Projection of Meteorological Dryness/Wetness Evolution Based on Multi-Model Scenarios in Poyang Lake Basin, China
Abstract
1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Datasets
2.3. Methods
3. Results
3.1. Historical and Future Climate Changes
3.2. Historical and Future Dryness/Wetness Conditions
3.3. Impact of Temperature Changes on Dry/Wet Variability in the Future
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2022: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme Weather Events Risk to Crop-Production and the Adaptation of Innovative Management Strategies to Mitigate the Risk: A Retrospective Survey of Rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Abbas, A.; Bhatti, A.S.; Ullah, S.; Ullah, W.; Waseem, M.; Zhao, C.; Dou, X.; Ali, G. Projection of Precipitation Extremes over South Asia from CMIP6 GCMs. J. Arid. Land 2023, 15, 274–296. [Google Scholar] [CrossRef]
- Abbas, A.; Waseem, M.; Ullah, W.; Zhao, C.; Zhu, J. Spatiotemporal Analysis of Meteorological and Hydrological Droughts and Their Propagations. Water 2021, 13, 2237. [Google Scholar] [CrossRef]
- Shi, W.; Huang, S.; Liu, D.; Huang, Q.; Han, Z.; Leng, G.; Wang, H.; Liang, H.; Li, P.; Wei, X. Drought-Flood Abrupt Alternation Dynamics and Their Potential Driving Forces in a Changing Environment. J. Hydrol. 2021, 597, 126179. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Ding, Y.; Chen, D.; Qin, D.; Zhai, P. Understanding human influence on climate change in China. Natl. Sci. Rev. 2022, 9, 128–143. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zuo, J.; Song, Y.; Liu, J.; Li, Y.; Shen, Y.; Li, J. Changes in Spatio-Temporal Distribution of Drought/Flood Disaster in Southern China Under Global Climate Warming. Meteorol. Mon. 2015, 41, 261–271. [Google Scholar]
- Huang, R.; Du, Z. Evolution Characteristics and Trend of Droughts and Floods in China Under the Background of Global Warming. Chin. J. Nat. 2010, 32, 187–195+184. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.-Y.; Zhang, Z.; Chen, Y.D.; Liu, C.; Lin, H. Spatial and Temporal Variability of Precipitation Maxima during 1960–2005 in the Yangtze River Basin and Possible Association with Large-Scale Circulation. J. Hydrol. 2008, 353, 215–227. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Q.; Jiang, T. Annual and Seasonal Streamflow Responses to Climate and Land-Cover Changes in the Poyang Lake Basin, China. J. Hydrol. 2008, 355, 106–122. [Google Scholar] [CrossRef]
- Wang, R.; Chen, J.; Chen, X.; Wang, Y. Variability of Precipitation Extremes and Dryness/Wetness over the Southeast Coastal Region of China, 1960–2014. Int. J. Climatol. 2017, 37, 4656–4669. [Google Scholar] [CrossRef]
- Chou, C.; Chiang, J.C.H.; Lan, C.-W.; Chung, C.-H.; Liao, Y.-C.; Lee, C.-J. Increase in the Range between Wet and Dry Season Precipitation. Nat. Geosci. 2013, 6, 263–267. [Google Scholar] [CrossRef]
- Ma, T.; Liang, Y.; Sunde, M.G.; Lau, M.K.; Liu, B.; Wu, M.M.; He, H.S. Assessing the Effects of Climate Variable and Timescale Selection on Uncertainties in Dryness/Wetness Trends in Conterminous China. Int J Clim. 2021, 41, 3058–3070. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef][Green Version]
- Zhang, L.; Yin, J.; Jiang, Y.; Wang, H. Relationship between the Hydrological Conditions and the Distribution of Vegetation Communities within the Poyang Lake National Nature Reserve, China. Ecol. Inform. 2012, 11, 65–75. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, P.; Zhang, Q.; Li, X. Copula-Based Probability of Concurrent Hydrological Drought in the Poyang Lake-Catchment-River System (China) from 1960 to 2013. J. Hydrol. 2017, 553, 773–784. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Xu, C.-Y.; Ye, X. The Changing Patterns of Floods in Poyang Lake, China: Characteristics and Explanations. Nat. Hazards 2015, 76, 651–666. [Google Scholar] [CrossRef]
- Li, X.; Hu, Q.; Wang, R.; Zhang, D.; Zhang, Q. Influences of the Timing of Extreme Precipitation on Floods in Poyang Lake, China. Hydrol. Res. 2021, 52, 26–42. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Q.; Wang, Y. Annual Variations in Climatic and Hydrological Processes and Related Flood and Drought Occurrences in the Poyang Lake Basin. Acta Geogr. Sin. 2012, 67, 699–709. [Google Scholar]
- Zhang, Z.; Chen, X.; Xu, C.-Y.; Hong, Y.; Hardy, J.; Sun, Z. Examining the Influence of River-Lake Interaction on the Drought and Water Resources in the Poyang Lake Basin. J. Hydrol. 2015, 522, 510–521. [Google Scholar] [CrossRef]
- Wang, R.; Peng, W.; Liu, X.; Wu, W.; Chen, X.; Zhang, S. Responses of Water Level in China’s Largest Freshwater Lake to the Meteorological Drought Index (SPEI) in the Past Five Decades. Water 2018, 10, 137. [Google Scholar] [CrossRef][Green Version]
- Liu, W.; Zhu, S.; Huang, Y.; Wan, Y.; Wu, B.; Liu, L. Spatiotemporal Variations of Drought and Their Teleconnections with Large-Scale Climate Indices over the Poyang Lake Basin, China. Sustainability 2020, 12, 3526. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Zhang, D.; Ye, X. Investigation of the Drought-Flood Abrupt Alternation of Streamflow in Poyang Lake Catchment during the Last 50 Years. Hydrol. Res. 2017, 48, 1402–1417. [Google Scholar] [CrossRef]
- Kanai, Y.; Ueta, M.; Germogenov, N.; Nagendran, M.; Mita, N.; Higuchi, H. Migration Routes and Important Resting Areas of Siberian Cranes (Grus Leucogeranus) between Northeastern Siberia and China as Revealed by Satellite Tracking. Biol. Conserv. 2002, 106, 339–346. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, Y.; Guan, L.; Lu, C.; Lei, G.; Wen, L.; Liu, G. Optimising Hydrological Conditions to Sustain Wintering Waterbird Populations in Poyang Lake National Natural Reserve: Implications for Dam Operations. Freshw. Biol. 2013, 58, 2366–2379. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Yao, J.; Werner, A.D.; Li, X. Hydrodynamic and Hydrological Modeling of the Poyang Lake Catchment System in China. J. Hydrol. Eng. 2014, 19, 607–616. [Google Scholar] [CrossRef]
- Chen, X.; Bao, S.; Li, H.; Cai, X.; Guo, P.; Wu, Z.; Fu, W.; Zhao, H. LUCC Impact on Sediment Loads in Subtropical Rainy Areas. Photogramm. Eng. Remote Sens. 2007, 73, 319–327. [Google Scholar] [CrossRef]
- Song, Z.; Lu, C.; Zhang, Y.; Chen, J.; Liu, W.; Liu, B.; Shu, L. Spatiotemporal Distribution and Statistical Analysis of Abnormal Groundwater Level Rising in Poyang Lake Basin. Water 2022, 14, 1906. [Google Scholar] [CrossRef]
- Huang, A.; Liu, X.; Peng, W.; Dong, F.; Ma, B.; Li, J.; Wang, W. Spatiotemporal Characteristics, Influencing Factors and Evolution Laws of Water Exchange Capacity of Poyang Lake. J. Hydrol. 2022, 609, 127717. [Google Scholar] [CrossRef]
- Li, Y.L.; Tao, H.; Yao, J.; Zhang, Q. Application of a Distributed Catchment Model to Investigate Hydrological Impacts of Climate Change within Poyang Lake Catchment (China). Hydrol. Res. 2016, 47, 120–135. [Google Scholar] [CrossRef][Green Version]
- Wang, Z.; Yang, Y.; Chen, G.; Wu, J.; Wu, J. Variation of Lake-River-Aquifer Interactions Induced by Human Activity and Climatic Condition in Poyang Lake Basin, China. J. Hydrol. 2021, 595, 126058. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Xu, C.; Zhang, Z. Characteristics of Runoff Variation of Poyang Lake Watershed in the Past 50 Years. Trop. Geogr. 2009, 29, 213–218, 224. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, Q.; Li, Y.; Li, M. Hydrological Evidence and Causes of Seasonal Low Water Levels in a Large River-Lake System: Poyang Lake, China. Hydrol. Res. 2016, 47, 24–39. [Google Scholar] [CrossRef][Green Version]
- Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of Inundation Changes of Poyang Lake Using MODIS Observations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar] [CrossRef]
- Zhou, T.; Zou, L.; Chen, X. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Clim. Chang. Res. 2019, 15, 445–456. [Google Scholar]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef][Green Version]
- Zhu, H.; Jiang, Z.; Li, J.; Li, W.; Sun, C.; Li, L. Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China? Adv. Atmos. Sci. 2020, 37, 1119–1132. [Google Scholar] [CrossRef]
- Li, Y.; Yan, D.; Peng, H.; Xiao, S. Evaluation of Precipitation in CMIP6 over the Yangtze River Basin. Atmos. Res. 2021, 253, 105406. [Google Scholar] [CrossRef]
- Lei, Y.; Gu, L. Selection of ensembles for the simulation results of GCMs for the Yangtze River basin based on spatial metrics. Eng. J. Wuhan Univ. 2020, 1–14. [Google Scholar]
- He, X.; Miu, Z.; Tian, J.; Yang, L.; Zhang, Z.; Zhu, B. Temperature, precipitation and runoff prediction in the Yangtze River Basin based on CMIP 6 multi-model. J. Nanjing For. Univ. Nat. Sci. Ed. 2021, 1–10. [Google Scholar]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The Roads Ahead: Narratives for Shared Socioeconomic Pathways Describing World Futures in the 21st Century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef][Green Version]
- Yuan, F.; Tung, Y.-K.; Ren, L. Projection of Future Streamflow Changes of the Pearl River Basin in China Using Two Delta-Change Methods. Hydrol. Res. 2016, 47, 217–238. [Google Scholar] [CrossRef]
- Begueria, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef][Green Version]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Li, X.; Ju, H.; Sarah, G.; Yan, C.; Batchelor, W.D.; Liu, Q. Spatiotemporal Variation of Drought Characteristics in the Huang-Huai-Hai Plain, China under the Climate Change Scenario. J. Integr. Agric. 2017, 16, 2308–2322. [Google Scholar] [CrossRef]
- Isia, I.; Hadibarata, T.; Jusoh, M.N.H.; Bhattacharjya, R.K.; Shahedan, N.F.; Bouaissi, A.; Fitriyani, N.L.; Syafrudin, M. Drought Analysis Based on Standardized Precipitation Evapotranspiration Index and Standardized Precipitation Index in Sarawak, Malaysia. Sustainability 2023, 15, 734. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Zhou, H.; Liu, Y. SPI Based Meteorological Drought Assessment over a Humid Basin: Effects of Processing Schemes. Water 2016, 8, 373. [Google Scholar] [CrossRef][Green Version]
- Ye, X.; Li, Y.; Li, X.; Xu, C.; Zhang, Q. Investigation of the Variability and Implications of Meteorological Dry/Wet Conditions in the Poyang Lake Catchment, China, during the Period 1960–2010. Adv. Meteorol. 2015, 2015, 928534. [Google Scholar] [CrossRef][Green Version]
- Zhang, Y.; Hu, X.; Zhang, Z.; Kong, R.; Peng, Z.; Zhang, Q.; Chen, X. The Increasing Risk of Future Simultaneous Droughts over the Yangtze River Basin Based on CMIP6 Models. Stoch. Environ. Res. Risk Assess. 2023. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, H.; Huang, J.; Yuan, Y. Prediction of Multi-Scale Meteorological Drought Characteristics over the Yangtze River Basin Based on CMIP6. Water 2022, 14, 2996. [Google Scholar] [CrossRef]
- Ren, J.; Wang, W.; Wei, J.; Li, H.; Li, X.; Liu, G.; Chen, Y.; Ye, S. Evolution and Prediction of Drought-Flood Abrupt Alternation Events in Huang-Huai-Hai River Basin, China. Sci. Total Environ. 2023, 869, 161707. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Deng, C.; She, D.; Deng, Y.; Chen, J.; Zhang, L.; Hong, S. Multi-model Projections of Meteorological Drought Characteristics under Different Scenarios in the Middle and Lower Reaches of Yangtze River Basin. J. Yangtze River Sci. Res. Inst. 2021, 38, 9–17. [Google Scholar]
- Ma, Z.; Sun, P.; Zhang, Q.; Zou, Y.; Lv, Y.; Li, H.; Chen, D. The Characteristics and Evaluation of Future Droughts across China through the CMIP6 Multi-Model Ensemble. Remote Sens. 2022, 14, 1097. [Google Scholar] [CrossRef]
Model | Source | Spatial Resolution (Lat × Lon) |
---|---|---|
BCC-CSM2-MR | Beijing Climate Center, China | 1.125° × 1.125° |
MRI-ESM2-0 | Meteorological Research Institute, Japan | 1.125° × 1.125° |
NESM3 | Nanjing University of Information Science and Technology, China | 1.875° × 1.875° |
Category | SPEI or SPI Value |
---|---|
Extreme wet | SPEI or SPI ≥ 2.0 |
Severe wet | 1.5 ≤ SPEI or SPI < 2.0 |
Moderate wet | 1.0 ≤ SPEI or SPI < 1.5 |
Normal | −1.0 < SPEI or SPI < 1.0 |
Moderate dry | −1.5 < SPEI or SPI ≤−1.0 |
Severe dry | −2.0 < SPEI or SPI ≤−1.5 |
Extreme dry | SPEI or SPI ≤−2.0 |
Period | Wet and Dry Frequencies | |||||||
---|---|---|---|---|---|---|---|---|
Moderate Wet | Severe Wet | Extreme Wet | Total Wet | Moderate Dry | Severe Dry | Extreme Dry | Total Dry | |
Historical | 9.10% | 6.33% | 1.54% | 16.98% | 11.42% | 4.78% | 1.23% | 17.44% |
SSP126 | 10.00% | 5.73% | 1.88% | 17.60% | 11.04% | 6.25% | 1.25% | 18.54% |
SSP245 | 9.79% | 4.58% | 1.67% | 16.04% | 12.92% | 7.08% | 1.25% | 21.25% |
SSP585 | 10.21% | 4.27% | 1.56% | 16.04% | 14.06% | 6.56% | 2.29% | 22.92% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Jiang, W.; Zhang, T.; Chen, J.; Wu, Z.; Liu, Y.; Tao, X.; Liu, B. Projection of Meteorological Dryness/Wetness Evolution Based on Multi-Model Scenarios in Poyang Lake Basin, China. Sustainability 2023, 15, 8194. https://doi.org/10.3390/su15108194
Deng Y, Jiang W, Zhang T, Chen J, Wu Z, Liu Y, Tao X, Liu B. Projection of Meteorological Dryness/Wetness Evolution Based on Multi-Model Scenarios in Poyang Lake Basin, China. Sustainability. 2023; 15(10):8194. https://doi.org/10.3390/su15108194
Chicago/Turabian StyleDeng, Yueping, Wenyu Jiang, Tianyu Zhang, Jing Chen, Zhi Wu, Yuanqing Liu, Xinyue Tao, and Bo Liu. 2023. "Projection of Meteorological Dryness/Wetness Evolution Based on Multi-Model Scenarios in Poyang Lake Basin, China" Sustainability 15, no. 10: 8194. https://doi.org/10.3390/su15108194
APA StyleDeng, Y., Jiang, W., Zhang, T., Chen, J., Wu, Z., Liu, Y., Tao, X., & Liu, B. (2023). Projection of Meteorological Dryness/Wetness Evolution Based on Multi-Model Scenarios in Poyang Lake Basin, China. Sustainability, 15(10), 8194. https://doi.org/10.3390/su15108194