Spatial and Temporal Assessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.1.1. Seybouse Maritime
2.1.2. Wadi Djelfa-Hadjia
2.1.3. Wadi M’Zi
2.2. Data Used
3. Methodology
3.1. Drought Indices
3.1.1. Standardized Precipitation Index
3.1.2. Reconnaissance Drought Index
- The initial :
- The Normalized RDI (RDIn):
- The Standardized RDI (RDIst):
3.2. Potential Evapotranspiration
The Thornthwaite Method
3.3. Drought Characteristics
3.3.1. Duration
3.3.2. Magnitude
3.3.3. Intensity
3.3.4. Frequency (Return Period)
3.4. Drought Hazard Index (DHI)
3.5. Drought Vulnerability Index (DVI)
3.6. Drought Risk Index (DRI)
4. Results
4.1. Comparison of Drought Indices
4.2. Drought Spatiotemporal Variation
4.3. Maximum Drought Duration
4.4. Maximum Drought Magnitude
4.5. Maximum Drought Intensity
4.6. Maximum Drought Frequency
4.7. Longest and Strongest Dry Periods
4.8. Multivariate Statistical Analysis
4.9. Drought Hazard, Vulnerability and Risk Assessment
4.9.1. Seybouse Maritime
4.9.2. Wadi Djelfa-Hadjia
4.9.3. Wadi M’Zi
5. Discussion
6. Conclusions
- (1)
- The correlation between the SPI and RDI based on the coefficient of determination (R2) and the root-mean-square error (RMSE) demonstrated their suitability for assessing the drought in the study area.
- (2)
- The spatiotemporal drought distributions vary with time from station to station and from sub-basin to sub-basin.
- (3)
- The study findings indicate that, while the RDI recorded the longest drought durations and the strongest magnitudes, highest severities and highest drought frequencies for moderate and severe drought events, the SPI recorded the highest frequencies for extreme drought events.
- (4)
- The increasing maximum durations and magnitudes toward the south provided evidence of the climate-type-specific effect on these two drought physical characteristics.
- (5)
- The maximum drought frequencies were more likely (with shorter return periods) with severe and extreme droughts, although such high intensities were not related to climate type.
- (6)
- SPI was not influenced by wet season rainfall because of the low precipitation quantities characterizing the semi-arid and arid climates. Higher ETP did not affect the RDI, which is related to the spring and autumn precipitation.
- (7)
- The drought hazard maps that reflect the drought characteristics match the different climatic zones studied, which means that droughts in Algeria depend on the climate type.
- (8)
- The vulnerability to drought depends on the dominant characteristic of each municipality, namely, the water demand of the municipality and for irrigation or industries.
- (9)
- The drought risk index maps revealed that drought vulnerability controls the drought risk. Furthermore, which of Algeria’s provinces are most vulnerable to drought must be determined to develop strategies to mitigate socioeconomic impacts.
- (10)
- Finally, the limitations of this study are that only two meteorological indices and a single 12-month timescale were used, as well as the limited area of the three chosen sub-basins, which can be extended in future works and can be replaced by enlarging the scale of the study in order to map the spatiotemporal variations of droughts in different climatic zones with more than two meteorological indices.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savari, M.; Damaneh, H.E.; Damaneh, H.E. Drought vulnerability assessment: Solution for risk alleviation and drought management among Iranian farmers. Int. J. Disaster Risk Reduct. 2022, 67, 102654. [Google Scholar] [CrossRef]
- Sharafi, L.; Zarafshani, K.; Keshavarz, M.; Azadi, H.; Van Passel, S. Drought risk assessment: Towards drought early warning system and sustainable environment in western Iran. Ecol. Indic. 2020, 114, 106276. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Almazroui, M.; Salam, M.A.; Mondol, M.A.H.; Rahman, M.M.; Deb, L.; Kundu, P.K.; Uz Zaman, M.A.; Islam, A.R.M.T. Spatiotemporal drought analysis in Bangladesh using the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI). Sci. Rep. 2022, 12, 20694. [Google Scholar] [CrossRef] [PubMed]
- Niaz, R.; Almazah, M.M.A.; Al-Duais, F.S.; Iqbal, N.; Khan, D.M.; Hussain, I. Spatiotemporal analysis of meteorological drought variability in a homogeneous region using standardized drought indices. Geomat. Nat. Hazards Risk 2022, 13, 1457–1481. [Google Scholar] [CrossRef]
- Zarafshani, K.; Sharafi, L.; Azadi, H.; Van Passel, S. Vulnerability assessment models to drought: Toward a conceptual framework. Sustainability 2016, 8, 588. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Du, E.; Chen, F.; Jia, H.; Wang, L.; Yang, A. Spatiotemporal evolution and hysteresis analysis of drought based on rainfed-irrigated arable land. Remote Sens. 2023, 15, 1689. [Google Scholar] [CrossRef]
- Xu, K.; Wu, C.; Zhang, C.; Hu, B.X. Uncertainty assessment of drought characteristics projections in humid subtropical basins in China based on multiple CMIP5 models and different index definitions. J. Hydrol. 2021, 600, 126502. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Li, W.; Liu, X.; Zhang, X. Drought: Progress in broadening its understanding. Wiley Interdiscip. Rev. Water 2020, 7, e1407. [Google Scholar] [CrossRef]
- Nabipour, N.; Dehghani, M.; Shamshirband, S.; Mosavi, A. Short-term hydrological drought forecasting based on different nature-inspired optimization algorithms hybridized with artificial neural networks. IEEE Access 2019, 8, 15210–15222. [Google Scholar] [CrossRef]
- Escalante-Sandoval, C.; Nuñez-Garcia, P. Meteorological drought features in northern and northwestern parts of Mexico under different climate change scenarios. J. Arid Land 2017, 9, 65–75. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Moazzam, M.F.U.; Rahman, G.; Munawar, S.; Farid, N.; Lee, B.G. Spatiotemporal Rainfall Variability and Drought Assessment during Past Five Decades in South Korea Using SPI and SPEI. Atmosphere 2022, 13, 292. [Google Scholar] [CrossRef]
- Bouabdelli, S.; Meddi, M.; Zeroual, A.; Alkama, R. Hydrological drought risk recurrence under climate change in the karst area of Northwestern Algeria. J. Water Clim. Chang. 2020, 11, 164–188. [Google Scholar] [CrossRef]
- Araneda-Cabrera, R.J.; Bermúdez, M.; Puertas, J. Benchmarking of drought and climate indices for agricultural drought monitoring in Argentina. Sci. Total Environ. 2021, 790, 148090. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K.; Lai, R.; Zhou, Z. Socioeconomic drought analysis by standardized water supply and demand index under changing environment. J. Clean. Prod. 2022, 347, 131248. [Google Scholar] [CrossRef]
- Swain, S.; Mishra, S.K.; Pandey, A. A detailed assessment of meteorological drought characteristics using simplified rainfall index over Narmada River Basin, India. Environ. Earth Sci. 2021, 80, 221. [Google Scholar] [CrossRef]
- Hosseini, A.; Ghavidel, Y.; Khorshiddoust, A.M.; Farajzadeh, M. Spatio-temporal analysis of dry and wet periods in Iran by using Global Precipitation Climatology Center-Drought Index (GPCC-DI). Theor. Appl. Climatol. 2021, 143, 1035–1045. [Google Scholar] [CrossRef]
- Zerouali, B.; Chettih, M.; Abda, Z.; Mesbah, M.; Guimarães Santos, C.A.; Brasil Neto, R.M.; Marques da Silva, R. Spatiotemporal meteorological drought assessment in a humid Mediterranean region: Case study of the Oued Sebaou basin (northern central Algeria). Nat. Hazards 2021, 108, 689–709. [Google Scholar] [CrossRef]
- Niemeyer, S. New drought indices. In Proceedings of the International Conference Drought Management: Scientific and Technological Innovations, Zaragoza, Spain, 12–14 June 2008. [Google Scholar]
- Eris, E.; Cavus, Y.; Aksoy, H.; Burgan, H.L.; Aksu, H.; Boyacioglu, H. Spatiotemporal analysis of meteorological drought over Kucuk Menderes River Basin in the Aegean Regionof Turkey. Theor. Appl. Climatol. 2020, 142, 1515–1530. [Google Scholar] [CrossRef]
- Ali, Z.; Hussain, I.; Faisal, M.; Nazir, H.M.; Abd-elMoemen, M.; Hussain, T.; Shamsuddin, S. A Novel multi-scalar drought index for monitoring drought: The Standardized Precipitation Temperature Index. Water Resour. Manag. 2017, 31, 4957–4969. [Google Scholar] [CrossRef]
- Maccioni, P.; Kossida, M.; Brocca, L.; Moramarco, T. Assessment of the drought hazard in the Tiber River basin in central Italy and a comparison of new and commonly used meteorological indicators. J. Hydrol. Eng. 2015, 20, 05014029. [Google Scholar] [CrossRef]
- Fleig, A.K.; Tallaksen, L.M.; Hisdal, H.; Hannah, D.M. Regional hydrological drought in northwestern Europe: Linking a new regional drought Area Index with weather types. Hydrol. Process. 2011, 25, 1163–1179. [Google Scholar] [CrossRef]
- Fleig, A.K.; Tallaksen, L.M.; Hisdal, H.; Stahl, K.; Hannah, D.M. Inter-comparison of weather and circulation type classifcations for hydrological drought development. Phys. Chem. Earth 2010, 35, 507–515. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H. Establishing a drought index incorporating evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- Weghorst, K. The Reclamation Drought Index: Guidelines and practical applications. In Proceedings of the North American Water and Environment Congress & Destructive Water, Anaheim, CA, USA, 22–28 June 1996. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. drought monitoring with multiple time scales. In Proceedings of the 9th conference on applied climatology, Dallas, Texas, USA, 15–20 January 1995. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, California, USA, 17–22 January 1993. [Google Scholar]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, L02405. [Google Scholar] [CrossRef]
- Werick, W.J.; Willeke, G.E.; Guttman, N.B.; Hosking, J.R.M.; Wallis, J.R. National drought atlas developed. EOS Trans. 1994, 75, 89–90. [Google Scholar] [CrossRef]
- Gommes, R.; Petrassi, F. Rainfall Variability and Drought in Sub-Saharan Africa Since 1960; FAO Agrometeorology Series Working Paper (FAO): No. 9; Food and Agriculture Organization, Rome, Italy, 1994. Available online: https://www.fao.org/3/au042e/au042e.pdf (accessed on 24 August 2019).
- Shafer, B.A.; Dezman, L.E. Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In Proceedings of the 50th Annual Western Snow Conference, Reno, NV, USA, 19–23 April 1982. [Google Scholar]
- Bhalme, H.N.; Mooley, D.A. Large-scale droughts/floods and monsoon circulation. Mon. Weather Rev. 1980, 108, 1197–1211. [Google Scholar] [CrossRef]
- Palmer, W.C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- Van Rooy, M.P. A rainfall anomaly index independent of time and space. Notos 1965, 14, 43–48. [Google Scholar]
- Deng, H.; Cheng, F.; Wang, J.; Wang, C. Monitoring of drought in central Yunnan, china based on TVDI model. J. Arid. Environ. 2021, 30, 3511–3523. [Google Scholar] [CrossRef] [PubMed]
- Saifullah, M.; Liu, S.; Adnan, M.; Zaman, M.; Muhammad, S.; Babur, M.; Zhu, Y.; Wu, K. Assessment of Spatial and Temporal Pattern of Hydrological Droughts in the Upper Indus Basin, Pakistan. Pol. J. Environ. Stud. 2021, 30, 4633–4645. [Google Scholar] [CrossRef] [PubMed]
- Brasil Neto, R.M.; Guimarães Santos, C.A.; Medeiros do Nascimento, T.V.; Marques da Silva, R.; Costa dos Santos, C.A. Evaluation of the TRMM Product for Monitoring Drought over Paraíba State, Northeastern Brazil: A Statistical Analysis. Remote Sens. 2020, 12, 2184. [Google Scholar] [CrossRef]
- Hina, S.; Saleem, F. Historical analysis (1981−2017) of drought severity and magnitude over a predominantly arid region of Pakistan. Clim. Res. 2019, 78, 189–204. [Google Scholar] [CrossRef]
- Huang, J.; Zhuo, W.; Li, Y.; Huang, R.; Sedano, F.; Su, W.; Dong, J.; Tian, L.; Huang, Y.; Zhu, D.; et al. Comparison of three remotely sensed drought indices for assessing the impact of drought on winter wheat yield. Int. J. Digit. Earth 2018, 13, 504–526. [Google Scholar] [CrossRef]
- Yan, G.; Wu, Z.; Li, D.; Xiao, H. A comparative frequency analysis of three standardized drought indices in the Poyang Lake basin, China. Nat. Hazards 2018, 91, 353–374. [Google Scholar] [CrossRef]
- Vangelis, H.; Kopsiaftis, G.; Tigkas, D.; Christelis, V. Coastal aquifer response to drought scenarios: The case of Rhodes island. Eur. Water 2017, 60, 219–225. [Google Scholar]
- Khan, M.I.; Liu, D.; Fua, Q.; Faiz, M.A. Detecting the persistence of drying trends under changing climate conditions using four meteorological drought indices. Meteorol. Appl. 2017, 25, 184–194. [Google Scholar] [CrossRef]
- Kopsiaftis, G.; Tigkas, D.; Christelis, V.; Vangelis, H. Assessment of drought impacts on semi-arid coastal aquifers of the Mediterranean. J. Arid. Environ. 2017, 137, 7–15. [Google Scholar] [CrossRef]
- Elkollaly, M.; Khadr, M.; Zeidan, B. Drought analysis in the Eastern Nile basin using the standardized precipitation index. Environ. Sci. Pollut. Res. 2017, 25, 30772–30786. [Google Scholar] [CrossRef] [PubMed]
- Surendran, U.; Kumar, V.; Ramasubramoniam, S.; Raja, P. Development of drought indices for semi-arid region using drought indices calculator (drinc)—A case study from Madurai district, a semi-arid region in India. Water Resour. Manag. 2017, 31, 3593–3605. [Google Scholar] [CrossRef]
- Thomasa, T.; Jaiswalb, R.K.; Galkatec, R.V.; Nayak, T.R. Reconnaissance drought index based evaluation of meteorological drought characteristics in Bundelkhand. Procedia Technol. 2016, 24, 23–30. [Google Scholar] [CrossRef]
- Soro, G.E.; Anouman, D.G.L.; Goula BI, T.A.; Srohorou, B.; Savane, I. Caractérisation des séquences de sécheresse météorologique a diverses échelles de temps en climat de type soudanais: Cas de l’extrême Nord-Ouest de la cote d’Ivoire. Larhyss J. 2014, 18, 107–124. [Google Scholar]
- Yaddanapudi, R.; Mishra, A.K. Compound impact of drought and COVID-19 on agriculture yield in the USA. Sci. Total Environ. 2022, 807, 150801. [Google Scholar] [CrossRef]
- Djellouli, F.; Bouanani, A.; Babahamed, K. Climate change: Assessment and monitoring of meteorological and hydrological drought of Wadi El Hammam basin (NW- ALGERIA). J. Fundam. Appl. Sci. 2016, 8, 1037–1053. [Google Scholar] [CrossRef]
- Elouissi, A.; Benzater, B.; Dabanli, I.; Habi, M.; Harizia, A.; Hamimed, A. Drought investigation and trend assessment in Macta watershed (Algeria) by SPI and ITA methodology. Arab. J. Geosci. 2021, 14, 1329. [Google Scholar] [CrossRef]
- Ballah, A.; Benaabidate, L. Assessing the performance of various meteorological drought indices in capturing historic droughts in the south of Algeria. Arab. J. Geosci. 2021, 14, 1289. [Google Scholar] [CrossRef]
- Fellag, M.; Achite, M.; Wałęga, A. Spatial-temporal characterization of meteorological drought using the standardized precipitation index. Case study in Algeria. Acta Sci. Pol. Form. Circumiectus 2021, 20, 19–31. [Google Scholar] [CrossRef]
- Habibi, B.; Meddi, M. Meteorological drought hazard analysis of wheat production in the semi-arid basin of Cheliff–Zahrez Nord, Algeria. Arab. J. Geosci. 2021, 14, 1045. [Google Scholar] [CrossRef]
- Radia, G.; Kamila, B.H.; Abderrazak, B. Highlighting drought in the Wadi Lakhdar Watershed Tafna, Northwestern Algeria. Arab. J. Geosci. 2021, 14, 984. [Google Scholar] [CrossRef]
- Elhoussaoui, A.; Zaagane, M.; Benaabidate, L. Comparison of various drought indices for assessing drought status of the Northern Mekerra watershed, Northwest of Algeria. Arab. J. Geosci. 2021, 14, 915. [Google Scholar] [CrossRef]
- Habibi, B.; Meddib, M.; Torfs, P.J.J.F.; Remaound, M.; Van Lanen, H.A.J. Characterisation and prediction of meteorological drought using stochastic models in the semi-arid Chéliff–Zahrez basin (Algeria). J. Hydrol. Reg. Stud. 2018, 16, 15–31. [Google Scholar] [CrossRef]
- Merabti, A.; Martins, D.S.; Meddi, M.; Pereira, L.S. Spatial and Time Variability of Drought Based on SPI and RDI with Various Time Scales. Water Resour. Manag. 2018, 32, 1087–1100. [Google Scholar] [CrossRef]
- Smadhi, D.; Zella, L.; Bachir, H. Droughts in semi-arid cereal regions of Algeria. J. Fundam. Appl. Sci. 2017, 9, 1063–1073. [Google Scholar] [CrossRef]
- Khezazna, A.; Amarchi, H.; Derdous, O.; Bousakhria, F. Drought monitoring in the Seybouse basin (Algeria) over the last decades. J. Water Land Dev. 2017, 33, 79–88. [Google Scholar] [CrossRef]
- Hassini, N.; Belaid, A.; Dobbi, A. Trends of precipitation and drought on the Algerian littoral: Impact on the water reserves. Intl. J. Water Resour. Arid Environ. 2011, 1, 271–276. [Google Scholar]
- Achite, M.; Wałęga, A.; Toubal, A.K.; Mansour, H.; Krakauer, N. Spatiotemporal Characteristics and Trends of Meteorological Droughts in the Wadi Mina Basin, Northwest Algeria. Water 2021, 13, 3103. [Google Scholar] [CrossRef]
- Derdous, O.; Bouamrane, A.; Mrad, D. Spatiotemporal analysis of meteorological drought in a Mediterranean dry land: Case of the Chelif basin–Algeria. Model Earth Syst. Environ. 2021, 7, 135–143. [Google Scholar] [CrossRef]
- Mellak, S.; Souag-Gamane, D. Spatiotemporal analysis of maximum drought severity using Copulas in Northern Algeria. J. Water Clim. Chang. 2020, 11, 68–84. [Google Scholar] [CrossRef]
- Achour, K.; Meddi, M.; Zeroual, A.; Bouabdelli, S.; Maccioni, P.; Moramarco, T. Spatiotemporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index. J. Earth Syst. Sci. 2020, 129, 42. [Google Scholar] [CrossRef]
- Jones, R.; Boer, R. Assessing Current Climate Risks. Adaptation Policy Framework: A Fuide for Policies to Facilitate Adaptation to Climate Change. Available online: https://www4.unfccc.int/sites/NAPC/Country%20Documents/General/apf%20technical%20paper04.pdf (accessed on 12 December 2021).
- Brooks, N. Vulnerability, Risk and Adaptation: A Conceptual Framework; Working Paper 38; Tyndall Centre for Climate Change Research, University of East Anglia: Norwich, UK, 2003. [Google Scholar]
- Stenchion, P. Development and disaster management. Aust. J. Emerg. Manag. 1997, 12, 40–44. [Google Scholar]
- Brooks, N.; Adger, W.N.; Kelly, P.M. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob. Environ. Chang. 2005, 15, 151–163. [Google Scholar] [CrossRef]
- Kim, J.E.; Yu, J.; Ryu, J.H.; Lee, J.H.; Kim, T.W. Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model. Nat. Hazards 2021, 109, 707–724. [Google Scholar] [CrossRef]
- Singh, G.R.; Jain, M.K.; Gupta, V. Spatiotemporal assessment of drought hazard, vulnerability and risk in the Krishna River basin, India. Nat. Hazards 2019, 99, 611–635. [Google Scholar] [CrossRef]
- Rajsekhar, D.; Singh, V.P.; Mishra, A.K. Integrated drought causality, hazard, and vulnerability assessment for future socioeconomic scenarios: An information theory perspective. J. Geophys. Res. Atmos. 2015, 120, 6346–6378. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, P.; Li, J.; Xiao, M.; Singh, V.P. Assessment of drought vulnerability of the Tarim River basin, Xinjiang, China. Theor. Appl. Climatol. 2014, 121, 337–347. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Yoo, J.; Kim, T.W. Assessment of drought hazard, vulnerability, and risk: A case study for administrative districts in South Korea. J. Hydro-Environ. Res. 2013, 9, 28–35. [Google Scholar] [CrossRef]
- Bin, H.; Lü, A.; Wu, J.; Zhao, L.; Liu, M. Drought hazard assessment and spatial characteristics analysis in China. J. Geogr. Sci. 2011, 21, 235–249. [Google Scholar]
- Shahid, S.; Behrawan, H. Drought risk assessment in the western part of Bangladesh. Nat. Hazards 2008, 46, 391–413. [Google Scholar] [CrossRef]
- Louamri, A. Le Bassin-Versant de la Seybouse (Algérie Orientale): Hydrologie et Aménagement des Eaux. Ph.D. Thesis, Constantine 1 University, Constantine, Algeria, 2013. [Google Scholar]
- Edwards, D.C.; McKee, T.B. Characteristics of 20th century drought in the United States at multiple scales. Atmos. Sci. Pap. 1997, 634, 1–30. [Google Scholar]
- Thom, H.C.S. A note on the gamma distribution. Mon. Weather Rev. 1958, 86, 117–122. [Google Scholar] [CrossRef]
- Guttman, N.B. On the sensitivity of sample L moments to sample size. J. Clim. 1994, 7, 1026–1029. [Google Scholar] [CrossRef]
- Khan, M.I.; Zhu, X.; Jiang, X.; Saddique, Q.; Saifullah, M.; Niaz, Y.; Sajid, M. Projection of future drought characteristics under multiple drought indices. Water 2021, 13, 1238. [Google Scholar] [CrossRef]
- Nasirudeen, A.F.; Kabo-bah, A.T.; Amo-Boateng, M.; Karthikeyan, B. Analysis of drought patterns in the Tano river basin of Ghana. Sci. Afr. 2021, 13, e00883. [Google Scholar] [CrossRef]
- Tan, M.L.; Chua, V.P.; Li, C.; Brindha, K. Spatiotemporal analysis of hydro-meteorological drought in the Johor River Basin, Malaysia. Theoret. Appl. Climatol. 2019, 135, 825–837. [Google Scholar] [CrossRef]
- Haied, N.; Foufou, A.; Khadri, S.; Latifi, S.; Chaab, S.; Mekkaoui, F.Z. Drought monitoring till 2100 using future projected climate in Wadi M’Zi sub-basin. In Proceedings of the Séminaire International sur l’Hydrogéologie et l’Environnement, Ouargla, Algeria, 12–14 March 2019. [Google Scholar]
- Vangelis, H.; Tigkas, D.; Tsakiris, G. The effect of PET method on Reconnaissance Drought Index (RDI) calculation. J. Arid. Environ. 2013, 88, 30–140. [Google Scholar] [CrossRef]
- Zarch, M.A.A.; Malekinezhad, H.; Mobin, M.H.; Dastorani, M.T.; Kousari, M.R. Drought monitoring by Reconnaissance Drought Index (RDI) in Iran. Water Resour. Manag. 2011, 25, 3485–3504. [Google Scholar] [CrossRef]
- Shahidian, S.; Serralheiro, R.; Serrano, J.; Teixeira, J.; Haie, N.; Santos, F. Hargreaves and other reduced-set methods for calculating Evapotranspiration. In Evapotranspiration-Remote Sensing and Modeling; Irmak, A., Ed.; IntechOpen: London, UK, 2012; pp. 59–80. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Zarei, A.R.; Mahmoudi, M.R. Evaluation of changes in RDIst index effected by different Potential Evapotranspiration calculation methods. Water Resour. Manag. 2017, 31, 4981–4999. [Google Scholar] [CrossRef]
- Salas, J. Analysis and modeling of hydrologic time series. In Handbook of Hydrology; McGraw-Hill: New York, NY, USA, 1993; pp. 1–72. [Google Scholar]
- Yevjevich, V.M. An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts; Hydrology Papers; No. 23; Colorado State University: Fort Collins, CO, USA, 1967. [Google Scholar]
- Dracup, J.A.; Lee, K.S.; Paulson, E.G. On the definition of drought. Water Resour. Res. 1980, 16, 297–302. [Google Scholar] [CrossRef]
- Yisehak, B.; Shiferaw, H.; Abrha, H.; Gebremedhin, A.; Hagos, H.; Adhana, K.; Bezabh, T. Spatio-temporal characteristics of meteorological drought under changing climate in semi-arid region of northern Ethiopia. Environ. Syst. Res. 2021, 10, 21. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Carro, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef]
- Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A. Modeling the spatio-temporal meteorological drought characteristics using the Standardized Precipitation Index (SPI) in Raya and its environs, Northern Ethiopia. Earth Syst. Environ. 2018, 2, 292–303. [Google Scholar] [CrossRef]
- Vogt, J.V.; Naumann, G.; Masante, D.; Spinoni, J.; Cammalleri, C.; Erian, W.; Pischke, F.; Pulwarty, R.; Barbosa, P. Drought Risk Assessment and Management. A Conceptual Framework; EUR 29464 EN; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Ankrah, J.; Monteiro, A.; Madureira, H. Spatiotemporal Characteristics of Meteorological Drought and Wetness Events across the Coastal Savannah Agroecological Zone of Ghana. Water 2023, 15, 211. [Google Scholar] [CrossRef]
- Saaty, T.L. Scaling method for priorities in hierarchical structure. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Smit, B.; Burton, I.; Klein, R.J.T.; Street, R. The Science of Adaptation: A Framework for Assessment. Mitig. Adapt. Strat. Glob. Chang. 1999, 4, 199–213. [Google Scholar] [CrossRef]
- Wilhelmi, O.V.; Wilhite, D.A. Assessing vulnerability to agricultural drought: A Nebraska case study. Nat. Hazards 2002, 25, 37–58. [Google Scholar] [CrossRef]
- Wisner, B. Vulnerability in disaster theory and practice: From soup to taxonomy, then to analysis and finally tool. In Proceedings of the International Work-Conference Disaster Studies of Wageningen University and Research Centre, Wageningen, The Netherlands, 29–30 June 2001. [Google Scholar]
- Wisner, B. Assessment of capability and vulnerability. In Mapping Vulnerability: Disasters, Development and People; Bankoff, G., Frerks, G., Hilhorst, D., Eds.; Earth Scan: London, UK, 2004. [Google Scholar]
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. At Risk: Natural Hazards, Peoples Vulnerability, and Disasters; Routledge: London, UK; New York, NY, USA, 1994. [Google Scholar]
- Metzger, M.J.; Rounsevell, M.D.A.; Acosta-Michlik, L.; Leemans, R.; Schröter, D. The vulnerability of ecosystem services to land use change. Agric. Ecosyst. Environ. 2006, 114, 69–85. [Google Scholar] [CrossRef]
- Downing, T.E.; Bakker, K. Drought discourse and vulnerability. In Drought: A Global Assessment, Natural Hazards and Disasters Series; Wilhite, D.A., Ed.; Routledge Publishers: London, UK, 2000. [Google Scholar]
- Dabanli, I. Drought risk assessment by using drought hazard and vulnerability indexes. Nat. Hazards Earth Syst. Sci. Discuss. 2018, 1–15. [Google Scholar] [CrossRef]
- Wilhite, D.A. Drought as a natural hazard: Concepts and definitions. In Drought: A Global Assessment; Wilhite, D.A., Ed.; Routledge: New York, NY, USA, 2000. [Google Scholar]
- Haied, N.; Foufou, A.; Chaab, S.; Azlaoui, M.; Khadri, S.; Benzahia, K.; Benzahia, I. Drought assessment and monitoring using meteorological indices in a semi-arid region. Energy Procedia 2017, 119, 518–529. [Google Scholar] [CrossRef]
- Tsakiris, G.; Pangalou, D.; Vangelis, H. Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resour. Manag. 2007, 21, 821–833. [Google Scholar] [CrossRef]
- Rahman, N.; Rony, R.H.; Jannat, F.A. Spatiotemporal evaluation of drought trend during 1979–2019 in seven climatic zones of Bangladesh. Heliyon 2021, 7, e08249. [Google Scholar] [CrossRef] [PubMed]
- Gader, K.; Gara, A.; Vanclooster, M.; Khlifi, S.; Slimani, M. Drought assessment in a south Mediterranean transboundary catchment. Hydrol. Sci. J. 2020, 65, 1300–1315. [Google Scholar] [CrossRef]
- Zerouali, B.; Chettih, M.; Abda, Z.; Mesbah, M.; Djemai, M. The use of hybrid methods for change points and trends detection in rainfall series of northern Algeria. Acta Geophys. 2020, 68, 1443–1460. [Google Scholar] [CrossRef]
- Caloiero, T.; Aristodemo, F.; Algieri Ferraro, D. Trend analysis of significant wave height and energy period in southern Italy. Theor. Appl. Climatol. 2019, 138, 917–930. [Google Scholar] [CrossRef]
- Adhyani1, N.L.; June, T.; Sopaheluwakan, A. Exposure to Drought: Duration, Severity and Intensity (Java, Bali and Nusa Tenggara). IOP Conf. Ser. Earth Environ. Sci. 2017, 58, 012040. [Google Scholar] [CrossRef]
- Taşan, M.; Demir, Y.; Taşan, S. Groundwater quality assessment using principal component analysis and hierarchical cluster analysis in Alaçam, Turkey. Water Supply 2022, 22, 3431–3447. [Google Scholar] [CrossRef]
- Merabti, A.; Darouich, H.; Paredes, P.; Meddi, M.; Pereira, L.S. Assessing Spatial Variability and Trends of Droughts in Eastern Algeria Using SPI, RDI, PDSI, and MedPDSI—A Novel Drought Index Using the FAO56 Evapotranspiration Method. Water 2023, 15, 626. [Google Scholar] [CrossRef]
- El-Rawy, M.; Fathi, H.; Abdalla, F.; Alshehri, F.; Eldeeb, H. An Integrated Principal Component and Hierarchical Cluster Analysis Approach for Groundwater Quality Assessment in Jazan, Saudi Arabia. Water 2023, 15, 1466. [Google Scholar] [CrossRef]
- Farooq, I.; Shah, A.R.; Sahana, M.; Azhar Ehsan, M. Assessment of Drought Conditions Over Different Climate Zones of Kazakhstan Using Standardised Precipitation Evapotranspiration Index. Earth Syst. Environ. 2023, 7, 283–296. [Google Scholar] [CrossRef]
- Caloiero, T.; Caloiero, P.; Frustaci, F. Long-term precipitation trend analysis in Europe and in the Mediterranean basin. Water Environ. J. 2018, 32, 433–445. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Funk, C.; Fink, A.H. Rainfall over the African continent from the 19th through the 21st century. Global Planet Chang. 2018, 165, 114–127. [Google Scholar] [CrossRef]
- Meddi, H.; Meddi, M. Variabilité spatiale et temporelle des précipitations du Nord-Ouest de l’Algérie. Géogr. Tech. 2007, 2, 49–55. [Google Scholar]
Station | Longitude | Latitude | Elevation (m) | Observation Period |
---|---|---|---|---|
Annaba (Salines) | 7°49′ | 36°49′ | 4 | 1979–2019 |
El Kala | 8°27′ | 36°54′ | 10 | |
Guelma | 7°27′ | 36°27′ | 227 | |
Souk Ahras | 7°56′ | 36°17′ | 680 | |
Skikda | 6°57′ | 36°52′ | 7 | |
Djelfa | 3°16′ | 34°39′ | 1125 | |
Ain Ouessara | 2°52′ | 35°31′ | 649 | |
Ghardaia | 3°48′ | 32°24′ | 450 | |
M’Sila | 4°30′ | 35°39′ | 442 | |
Laghout | 2°55′ | 33°45′ | 765 | |
El Bayadh | 1°00′ | 33°39′ | 1341 | |
Tiaret | 1°25′ | 35°21′ | 1127 |
Description | Criterion |
---|---|
2.00 or more | Extremely wet |
1.50 to 1.99 | Severely wet |
1.00 to 1.49 | Moderately wet |
−0.99 to 0.99 | Near normal |
−1.00 to −1.49 | Moderately dry |
−1.50 to −1.99 | Severely dry |
2.00 or less | Extremely dry |
Meteorological Station | Score | SPI vs. RDI | Meteorological Station | Score | SPI vs. RDI |
---|---|---|---|---|---|
Annaba (Salines) | R2 | 0.977 | Ain Ouessara | R2 | 0.981 |
RMSE | 0.149 | RMSE | 0.137 | ||
El Kala | R2 | 0.930 | Ghardaia | R2 | 0.991 |
RMSE | 0.266 | RMSE | 0.092 | ||
Guelma | R2 | 0.964 | M’Sila | R2 | 0.962 |
RMSE | 0.189 | RMSE | 0.193 | ||
Souk Ahras | R2 | 0.921 | Laghout | R2 | 0.970 |
RMSE | 0.283 | RMSE | 0.171 | ||
Skikda | R2 | 0.977 | El Bayadh | R2 | 0.992 |
RMSE | 0.151 | RMSE | 0.086 | ||
Djelfa | R2 | 0.766 | Tiaret | R2 | 0.986 |
RMSE | 0.498 | RMSE | 0.119 |
Meteorological Station | Drought Frequencies | |||||
---|---|---|---|---|---|---|
Moderate | Severe | Extreme | ||||
SPI | RDI | SPI | RDI | SPI | RDI | |
Annaba (Salines) | 6.88 | 7.08 | 2.71 | 2.71 | 1.67 | 1.67 |
El Kala | 22.22 | 24.77 | 22.22 | 19.27 | 7.69 | 11.93 |
Guelma | 26.42 | 22.22 | 6.60 | 11.11 | 10.38 | 10.19 |
Souk Ahras | 38.89 | 25.00 | 9.72 | 14.47 | 15.28 | 15.79 |
Skikda | 22.22 | 28.74 | 13.58 | 17.24 | 22.22 | 17.24 |
Djelfa | 5.21 | 8.54 | 7.50 | 3.54 | 2.92 | 1.25 |
Ain Ouessara | 27.27 | 19.26 | 36.36 | 15.56 | 18.18 | 7.41 |
Ghardaia | 29.03 | 21.49 | 15.32 | 19.83 | 0.00 | 0.00 |
M’Sila | 18.18 | 25.64 | 19.70 | 23.08 | 39.39 | 30.77 |
Laghouat | 11.46 | 11.46 | 4.38 | 3.54 | 3.33 | 4.17 |
El Bayadh | 10.59 | 11.76 | 16.47 | 16.47 | 16.47 | 17.65 |
Tiaret | 30.95 | 40.00 | 14.29 | 22.86 | 30.95 | 34.29 |
Meteorological Station | Index | Year | Longest Duration | Year | Strongest Magnitude | Year | Highest Intensity |
---|---|---|---|---|---|---|---|
Annaba (Salines) | SPI | 1999–2001 | 16 | 1999–2001 | −26.444 | 1999–2001 | −1.653 |
RDI | 1998–2001 | 16 | 1998–2001 | −25.930 | 1996 | −1.629 | |
El Kala | SPI | 1998–2001 | 27 | 1998–2001 | −44.012 | 1995–1998 | −1.832 |
RDI | 28 | −49.311 | 1998–2001 | −1.761 | |||
Guelma | SPI | 1994–1996 | 14 | 1994–1996 | −32.050 | 1994–1996 | −2.289 |
RDI | 1987–1989 | 14 | 1993–1996 | −30.839 | 1993–1996 | −2.570 | |
Souk Ahras | SPI | 1984, 1987–1988 | 11 | 1996 | −27.806 | 1996 | −2.781 |
RDI | 1987–1988 | 11 | −33.181 | −3.318 | |||
Skikda | SPI | 1999–2001 | 20 | 1999–2001 | −34.280 | 1996 | −1.789 |
RDI | 1998–2001 | 25 | 1998–2001 | −39.141 | 1996–1997 | −1.769 | |
Djelfa | SPI | 1997–2000 | 32 | 1997–2000 | −56.815 | 1997–2000 | −1.775 |
RDI | 29 | −45.096 | −1.555 | ||||
Ain Ouessara | SPI | 1997–2002 | 46 | 1997–2002 | −83.785 | 1997–2002 | −1.821 |
RDI | 1997–2001 | 41 | 1997–2001 | −70.711 | 1997–2001 | −1.725 | |
Ghardaia | SPI | 1980–1983 | 25 | 1980–1983 | −35.965 | 2015–2017 | −1.497 |
RDI | 20 | −29.762 | −1.555 | ||||
M’Sila | SPI | 2015–2017 | 26 | 2015–2017 | −59.195 | 2015–2017 | −2.277 |
RDI | 2015–2018 | 38 | 2015–2018 | −79.382 | 2015–2018 | −2.089 | |
Laghouat | SPI | 1997–2001 | 35 | 1997–2001 | −59.370 | 1997–2001 | −1.696 |
RDI | 38 | −68.587 | −1.805 | ||||
El Bayadh | SPI | 1998–2001 | 30 | 1998–2001 | −65.341 | 1998–2001 | −2.178 |
RDI | 33 | −71.388 | −2.163 | ||||
Tiaret | SPI | 1997–2000 | 24 | 1997–2000 | −55.193 | 1997–2000 | −2.300 |
RDI | 24 | −56.069 | −2.336 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haied, N.; Foufou, A.; Khadri, S.; Boussaid, A.; Azlaoui, M.; Bougherira, N. Spatial and Temporal Assessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices. Sustainability 2023, 15, 7803. https://doi.org/10.3390/su15107803
Haied N, Foufou A, Khadri S, Boussaid A, Azlaoui M, Bougherira N. Spatial and Temporal Assessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices. Sustainability. 2023; 15(10):7803. https://doi.org/10.3390/su15107803
Chicago/Turabian StyleHaied, Nadjib, Atif Foufou, Samira Khadri, Adel Boussaid, Mohamed Azlaoui, and Nabil Bougherira. 2023. "Spatial and Temporal Assessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices" Sustainability 15, no. 10: 7803. https://doi.org/10.3390/su15107803
APA StyleHaied, N., Foufou, A., Khadri, S., Boussaid, A., Azlaoui, M., & Bougherira, N. (2023). Spatial and Temporal Assessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices. Sustainability, 15(10), 7803. https://doi.org/10.3390/su15107803