How Can We Stabilize Soil Using Microbial Communities and Mitigate Desertification?
Abstract
:1. Introduction
2. Biological Method—Soil Stabilization
2.1. Soil Stabilizing Microorganisms
2.2. Soil Stabilization via Bacteria
2.3. Soil Stabilization via Fungi
- (i)
- The external hyphae of AM fungi serve as skeletal structures that grasp the soil particles together;
- (ii)
- The extracardinal hyphae bridge the organic debris with mineral particles through mechanical entanglement that leads to the formation of microaggregates;
- (iii)
- Finally, these particles are cemented together through a physiochemical process involving different kinds of glued agents, such as an extracellular polysaccharide.
2.4. Soil Stabilization via Plant Growth-Promoting Rhizobacteria (PGPR)
2.5. Soil Stabilization via Cyanobacteria
2.6. Soil Stabilization via Plants
- (i)
- Succulents, with unique morphological and physiological characteristics suitable for dry conditions;
- (ii)
- Perennial, survival of these plants depends upon dormancy, especially during the dry season;
- (iii)
- Annual, these plants have rapid growth and a short life cycle.
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alsharif, W.; Saad, M.M.; Hirt, H. Desert Microbes for Boosting Sustainable Agriculture in Extreme Environments. Front. Microbiol. 2020, 11, 1666. [Google Scholar] [CrossRef]
- Zuckerkandl, E.; Pauling, L. Evolutionary Divergence and Convergence in Proteins. In Evolving Genes and Proteins; Bryson, V., Vogel, H.J., Eds.; Academic Press: New York, NY, USA, 1965; pp. 97–166. [Google Scholar]
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; Von Maltitz, G. World Atlas of Desertification Rethinking Land Degradation and Sustainable Land Management; Publication Office of the European Union: Luxembourg.
- Mei, F.; Zhang, X.; Lu, H.; Shen, Z.; Wang, Y. Characterization of MASDs of surface soils in north China and its influence on estimating dust emission. Chin. Sci. Bull. 2004, 49, 2169–2176. [Google Scholar] [CrossRef]
- Inoue, K.; Naruse, T. Physical, Chemical, and Mineralogical Characteristics of Modern Eolian Dust in Japan and Rate of Dust Deposition. Soil Sci. Plant Nutr. 1987, 33, 327–345. [Google Scholar] [CrossRef] [Green Version]
- Lester, E.D.; Satomi, M.; Ponce, A. Microflora of extreme arid Atacama Desert soils. Soil Biol. Biochem. 2007, 39, 704–708. [Google Scholar] [CrossRef]
- Chamizo, S.; Cantón, Y.; Miralles, I.; Domingo, F. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biol. Biochem. 2012, 49, 96–105. [Google Scholar] [CrossRef]
- Stomeo, F.; Valverde, A.; Pointing, S.B.; McKay, C.P.; Warren-Rhodes, K.A.; Tuffin, M.I.; Seely, M.; Cowan, D.A. Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles 2013, 17, 329–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Dai, A.; Wei, Y.; Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Chang. 2017, 7, 417–422. [Google Scholar] [CrossRef]
- Concostrina-Zubiri, L.; Valencia, E.; Ochoa, V.; Gozalo, B.; Mendoza, B.J.; Maestre, F.T. Species-specific effects of biocrust-forming lichens on soil properties under simulated climate change are driven by functional traits. New Phytol. 2020, 230, 101–115. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Rodríguez, J.G.; Gallardo, A. Biological soil crusts promote N accumulation in response to dew events in dryland soils. Soil Biol. Biochem. 2013, 62, 22–27. [Google Scholar] [CrossRef]
- Bastida, F.; Jehmlich, N.; Ondoño, S.; von Bergen, M.; García, C.; Moreno, J.L. Characterization of the microbial community in biological soil crusts dominated by Fulgensia desertorum (Tomin) Poelt and Squamarina cartilaginea (With.) P. James and in the underlying soil. Soil Biol. Biochem. 2014, 76, 70–79. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Kandeler, F.; Kampichler, C.; Horak, O. Influence of heavy metals on the functional diversity of soil microbial communities. Biol. Fertil. Soils 1996, 23, 299–306. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, A.R.; Hill, P.W.; Chadwick, D.R.; Jones, D.L. Typology of extreme flood event leads to differential impacts on soil functioning. Soil Biol. Biochem. 2018, 129, 153–168. [Google Scholar] [CrossRef]
- Krasilnikov, P.; Makarov, O.; Alyabina, I.; Nachtergaele, F. Assessing soil degradation in northern Eurasia. Geoderma Reg. 2016, 7, 1–10. [Google Scholar] [CrossRef]
- Collins, S.; Belnap, J.; Grimm, N.; Rudgers, J.; Dahm, C.; D’Odorico, P.; Litvak, M.; Natvig, D.; Peters, D.; Pockman, W.; et al. A Multiscale, Hierarchical Model of Pulse Dynamics in Arid-Land Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 397–419. [Google Scholar] [CrossRef] [Green Version]
- Berdugo, M.; Delgado-Baquerizo, M.; Soliveres, S.; Hernández-Clemente, R.; Zhao, Y.; Gaitán, J.J.; Gross, N.; Saiz, H.; Maire, V.; Lehmann, A.; et al. Global ecosystem thresholds driven by aridity. Science 2020, 367, 787–790. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global Desertification: Building a Science for Dryland Development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Maestre, F.T.; Salguero-Gomez, R.; Quero, J.L. It is getting hotter in here: Determining and projecting the impacts of global environmental change on drylands. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 3062–3075. [Google Scholar] [CrossRef] [Green Version]
- Blake, J.I.; Chappell, H.N.; Bennett, W.S.; Gessel, S.P.; Webster, S.R. Douglas Fir Growth and Foliar Nutrient Responses to Nitrogen and Sulfur Fertilization. Soil Sci. Soc. Am. J. 1990, 54, 257–262. [Google Scholar] [CrossRef]
- Belnap, J.; Büdel, B. Biological soil crusts as soil stabilizers. In Biological Soil Crusts: An Organizing Principle in Drylands; Springer: Cham, Switzerland, 2016; pp. 305–320. [Google Scholar]
- Blair, J.M. Fire, N availability, and plant response in grasslands: A test of the transient maxima hypothesis. Ecology 1997, 78, 2359–2368. [Google Scholar] [CrossRef]
- Sherwood, P. Soil Stabilization with Cement and Lime; HMSO: London, UK, 1993; Available online: http://worldcat.org/isbn/9780115511714 (accessed on 26 December 2022).
- Makhalanyane, T.; Valverde, A.; Gunnigle, E.; Frossard, A.; Ramond, J.-B.; Cowan, D.A. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 2015, 39, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Sabzi, Z. Environmental friendly soil stabilization materials available in Iran. J. Environ. Friendly Mater. 2018, 2, 33–39. [Google Scholar]
- Mekonnen, E.; Kebede, A.; Tafesse, T.; Tafesse, M. Application of Microbial Bioenzymes in Soil Stabilization. Int. J. Microbiol. 2020, 2020, 1725482. [Google Scholar] [CrossRef]
- Alvarado, D. Bio-Mediated Soil Improvement: Cementation of Unsaturated Sand Samples; University of California: Davis, LA, USA, 2009. [Google Scholar]
- Whiffin, V.S.; van Paassen, L.; Harkes, M.P. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Ivanov, V.; Chu, J. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev. Environ. Sci. Bio/Technology 2008, 7, 139–153. [Google Scholar] [CrossRef]
- Harkes, M.P.; van Paassen, L.A.; Booster, J.L.; Whiffin, V.S.; van Loosdrecht, M.C.M. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol. Eng. 2010, 36, 112–117. [Google Scholar] [CrossRef]
- Van Paassen, L.A. Bio-mediated ground improvement: From laboratory experiment to pilot applications. Proceeding of Geo-Frontiers. Adv. Geotech. Eng. 2011, 13, 4099–4108. [Google Scholar]
- DeJong, J.; Martinez, B.; Mortensen, B.; Nelson, D.; Waller, J.; Weil, M.; Ginn, T.; Weathers, T.; Barkouki, T.; Fujita, Y.; et al. Upscaling of Bio-Mediated Soil Improvement; Idaho National Lab. (INL): Idaho Falls, ID, USA, 2009; pp. 2300–2303. [Google Scholar] [CrossRef]
- Warren, S.D.; Harmon, R.S.; Baker, S.E.; McDonald, E.V. Role of biological soil crusts in desert hydrology and geomorphology Implications for military training operations. Rev. Eng. Geol. 2014, 22, 177–186. [Google Scholar] [CrossRef]
- Belnap, J. Biological Soil Crusts: Structure, Function, and Management; Lange, O.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Forest, H.S.; Weston, C.R. Blue-green algae from the Atacama Desert of northern Chile. J. Phycol. 1966, 2, 163–164. [Google Scholar] [CrossRef]
- Rodríguez-Caballero, E.; Cantón, Y.; Jetten, V. Biological soil crust effects must be included to accurately model infiltration and erosion in drylands: An example from Tabernas Badlands. Geomorphology 2015, 241, 331–342. [Google Scholar] [CrossRef]
- Rodríguez-Caballero, E.; Chamizo, S.; Roncero-Ramos, B.; Roman, R.; Canton, Y. Runoff from biocrust: A vital resource for vegetation performance on Mediterranean steppes. Ecohydrology 2018, 11, e1977. [Google Scholar] [CrossRef]
- Bashan, Y.; Puente, M.E.; de-Bashan, L.E.; Hernandez, J.P. Environmental uses of plant growth-promoting bacteria. Plant-Microbe Interact. 2008, 661, 69–93. [Google Scholar]
- Rousk, J.; Bengtson, P. Microbial regulation of global biogeochemical cycles. Front. Microbiol. 2014, 5, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buyanovsky, G.; Dicke, M.; Berwick, P. Soil environment and activity of soil microflora in the Negev desert. J. Arid. Environ. 1982, 5, 13–28. [Google Scholar] [CrossRef]
- Parker, L.; Miller, J.; Steinberger, Y.; Whitford, W. Soil respiration in a chihuahuan desert rangeland. Soil Biol. Biochem. 1983, 15, 303–309. [Google Scholar] [CrossRef]
- Parker, L.W.; Freckman, D.W.; Steinberger, Y.; Driggers, L.; Whitford, W.G. Effects of simulated rainfall and litter quantities on desert soil biota: Soil respiration, microflora, and protozoa. Pedobiologia 1984, 27, 185–195. [Google Scholar]
- Skujinš, J. Microbial ecology of desert soils. In Advances in Microbial Ecology; Springer: Boston, MA, USA, 1984; pp. 49–91. [Google Scholar]
- Venkateswarlu, B.; Rao, A. Distribution of microorganisms in stabilised and unstabilised sand dunes of the Indian desert. J. Arid Environ. 1981, 4, 203–207. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Bhatnagar, M. Microbial diversity in desert ecosystems. Curr. Sci. 2005, 10, 91–100. [Google Scholar]
- Rao, A.; Venkateswarlu, B. Microbial ecology of the soils of Indian desert. Agric. Ecosyst. Environ. 1983, 10, 361–369. [Google Scholar] [CrossRef]
- Cameron, R.E. Cold desert characteristics and problems relevant to other arid lands. Arid. Lands Perspect. 2013, 1969, 202–205. [Google Scholar]
- Trappe, J.M. Mycorrhizae and productivity of arid and semiarid rangelands. In Advances in Food-Producing Systems for Arid and Semiarid Lands; Academic Press: Cambridge, MA, USA, 1981; Volume 1, pp. 581–599. [Google Scholar]
- Wright, S.F.; Upadhyaya, A. Extraction of an Abundant and Unusual Protein from Soil and Comparison with Hyphal Protein of Arbuscular Mycorrhizal Fungi. Soil Sci. 1996, 161, 575–586. [Google Scholar] [CrossRef]
- Rillig, M.C.; Wright, S.F.; Eviner, V. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant Soil 2002, 238, 325–333. [Google Scholar] [CrossRef]
- Raveh-Amit, H.; Tsesarsky, M. Biostimulation in Desert Soils for Microbial-Induced Calcite Precipitation. Appl. Sci. 2020, 10, 2905. [Google Scholar] [CrossRef] [Green Version]
- Burne, R.; Chen, Y.-Y.M. Bacterial ureases in infectious diseases. Microbes Infect. 2000, 2, 533–542. [Google Scholar] [CrossRef]
- Meng, H.; Gao, Y.; He, J.; Qi, Y.; Hang, L. Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests. Geoderma 2020, 383, 114723. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Y. Experimental Study on the Aeolian Sand Solidification via MICP Technique. Geofluids 2022, 2022, 4858395. [Google Scholar] [CrossRef]
- Soon, N.W.; Lee, L.M.; Khun, T.C.; Ling, H.S. Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE J. Civ. Eng. 2013, 17, 718–728. [Google Scholar] [CrossRef]
- Mortensen, B.M.; Haber, M.J.; DeJong, J.T.; Caslake, L.F.; Nelson, D.C. Effects of environmental factors on microbial induced calcium carbonate precipitation. J. Appl. Microbiol. 2011, 111, 338–349. [Google Scholar] [CrossRef]
- Chittoori, B.C.S.; Rahman, T.; Burbank, M. Microbial-Facilitated Calcium Carbonate Precipitation as a Shallow Stabilization Alternative for Expansive Soil Treatment. Geotechnics 2021, 1, 558–572. [Google Scholar] [CrossRef]
- Nemati, M.; Voordouw, G. Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzym. Microb. Technol. 2003, 33, 635–642. [Google Scholar] [CrossRef]
- De Muynck, W.; Debrouwer, D.; De Belie, N.; Verstraete, W. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 2008, 38, 1005–1014. [Google Scholar] [CrossRef]
- Frąc, M.; Jezierska-Tys, S.; Yaguchi, T. Occurrence, Detection, and Molecular and Metabolic Characterization of Heat-Resistant Fungi in Soils and Plants and Their Risk to Human Health. Adv. Agron. 2015, 132, 161–204. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 2020, 367, eaba1223. [Google Scholar] [CrossRef] [PubMed]
- Al-Whaibi, M.H. Desert Plants and Mycorrhizae (A mini-review). J. Pure Appl. Microbiol. 2009, 3, 457–466. [Google Scholar]
- Apple, M.E. Aspects of Mycorrhizae in Desert Plants. In Desert Plants; Springer: Berlin/Heidelberg, Germany, 2010; pp. 121–134. [Google Scholar] [CrossRef]
- Augé, R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Worchel, E.R.; Giauque, H.E.; Kivlin, S.N. Fungal Symbionts Alter Plant Drought Response. Microb. Ecol. 2012, 65, 671–678. [Google Scholar] [CrossRef]
- Augé, R. Arbuscular mycorrhizae and soil/plant water relations. Can. J. Soil Sci. 2004, 84, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Mickan, B.; Feng, G.; Chen, Y. Arbuscular mycorrhizal fungi improved plant growth and nutrient acquisition of desert ephemeral Plantago minuta under variable soil water conditions. J. Arid. Land 2014, 7, 414–420. [Google Scholar] [CrossRef]
- Chaudhary, V.B.; Akland, K.; Johnson, N.C.; Bowker, M.A. Do soil inoculants accelerate dryland restoration? A simultaneous assessment of biocrusts and mycorrhizal fungi. Restor. Ecol. 2019, 28, S115–S126. [Google Scholar] [CrossRef]
- Dhawi, F. Plant Growth Promoting Rhizobacteria (PGPR) Regulated Phyto and Microbial Beneficial Protein Interactions. Open Life Sci. 2020, 15, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Dhawi, F.; Hess, A. Poor-Soil Rhizosphere Enriched with Different Microbial Activities Influence the Availability of Base Elements. Open J. Ecol. 2017, 7, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Dhawi, F.; Datta, R.; Ramakrishna, W. Proteomics provides insights into biological pathways altered by plant growth promoting bacteria and arbuscular mycorrhiza in sorghum grown in marginal soil. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2017, 1865, 243–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharyya, P.N.J. Plantgrowth-promotingrhizobacteria (PGPR): Emergencein agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef]
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq Boyce, A. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review. Molecules 2016, 21, 573. [Google Scholar] [CrossRef]
- Paul, D.; Lade, H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: A review. Agron. Sustain. Dev. 2014, 34, 737–752. [Google Scholar] [CrossRef]
- Eida, A.A.; Ziegler, M.; Lafi, F.; Michell, C.; Voolstra, C.R.; Hirt, H.; Saad, M.M. Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS ONE 2018, 13, e0208223. [Google Scholar] [CrossRef]
- Bokhari, A.; Essack, M.; Lafi, F.F.; Andres-Barrao, C.; Jalal, R.; Alamoudi, S.; Razali, R.; Alzubaidy, H.; Shah, K.H.; Siddique, S.; et al. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci. Rep. 2019, 9, 18154. [Google Scholar] [CrossRef] [Green Version]
- Acuña, J.J.; Campos, M.; Mora, M.D.L.L.; Jaisi, D.P.; Jorquera, M.A. ACCD-producing rhizobacteria from an Andean Altiplano native plant (Parastrephia quadrangularis) and their potential to alleviate salt stress in wheat seedlings. Appl. Soil Ecol. 2019, 136, 184–190. [Google Scholar] [CrossRef]
- Aseri, G.; Jain, N.; Panwar, J.; Rao, A.; Meghwal, P. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegranate (Punica granatum L.) in Indian Thar Desert. Sci. Hortic. 2008, 117, 130–135. [Google Scholar] [CrossRef]
- Galaviz, C.; Lopez, B.R.; De-Bashan, L.E.; Hirsch, A.M.; Maymon, M.; Bashan, Y. Root growth improvement of mesquite seedlings and bacterial rhizosphere and soil community changes are induced by inoculation with plant growth-promoting bacteria and promote restoration of eroded desert soil. Land Degrad. Dev. 2018, 29, 1453–1466. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.N. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.). PLoS ONE 2016, 11, e0155026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allali, K.; Goudjal, Y.; Zamoum, M.; Bouznada, K.; Sabaou, N.; Zitouni, A. Nocardiopsis dassonvillei strain MB22 from the Algerian Sahara promotes wheat seedlings growth and potentially controls the common root rot pathogen Bipolaris sorokiniana. J. Plant Pathol. 2019, 101, 1115–1125. [Google Scholar] [CrossRef]
- Chamizo, S.; Mugnai, G.; Rossi, F.; Certini, G.; De Philippis, R. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration. Front. Environ. Sci. 2018, 6, 49. [Google Scholar] [CrossRef]
- Rossi, F.; De Philippis, R. Role of Cyanobacterial Exopolysaccharides in Phototrophic Biofilms and in Complex Microbial Mats. Life 2015, 5, 1218–1238. [Google Scholar] [CrossRef]
- Prasanna, R.; Jaiswal, P.; Nayak, S.; Sood, A.; Kaushik, B.D. Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J. Microbiol. 2009, 49, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Priya, H.; Prasanna, R.; Ramakrishnan, B.; Bidyarani, N.; Babu, S.; Thapa, S.; Renuka, N. Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol. Res. 2015, 171, 78–89. [Google Scholar] [CrossRef]
- Singh, J.S.; Kumar, A.; Rai, A.N.; Singh, D.P. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Front. Microbiol. 2016, 7, 529. [Google Scholar] [CrossRef] [Green Version]
- Maestre, F.; Bowker, M.; Cantón, Y.; Castillo-Monroy, A.; Cortina, J.; Escolar, C.; Escudero, A.; Lázaro, R.; Martínez, I. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J. Arid. Environ. 2011, 75, 1282–1291. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Caballero, E.; Castro, A.J.; Chamizo, S.; Quintas-Soriano, C.; Garcia-Llorente, M.; Cantón, Y.; Weber, B. Ecosystem services provided by biocrusts: From ecosystem functions to social values. J. Arid. Environ. 2018, 159, 45–53. [Google Scholar] [CrossRef]
- Mazor, G.; Kidron, G.J.; Vonshak, A.; Abeliovich, A. The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol. Ecology. 1996, 21, 121–130. [Google Scholar] [CrossRef]
- Noy-meir, I. Desert Ecosystems: Environment and Producers. Annu. Rev. Ecol. Syst. 1973, 4, 25–51. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, M.; Belnap, J. Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China. J. Arid. Environ. 2010, 74, 1186–1191. [Google Scholar] [CrossRef]
- Rozenstein, O.; Zaady, E.; Katra, I.; Karnieli, A.; Adamowski, J.; Yizhaq, H. The effect of sand grain size on the development of cyanobacterial biocrusts. Aeolian Res. 2014, 15, 217–226. [Google Scholar] [CrossRef]
- Lan, S.; Wu, L.; Yang, H.; Zhang, D.; Hu, C. A new biofilm based microalgal cultivation approach on shifting sand surface for desert cyanobacterium Microcoleus vaginatus. Bioresour. Technol. 2017, 238, 602–608. [Google Scholar] [CrossRef]
- Mugnai, G.; Rossi, F.; Felde, V.J.M.N.L.; Colesie, C.; Büdel, B.; Peth, S.; Kaplan, A.; De Philippis, R. Development of the polysaccharidic matrix in biocrusts induced by a cyanobacterium inoculated in sand microcosms. Biol. Fertil. Soils 2017, 54, 27–40. [Google Scholar] [CrossRef]
- Hu, C.; Liu, Y.; Song, L.; Zhang, D. Effect of desert soil algae on the stabilization of fine sands. J. Appl. Phycol. 2002, 14, 281–292. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, Y.; Hu, C.; Chen, L.; Li, D. Relationships between the biomass of algal crusts in fields and their compressive strength. Soil Biol. Biochem. 2007, 39, 567–572. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Li, D.; Hu, C.; Rao, B. Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol. Biochem. 2009, 41, 926–929. [Google Scholar] [CrossRef]
- Li, H.; Rao, B.; Wang, G.; Shen, S.; Li, D.; Hu, C.; Liu, Y. Spatial heterogeneity of cyanobacteria-inoculated sand dunes significantly influences artificial biological soil crusts in the Hopq Desert (China). Environ. Earth Sci. 2013, 71, 245–253. [Google Scholar] [CrossRef]
- Feng, J.; Li, W.; Ma, L. Cultivation of Artificial Algal Crust and Its Effect on Soil Improvement in Sandy Area. In Deserts and Desertification; Zhu, Y., Luo, Q., Liu, Y., Eds.; IntechOpen: London, UK, 2022; pp. 61–74. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, Q.; Yang, L.; Li, B.; Hu, C.; Lan, S. Nutrient transferring from wastewater to desert through artificial cultivation of desert cyanobacteria. Bioresour. Technol. 2018, 247, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Zuazo, V.D.; Pleguezuelo, C.R.R. Soil-Erosion and Runoff Prevention by Plant Covers: A Review. Agron. Sustain. Dev. 2009, 28, 785–811. [Google Scholar] [CrossRef] [Green Version]
- Gyssels, G.; Poesen, J. The importance of plant root characteristics in controlling concentrated flow erosion rates. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2003, 28, 371–384. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Gyssels, G.; Knapen, A. Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology 2006, 76, 54–67. [Google Scholar] [CrossRef]
- Baets, S.D.; Poesen, J.; Knapen, A.; Galindo, P. Impact of root architecture on the erosion-reducing potential of roots during concentrated flow. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2007, 32, 1323–1345. [Google Scholar] [CrossRef]
- Tengbeh, G. The effect of grass roots on shear strength variations with moisture content. Soil Technol. 1993, 6, 287–295. [Google Scholar] [CrossRef]
- Nicholson, S.E. Desert Hydrology. Encyclopedia of Hydrology and Lakes. Encyclopedia of Earth Science; Springer: Dordrecht, The Netherlands, 1998; pp. 176–183. [Google Scholar]
- Gibson, A.C.; Nobel, P.S. The Cactus Primer; Harvard University Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Bashan, Y. Interactions of Azospirillum spp. in soils: A review. Biol. Fertil. Soils 1999, 29, 246–256. [Google Scholar] [CrossRef]
- Bashan, Y.; Davis, E.; Carrillo-Garcia, A.; Linderman, R.G. Assessment of VA mycorrhizal inoculum potential in relation to the establishment of cactus seedlings under mesquite nurse-trees in the Sonoran Desert. Appl. Soil Ecol. 2000, 14, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Garcia, E.C.; De La Luz, J.L.; Bashan, Y.; Bethlenfalvay, G.J. Nurse Plants, Mycorrhizae, and Plant Establishment in a Disturbed Area of the Sonoran Desert. Restor. Ecol. 1999, 7, 321–335. [Google Scholar] [CrossRef] [Green Version]
- Lozano, N.E.L.; Carcaño-Montiel, M.G.; Bashan, Y. Using native trees and cacti to improve soil potential nitrogen fixation during long-term restoration of arid lands. Plant Soil 2016, 403, 317–329. [Google Scholar] [CrossRef]
- Bashan, Y.; Rojas, A.; Puente, M.E. Improved establishment and development of three cactus species inoculated with Azospirillum brasilense transplanted into disturbed urban desert soil. Can. J. Microbiol. 1999, 45, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Akinwumi, I.I.; Ukegbu, I. Soil modification by addition of cactus mucilage. Geomech. Eng. 2015, 8, 649–661. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, C.; Liang, L.; Yi, Z.; Xue, S. Quantitative assessment of the potential for soil improvement by planting Miscanthus on saline-alkaline soil and the underlying microbial mechanism. GCB Bioenergy 2021, 13, 1191–1205. [Google Scholar] [CrossRef]
- Jain, S.; Yadav, R.; Mishra, D.; Singh, M.; Khare, P. Sustainable phytoremediation of highly acidic mine spoil through economical valuable crop Pelargonium graveolens L. Environ. Prog. Sustain. Energy 2022, 41, e13920. [Google Scholar] [CrossRef]
- Cao, S.; Xia, C.; Li, W.; Xian, J. Win–win path for ecological restoration. Land Degrad. Dev. 2021, 32, 430–438. [Google Scholar] [CrossRef]
- Ríos, A.D.L.; Garrido-Benavent, I.; Limón, A.; Cason, E.D.; Maggs-Kölling, G.; Cowan, D.; Valverde, A. Novel lichen-dominated hypolithic communities in the Namib Desert. Microb. Ecol. 2021, 83, 1036–1048. [Google Scholar] [CrossRef]
Desert | Area (km2) | Temperature (℃) | Precipitation (mm/year) | Topography |
---|---|---|---|---|
Karoo | 395,000 | 2–40 | 50–200 | Bush lands & savannah, Gravel Plains |
Namib | 81,000 | 5–45 | 5–100 | Sand plains & dunes, Gravel Plains |
Sahara | 9,100,000 | −5–45 | 5–150 | Sand, dunes, gravel plains, Desert & rock pavements |
Kalahari | 520,000 | −10–45 | 100–250 | Longitudinal dunes & sand sheets |
Sonoran | 312,000 | −10–50 | 70–400 | Plains and basins bounded by ridges |
Atacama | 105,000 | −5–40 | 0–20 | Lava fields & sand dunes, Salt basins |
Mojave | 152,000 | −10–50 | 30–300 | Calcium carbonate dunes, Mountain chains, Dry alkaline lake beds |
Chihuahuan | 455,000 | 10–40 | 70–400 | Numerous mountain ranges and with shrubs & covered flat basins |
Thar | 2,00,000 | 4–50 | 200–300 | Dunes & saline soil, Rocky mountains |
Arabian | 2,300,000 | 5–40 | 25–230 | Rocky highlands & gravel plains, Sands |
Gobi | 53,000 | −20–30 | 30–100 | Gravel plains & rocky outcrops, Grasslands |
Tamami | 185,000 | 10–40 | 300–500 | Shrubs & grasslands, Sandy plains |
Gibson | 156,000 | 6–40 | 200–400 | Grasslands & rocky highlands, Sandy plains |
Simpson | 180,000 | 5–40 | 50–400 | Extensive dune fields |
Nagev | 13,000 | 5–40 | 100–300 | Rocky highlands & sandy soils, Dunes |
Microorganisms | Members | Ref. |
---|---|---|
Lichens | Collema sps., Stellarangia sps., Buellia sps. | [11] |
Cyanobacteria | Oscillatoria pseudogeminata, Chroococcus minutus, Phormidium Tenue and Nostoc species | [46,47] |
Fungi | Curvularia, Asperrgillus, Mucor, Fusarium, Pénicillium, Paecilomyces, Stemphyli and Phoma | [48] |
Xeric Mushroom | Coprinus, Fomes, Terfezia, and Terman | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhawi, F. How Can We Stabilize Soil Using Microbial Communities and Mitigate Desertification? Sustainability 2023, 15, 863. https://doi.org/10.3390/su15010863
Dhawi F. How Can We Stabilize Soil Using Microbial Communities and Mitigate Desertification? Sustainability. 2023; 15(1):863. https://doi.org/10.3390/su15010863
Chicago/Turabian StyleDhawi, Faten. 2023. "How Can We Stabilize Soil Using Microbial Communities and Mitigate Desertification?" Sustainability 15, no. 1: 863. https://doi.org/10.3390/su15010863
APA StyleDhawi, F. (2023). How Can We Stabilize Soil Using Microbial Communities and Mitigate Desertification? Sustainability, 15(1), 863. https://doi.org/10.3390/su15010863