollut. Res. Int. 2016, 23, 23825–23839. [Google Scholar] [CrossRef]
- Sarkodie, S.A. The invisible hand and EKC hypothesis: What are the drivers of environmental degradation and pollution in Africa? Environ. Sci. Pollut. Res. Int. 2018, 25, 21993–22022. [Google Scholar] [CrossRef]
- Ali, R.; Bakhsh, K.; Yasin, M.A. Impact of urbanization on CO2 emissions in emerging economy: Evidence from Pakistan. Sustain. Cities Soc. 2019, 48, 101553. [Google Scholar] [CrossRef]
- Dong, J.; Peng, J.; Liu, Y.; Qiu, S.; Han, Y. Integrating spatial continuous wavelet transform and kernel density estimation to identify ecological corridors in megacities. Landsc. Urban Plan. 2020, 199, 103815. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.; Zhai, T.; He, T.; Qi, Y.; Jin, Z.; Cai, Y. The role of human activity in decreasing ecologically sound land use in China. Land Degrad. Dev. 2018, 29, 446–460. [Google Scholar] [CrossRef]
- Lü, Y.; Fu, B.; Wei, W.; Yu, X.; Sun, R. Major ecosystems in China: Dynamics and challenges for sustainable management. Environ. Manage. 2011, 48, 13–27. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems (1997). In The Future of Nature: Documents of Global Change; Robin, L., Sörlin, S., Warde, P., Eds.; Yale University Press: New Haven, CT, USA, 2013; pp. 454–464. ISBN 9780300188479. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1997, 25, 3–15. [Google Scholar] [CrossRef]
- Busch, M.; La Notte, A.; Laporte, V.; Erhard, M. Potentials of quantitative and qualitative approaches to assessing ecosystem services. Ecol. Indic. 2012, 21, 89–103. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Lin, G.; Jiang, D.; Fu, J.; Zhao, Y. A Review on the Overall Optimization of Production–Living–Ecological Space: Theoretical Basis and Conceptual Framework. Land 2022, 11, 345. [Google Scholar] [CrossRef]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, X.; Li, X.; Song, B.; Wang, C. Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Ecol. Indic. 2020, 111, 106004. [Google Scholar] [CrossRef]
- Song, F.; Su, F.; Mi, C.; Sun, D. Analysis of driving forces on wetland ecosystem services value change: A case in Northeast China. Sci. Total Environ. 2021, 751, 141778. [Google Scholar] [CrossRef]
- Xu, D.; Cai, Z.; Xu, D.; Lin, W.; Gao, J.; Li, L. Land Use Change and Ecosystem Health Assessment on Shanghai–Hangzhou Bay, Eastern China. Land 2022, 11, 867. [Google Scholar] [CrossRef]
- Karimi, J.D.; Corstanje, R.; Harris, J.A. Bundling ecosystem services at a high resolution in the UK: Trade-offs and synergies in urban landscapes. Landsc. Ecol. 2021, 36, 1817–1835. [Google Scholar] [CrossRef]
- Morshed, S.R.; Fattah, M.A.; Haque, M.N.; Morshed, S.Y. Future ecosystem service value modeling with land cover dynamics by using machine learning based Artificial Neural Network model for Jashore city, Bangladesh. Phys. Chem. Earth Parts A/B/C 2022, 126, 103021. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Yan, H.; Zhang, F.; Wei, X. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- Gong, Y.; Cai, M.; Yao, L.; Cheng, L.; Hao, C.; Zhao, Z. Assessing Changes in the Ecosystem Services Value in Response to Land-Use/Land-Cover Dynamics in Shanghai from 2000 to 2020. Int. J. Environ. Res. Public Health 2022, 19, 12080. [Google Scholar] [CrossRef] [PubMed]
- Weslati, O.; Bouaziz, S.; Sarbeji, M.M. Modelling and Assessing the Spatiotemporal Changes to Future Land Use Change Scenarios Using Remote Sensing and CA-Markov Model in the Mellegue Catchment. J. Indian Soc. Remote. Sens. 2023, 51, 9–29. [Google Scholar] [CrossRef]
- Rosenberg, M.; Syrbe, R.U.; Vowinckel, J.; Walz, U. Scenario methodology for modelling of future landscape developments as basis for assessing ecosystem services. Landsc. Online 2014, 33, 1–20. [Google Scholar] [CrossRef]
- Aliani, H.; Malmir, M.; Sourodi, M.; Kafaky, S.B. Change detection and prediction of urban land use changes by CA–Markov model (case study: Talesh County). Environ. Earth Sci. 2019, 78, 546. [Google Scholar] [CrossRef]
- Biratu, A.A.; Bedadi, B.; Gebrehiwot, S.G.; Melesse, A.M.; Nebi, T.H.; Abera, W.; Tamene, L.; Egeru, A. Impact of Landscape Management Scenarios on Ecosystem Service Values in Central Ethiopia. Land 2022, 11, 1266. [Google Scholar] [CrossRef]
- Alcamo, J.; van Vuuren, D.; Ringler, C.; Cramer, W.; Masui, T.; Alder, J.; Schulze, K. Changes in Nature’s Balance Sheet: Model-Based Estimates of Future Worldwide Ecosystem Services. Ecol. Soc. 2005, 10. [Google Scholar] [CrossRef]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Aksoy, H.; Kaptan, S. Monitoring of land use/land cover changes using GIS and CA-Markov modeling techniques: A study in Northern Turkey. Environ. Monit. Assess. 2021, 193, 507. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.; Zhou, X. Projections of future land use changes: Multiple scenarios-based impacts analysis on ecosystem services for Wuhan city, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Rieb, J.T.; Chaplin-Kramer, R.; Daily, G.C.; Armsworth, P.R.; Böhning-Gaese, K.; Bonn, A.; Cumming, G.S.; Eigenbrod, F.; Grimm, V.; Jackson, B.M.; et al. When, Where, and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service Models. BioScience 2017, 67, 820–833. [Google Scholar] [CrossRef]
- Li, W.; Xiang, M.; Duan, L.; Liu, Y.; Yang, X.; Mei, H.; Wei, Y.; Zhang, J.; Deng, L. Simulation of land utilization change and ecosystem service value evolution in Tibetan area of Sichuan Province. Alex. Eng. J. 2023, 70, 13–23. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.U.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189. [Google Scholar] [CrossRef]
- Wu, K.-Y.; Ye, X.-Y.; Qi, Z.-F.; Zhang, H. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: The case of fast-growing Hangzhou metropolitan area, China. Cities 2013, 31, 276–284. [Google Scholar] [CrossRef]
- Zhu, C.; Dong, B.; Li, S.; Lin, Y.; Shahtahmassebi, A.; You, S.; Zhang, J.; Gan, M.; Yang, L.; Wang, K. Identifying the trade-offs and synergies among land use functions and their influencing factors from a geospatial perspective: A case study in Hangzhou, China. J. Clean. Prod. 2021, 314, 128026. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, X.; Zhu, X.; Zhang, B. Ecological security pattern: A new idea for balancing regional development and ecological protection. A case study of the Jiaodong Peninsula, China. Glob. Ecol. Conserv. 2021, 26, e01472. [Google Scholar] [CrossRef]
- Wu, K.-Y.; Zhang, H. Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing Hangzhou metropolitan area, eastern China (1978–2008). Appl. Geogr. 2012, 34, 137–145. [Google Scholar] [CrossRef]
- Naboureh, A.; Rezaei Moghaddam, M.H.; Feizizadeh, B.; Blaschke, T. An integrated object-based image analysis and CA-Markov model approach for modeling land use/land cover trends in the Sarab plain. Arab. J. Geosci. 2017, 10, 87. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, Y. Bias-corrected random forests in regression. J. Appl. Stat. 2012, 39, 151–160. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Xie, G.; Xiao, Y.; Zhen, L.; Lu, C. Study on ecosystem services value of food production in China. Chin. J. Eco. Agric. 2005, 13, 10–13. [Google Scholar]
- He, D.; Jin, F.; Zhou, J. The Changes of Land Use and Landscape Pattern Based on Logistic-CA-Markov Model—A Case Study of Beijing-Tianjin-Hebei Metropolitan Region. Sci. Geogr. Sin. 2011, 31, 903–910. [Google Scholar]
- Wang, Q.; Wang, H.; Chang, R.; Zeng, H.; Bai, X. Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China. Ecol. Model. 2022, 464, 109850. [Google Scholar] [CrossRef]
- Wang, Z.; Ya, S.; Pu, H.; Mofakkarul, I.; Ou, L. Simulation of spatiotemporal variation of land use in mountainous-urban fringes based on improved CA-Markov model. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2020, 36, 239–248. [Google Scholar]
- Du, X.; Huang, Z. Ecological and environmental effects of land use change in rapid urbanization: The case of hangzhou, China. Ecol. Indic. 2017, 81, 243–251. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, W.; Peng, H. Urban land use change simulation and spatial responses of ecosystem service value under multiple scenarios: A case study of Wuhan, China. Ecol. Indic. 2022, 144, 109526. [Google Scholar] [CrossRef]
- Cai, Y.-B.; Li, H.-M.; Ye, X.-Y.; Zhang, H. Analyzing Three-Decadal Patterns of Land Use/Land Cover Change and Regional Ecosystem Services at the Landscape Level: Case Study of Two Coastal Metropolitan Regions, Eastern China. Sustainability 2016, 8, 773. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, Z.; Zhao, B.; Wen, B.; Liu, J. Simulation of Ecological Land Changes and Corresponding Ecosystem Service Values in Rapid Urbanization Area. Soils 2018, 50, 1022–1031. [Google Scholar]
- Xiao, R.; Lin, M.; Fei, X.; Li, Y.; Zhang, Z.; Meng, Q. Exploring the interactive coercing relationship between urbanization and ecosystem service value in the Shanghai–Hangzhou Bay Metropolitan Region. J. Clean. Prod. 2020, 253, 119803. [Google Scholar] [CrossRef]
- Tan, Z.; Guan, Q.; Lin, J.; Yang, L.; Luo, H.; Ma, Y.; Tian, J.; Wang, Q.; Wang, N. The response and simulation of ecosystem services value to land use/land cover in an oasis, Northwest China. Ecol. Indic. 2020, 118, 106711. [Google Scholar] [CrossRef]
- Janse, J.H.; van Dam, A.A.; Hes, E.M.; de Klein, J.J.; Finlayson, C.M.; Janssen, A.B.; van Wijk, D.; Mooij, W.; Verhoeven, J.T. Towards a global model for wetlands ecosystem services. Curr. Opin. Environ. Sustain. 2019, 36, 11–19. [Google Scholar] [CrossRef]
- Ahmad, W.; Iqbal, J.; Nasir, M.J.; Ahmad, B.; Khan, M.T.; Khan, S.N.; Adnan, S. Impact of land use/land cover changes on water quality and human health in district Peshawar Pakistan. Sci. Rep. 2021, 11, 16526. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Fan, X.C.; Zhao, L.L.; Hong, T.; Lin, H.; Hong, W. Prediction of land use change and ecosystem services value: A case study in Nanping, China. Appl. Ecol. Environ. Res. 2018, 16, 4935–4954. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Li, D.; Lu, L.; Yu, H. Multi-Scenario Simulation of the Impact of Urban Land Use Change on Ecosystem Service Value in Shenzhen. Acta Ecol. Sin. 2022, 42, 2086–2097. [Google Scholar]
- Xu, X.; Liu, H.; Lin, Z.; Liu, J.; Li, L. Scenario Analysis of Land Use Change in Jiangsu Coast Based on CA-Markov Model. Res. Soil Water Conserv. 2017, 24, 213–225. [Google Scholar]
- Vliet, J.V. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Subramanian, S. Urbanizing Diseases: Contested institutional terrain of water- and vector-borne diseases in Ahmedabad, India. Water Int. 2013, 38, 875–887. [Google Scholar] [CrossRef]
- Asanok, L.; Kamyo, T.; Norsaengsri, M.; Yotapakdee, T.; Navakam, S. Assessment of the Diversity of Large Tree Species in Rapidly Urbanizing Areas along the Chao Phraya River Rim, Central Thailand. Sustainability 2021, 13, 10342. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Li, T.; Wu, J. Regional ecosystem health response to rural land use change: A case study in Lijiang City, China. Ecol. Indic. 2017, 72, 399–410. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Wu, J.; Lv, H.; Hu, X. Linking ecosystem services and landscape patterns to assess urban ecosystem health: A case study in Shenzhen City, China. Landsc. Urban Plan. 2015, 143, 56–68. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, Y.; Xian, C.; Zhang, L.; Zou, Z. How urbanization affect the ecosystem health of Tibet based on terrain gradients: A case study of Shannan, China. Ecosyst. Health Sustain. 2022, 8, 2097449. [Google Scholar] [CrossRef]
Factor | Indicator | Indicator Content |
---|---|---|
Natural conditions | Geographical factors | Elevation, slope, and soil texture (clay content, silt content, and sand content) |
Water factor | Distance to water sources | |
Human disturbance | Location factors | Distance to subway stations, distance to a railway, distance to the highway, distance to a first-tier road, distance to a second-tier road, distance to the administrative center at the provincial and municipal levels, and distance to the administrative center at the township and subdistrict levels |
Demographic factors | Low light intensity at night and poor GDP | |
Environmental response conditions | Landscape factor | Vegetation coverage (fvc) |
Scenario Mode | Scenario Settings |
---|---|
Natural development | Land use evolves based on historical patterns and land is transformed according to the suitability standards set in the basic suitability atlas based on the probability of conversion between various land uses from 2010 to 2020. |
Ecological development | Using the ecologically safe zone as a restrictive area, strict control measures are implemented to limit land development within the ecologically safe zone. Land conversion within the ecologically safe zone, except for ecological use, is also restricted. |
Rapid development | As urban expansion maintains a high speed, the probability of construction land expansion increases. Economic factors are given an important role in driving land transformation, by increasing the weight of land suitability indicators such as GDP growth and nighttime lighting. |
Planned development | The development model is based on overall urban planning, which restricts the expansion of construction land beyond the urban development boundary and reduces the probability of conversion of construction land to ecological use. The development of various types of land relies on urban planning to increase the probability of transforming unused land into farmland, forest land, grassland, water bodies, and developed land. |
Primary Classification | Secondary Classification | Cultivated Land | Forestland | Grassland | Water Area | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
Supply services | Food production | 3920.27 | 895.79 | 827.80 | 2838.17 | 20.16 | 17.75 |
Raw material production | 869.19 | 2057.69 | 1218.07 | 815.98 | 0.00 | 53.20 | |
Water supply | −4629.80 | 1064.34 | 674.08 | 29,410.73 | −15,138.35 | 35.50 | |
Conditioning services | Gas regulation | 3157.49 | 6767.29 | 4280.92 | 2731.77 | −4878.15 | 230.61 |
Climate regulation | 1649.72 | 20,248.73 | 11,317.29 | 8124.30 | 0.00 | 177.41 | |
Environmental purification | 478.92 | 5933.61 | 3736.93 | 19,689.95 | −4958.77 | 727.28 | |
Hydrological regulation | 5303.88 | 13,250.82 | 8289.89 | 362,720.70 | 0.00 | 425.72 | |
Support services | Soil conservation | 1844.83 | 8239.61 | 5215.18 | 3299.39 | 40.32 | 266.06 |
Maintenance of nutrient cycling | 549.92 | 629.73 | 402.08 | 248.36 | 0.00 | 17.75 | |
Maintenance of biodiversity | 603.13 | 7503.47 | 4742.14 | 9046.74 | 685.37 | 248.36 | |
Cultural services | Provision of aesthetic landscapes | 266.06 | 3290.54 | 2093.14 | 6705.24 | 20.16 | 106.45 |
Total ESV | 14,013.60 | 69,881.62 | 42,797.52 | 445,631.34 | −24,209.26 | 2306.09 |
Land Use Types | Cultivated Land | Forestland | Grassland | Water Area | Construction Land | Unused Land | |
---|---|---|---|---|---|---|---|
2000 | Area/hm2 | 174,196.17 | 83,215.80 | 1509.39 | 34,014.78 | 40,308.03 | 221.94 |
Percentage/% | 52.24 | 24.95 | 0.45 | 10.20 | 12.09 | 0.07 | |
2010 | Area/hm2 | 157,813.20 | 82,359.99 | 1485.45 | 26,835.66 | 64,489.23 | 482.58 |
Percentage/% | 47.33 | 24.70 | 0.45 | 8.05 | 19.34 | 0.14 | |
2020 | Area/hm2 | 135,799.74 | 81,964.62 | 1553.58 | 26,445.24 | 87,224.85 | 478.08 |
Percentage/% | 40.72 | 24.58 | 0.47 | 7.93 | 26.16 | 0.14 | |
Area change from 2000 to 2020/hm2 | −38,396.43 | −1251.18 | 44.19 | −7569.54 | 46,916.82 | 256.14 | |
Rate of area change from 2000 to 2020/% | −22.04% | −1.50% | 2.93% | −22.25% | 116.40% | 115.41% | |
Dynamic of single land use/% | −1.10% | −0.08% | 0.15% | −1.11% | 5.82% | 5.77% |
Land Use Type | Cultivated Land | Forestland | Grassland | Water Area | Construction Land | Unused Land | Total | |
---|---|---|---|---|---|---|---|---|
2000 | ESV/CNY 108 | 24.41 | 58.15 | 0.65 | 151.58 | −9.76 | 0.0051 | 225.04 |
Proportion/% | 10.85 | 25.84 | 0.29 | 67.36 | −4.34 | 0.0023 | 100.00 | |
2010 | ESV/CNY 108 | 22.12 | 57.55 | 0.64 | 119.59 | −15.61 | 0.0111 | 184.29 |
Proportion/% | 12.00 | 31.23 | 0.34 | 64.89 | −8.47 | 0.0060 | 100.000 | |
2020 | ESV/CNY 108 | 19.03 | 57.28 | 0.66 | 117.85 | −21.12 | 0.0110 | 173.72 |
Proportion/% | 10.95 | 32.97 | 0.38 | 67.84 | −12.16 | 0.0063 | 100.00 | |
ESV variation/CNY 108 | −5.38 | −0.87 | 0.02 | −33.73 | −11.36 | 0.0059 | −51.32 |
Indicator | Indicator Content | Cultivated Land | Forest Land | Grassland | Water Area | Construction Land | Unused Land | Total |
---|---|---|---|---|---|---|---|---|
Geographical factors | Clay content | 6.00% | 6.30% | — | 2.60% | 6.60% | 19.60% | 6.50% |
Silt content | 4.50% | 5.70% | — | 1.90% | 3.30% | 13.50% | 3.30% | |
Sand content | 4.30% | 6.00% | — | 1.60% | 3.00% | 13.90% | 3.90% | |
Slope | 3.70% | 3.00% | — | 8.90% | 3.20% | 4.20% | 3.60% | |
Elevation | 3.90% | 4.50% | — | 5.70% | 3.10% | 2.00% | 3.20% | |
Water factor | Distance to water sources | 10.50% | 6.10% | 19.30% | 8.60% | 8.40% | 2.20% | 8.30% |
Location factors | Distance to the administrative centre at the provincial and municipal levels | 5.80% | 10.10% | 14.70% | 7.60% | 8.50% | 8.20% | 10.40% |
Distance to the administrative centre at the township and subdistrict levels | 4.80% | 8.40% | 29.50% | 3.80% | 8.50% | 5.90% | 7.10% | |
Distance to the highway | 12.30% | 10.20% | 4.00% | 7.10% | 7.10% | 4.20% | 6.80% | |
Distance to first-tier roads | 6.60% | 5.80% | — | 6.70% | 8.90% | 2.60% | 9.60% | |
Distance to second-tier roads | 11.10% | 2.90% | 13.20% | 7.30% | 3.70% | 5.10% | 3.50% | |
Distance to a railway | 5.30% | 3.70% | 13.80% | 14.70% | 8.70% | 4.40% | 6.50% | |
Distance to subway stations | 6.10% | 6.10% | 1.30% | 4.20% | 8.50% | 9.30% | 9.10% | |
Demographic factors | Poor GDP | 8.60% | 7.50% | — | 4.90% | 9.00% | — | 7.50% |
Low light intensity at night | 3.10% | 3.50% | 1.30% | 5.50% | 5.50% | 1.20% | 5.80% | |
Landscape factor | Vegetation coverage (fvc) | 3.40% | 10.20% | 3.00% | 8.80% | 4.10% | 3.80% | 4.90% |
Scenario Mode | Area and ESV | Arable Land | Forest Land | Grassland | Water Land | Build-Up Land | Unused Land | Total |
---|---|---|---|---|---|---|---|---|
The base year | Area/hm2 | 135,799.74 | 81,964.62 | 1553.58 | 26,445.24 | 87,224.85 | 478.08 | 333,466.11 |
ESV/CNY 108 | 19.03 | 57.28 | 0.66 | 117.85 | −21.12 | 0.011 | 173.71 | |
Natural development scenario | Area/hm2 | 116,340.84 | 74,744.82 | 3284.28 | 24,290.64 | 114,281.55 | 523.98 | 333,466.11 |
ESV/CNY 108 | 16.30 | 52.23 | 1.41 | 108.25 | −27.67 | 0.012 | 150.53 | |
Economic development scenario | Area/hm2 | 111,105.54 | 73,929.42 | 1990.98 | 23,945.04 | 122,062.95 | 432.18 | 333,466.11 |
ESV/CNY 108 | 15.57 | 51.66 | 0.85 | 106.71 | −29.55 | 0.010 | 145.25 | |
Planned development scenario | Area/hm2 | 134,139.24 | 77,309.82 | 2004.48 | 26,005.14 | 93,709.62 | 297.81 | 333,466.11 |
ESV/CNY 108 | 18.80 | 54.03 | 0.86 | 115.89 | −22.69 | 0.007 | 166.90 | |
Ecological development scenario | Area/hm2 | 127,717.02 | 82,808.91 | 3307.50 | 25,467.84 | 93,760.74 | 404.10 | 333,466.11 |
ESV/CNY 108 | 17.90 | 57.87 | 1.42 | 113.49 | −22.70 | 0.009 | 167.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Huang, Z.; Han, D.; Qiu, X.; Pan, Y. Evolution of Urban Ecosystem Service Value and a Scenario Analysis Based on Land Utilization Changes: A Case Study of Hangzhou, China. Sustainability 2023, 15, 8274. https://doi.org/10.3390/su15108274
Wu Y, Huang Z, Han D, Qiu X, Pan Y. Evolution of Urban Ecosystem Service Value and a Scenario Analysis Based on Land Utilization Changes: A Case Study of Hangzhou, China. Sustainability. 2023; 15(10):8274. https://doi.org/10.3390/su15108274
Chicago/Turabian StyleWu, Yizhou, Zichun Huang, Dan Han, Xiaoli Qiu, and Yaxin Pan. 2023. "Evolution of Urban Ecosystem Service Value and a Scenario Analysis Based on Land Utilization Changes: A Case Study of Hangzhou, China" Sustainability 15, no. 10: 8274. https://doi.org/10.3390/su15108274
APA StyleWu, Y., Huang, Z., Han, D., Qiu, X., & Pan, Y. (2023). Evolution of Urban Ecosystem Service Value and a Scenario Analysis Based on Land Utilization Changes: A Case Study of Hangzhou, China. Sustainability, 15(10), 8274. https://doi.org/10.3390/su15108274