Investigation of the Level of Knowledge in Different Countries about Edible Insects: Cluster Segmentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrument
2.2. Data Collection
2.3. Sample Characterization
2.4. Statistical Analyses
3. Results
3.1. Factor Analysis
3.2. Cluster Analysis
- Cluster 1 (‘fearful’ individuals)—individuals with low knowledge about EIs, but who are aware of the possible harmful effects resulting from their consumption;
- Cluster 2 (‘farming’ individuals)—individuals with very low knowledge about EIs, but who are informed about their production;
- Cluster 3 (‘ecological’ individuals)—individuals with very high knowledge about EIs, particularly concerning sustainability aspects and the production of EIs, but who are not informed about their possible health effects.
3.3. Characterisation of the Clusters
4. Discussion
4.1. Analysis of the Scale
4.2. Characterisation of the Participants’ Clusters and Discussion of Sociocultural Influences
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lange, K.W.; Nakamura, Y. Edible Insects as Future Food: Chances and Challenges. J. Future Foods 2021, 1, 38–46. [Google Scholar] [CrossRef]
- Davidowitz, G. Habitat-Centric versus Species-Centric Approaches to Edible Insects for Food and Feed. Curr. Opin. Insect Sci. 2021, 48, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Backwell, L.R.; d’Errico, F. Evidence of Termite Foraging by Swartkrans Early Hominids. Proc. Natl. Acad. Sci. USA 2001, 98, 1358–1363. [Google Scholar] [CrossRef] [PubMed]
- Bisconsin-Júnior, A.; Rodrigues, H.; Behrens, J.H.; da Silva, M.A.A.P.; Mariutti, L.R.B. “Food Made with Edible Insects”: Exploring the Social Representation of Entomophagy Where It Is Unfamiliar. Appetite 2022, 173, 106001. [Google Scholar] [CrossRef] [PubMed]
- La Barbera, F.; Verneau, F.; Videbæk, P.N.; Amato, M.; Grunert, K.G. A Self-Report Measure of Attitudes toward the Eating of Insects: Construction and Validation of the Entomophagy Attitude Questionnaire. Food Qual. Prefer. 2020, 79, 103757. [Google Scholar] [CrossRef]
- Van Huis, A.; Itterbeeck, J.V.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 978-92-5-107596-8. [Google Scholar]
- Sogari, G.; Ricciolo, F.; Moruzzo, R.; Menozzi, D.; Sosa, D.A.T.; Li, J.; Liu, A.; Mancini, S. Engaging in entomophagy: The role of food neophobia and disgust between insect and non-insect eaters. Food Qual. And Pref. 2023, 104, 104764. [Google Scholar] [CrossRef]
- Çınar, Ç.; Karinen, A.K.; Tybur, J.M. The Multidimensional Nature of Food Neophobia. Appetite 2021, 162, 105177. [Google Scholar] [CrossRef]
- Hopkins, I.; Farahnaky, A.; Gill, H.; Newman, L.P.; Danaher, J. Australians’ Experience, Barriers and Willingness towards Consuming Edible Insects as an Emerging Protein Source. Appetite 2022, 169, 105832. [Google Scholar] [CrossRef]
- La Barbera, F.; Verneau, F.; Amato, M.; Grunert, K. Understanding Westerners’ Disgust for the Eating of Insects: The Role of Food Neophobia and Implicit Associations. Food Qual. Prefer. 2018, 64, 120–125. [Google Scholar] [CrossRef]
- Dagevos, H. A Literature Review of Consumer Research on Edible Insects: Recent Evidence and New Vistas from 2019 Studies. J. Insects Food Feed 2021, 7, 249–259. [Google Scholar] [CrossRef]
- Bruckdorfer, R.E.; Büttner, O.B. When Creepy Crawlies Are Cute as Bugs: Investigating the Effects of (Cute) Packaging Design in the Context of Edible Insects. Food Qual. Prefer. 2022, 100, 104597. [Google Scholar] [CrossRef]
- Mishyna, M.; Chen, J.; Benjamin, O. Sensory Attributes of Edible Insects and Insect-Based Foods—Future Outlooks for Enhancing Consumer Appeal. Trends Food Sci. Technol. 2020, 95, 141–148. [Google Scholar] [CrossRef]
- Borges, M.M.; da Costa, D.V.; Trombete, F.M.; Câmara, A.K.F.I. Edible Insects as a Sustainable Alternative to Food Products: An Insight into Quality Aspects of Reformulated Bakery and Meat Products. Curr. Opin. Food Sci. 2022, 46, 100864. [Google Scholar] [CrossRef]
- Baiano, A. Edible Insects: An Overview on Nutritional Characteristics, Safety, Farming, Production Technologies, Regulatory Framework, and Socio-Economic and Ethical Implications. Trends Food Sci. Technol. 2020, 100, 35–50. [Google Scholar] [CrossRef]
- Jantzen da Silva Lucas, A.; Menegon de Oliveira, L.; da Rocha, M.; Prentice, C. Edible Insects: An Alternative of Nutritional, Functional and Bioactive Compounds. Food Chem. 2020, 311, 126022. [Google Scholar] [CrossRef]
- Schmidt, A.; Call, L.-M.; Macheiner, L.; Mayer, H.K. Determination of Vitamin B12 in Four Edible Insect Species by Immunoaffinity and Ultra-High Performance Liquid Chromatography. Food Chem. 2019, 281, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Raheem, D.; Raposo, A.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Carrascosa, C. Entomophagy: Nutritional, Ecological, Safety and Legislation Aspects. Food Res. Int. 2019, 126, 108672. [Google Scholar] [CrossRef]
- Imathiu, S. Benefits and Food Safety Concerns Associated with Consumption of Edible Insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Grdeń, A.S.; Sołowiej, B.G. Macronutrients, Amino and Fatty Acid Composition, Elements, and Toxins in High-Protein Powders of Crickets, Arthrospira, Single Cell Protein, Potato, and Rice as Potential Ingredients in Fermented Food Products. Appl. Sci. 2022, 12, 12831. [Google Scholar] [CrossRef]
- Murefu, T.R.; Macheka, L.; Musundire, R.; Manditsera, F.A. Safety of Wild Harvested and Reared Edible Insects: A Review. Food Control 2019, 101, 209–224. [Google Scholar] [CrossRef]
- Ojha, S.; Bekhit, A.E.-D.; Grune, T.; Schlüter, O.K. Bioavailability of Nutrients from Edible Insects. Curr. Opin. Food Sci. 2021, 41, 240–248. [Google Scholar] [CrossRef]
- Kunatsa, Y.; Chidewe, C.; Zvidzai, C.J. Phytochemical and Anti-Nutrient Composite from Selected Marginalized Zimbabwean Edible Insects and Vegetables. J. Agric. Food Res. 2020, 2, 100027. [Google Scholar] [CrossRef]
- Paissoni, M.A.; Bitelli, G.; Vilanova, M.; Montanini, C.; Río Segade, S.; Rolle, L.; Giacosa, S. Relative Impact of Oenological Tannins in Model Solutions and Red Wine According to Phenolic, Antioxidant, and Sensory Traits. Food Res. Int. 2022, 157, 111203. [Google Scholar] [CrossRef] [PubMed]
- Strati, I.F.; Tataridis, P.; Shehadeh, A.; Chatzilazarou, A.; Bartzis, V.; Batrinou, A.; Sinanoglou, V.J. Impact of Tannin Addition on the Antioxidant Activity and Sensory Character of Malagousia White Wine. Curr. Res. Food Sci. 2021, 4, 937–945. [Google Scholar] [CrossRef]
- Santillo, A.; Ciliberti, M.G.; Ciampi, F.; Luciano, G.; Natalello, A.; Menci, R.; Caccamo, M.; Sevi, A.; Albenzio, M. Feeding Tannins to Dairy Cows in Different Seasons Improves the Oxidative Status of Blood Plasma and the Antioxidant Capacity of Cheese. J. Dairy Sci. 2022, 105, 8609–8620. [Google Scholar] [CrossRef]
- González, C.M.; Llorca, E.; Quiles, A.; Hernando, I.; Moraga, G. An in Vitro Digestion Study of Tannins and Antioxidant Activity Affected by Drying “Rojo Brillante” Persimmon. LWT 2022, 155, 112961. [Google Scholar] [CrossRef]
- Cano, A.; Contreras, C.; Chiralt, A.; González-Martínez, C. Using Tannins as Active Compounds to Develop Antioxidant and Antimicrobial Chitosan and Cellulose Based Films. Carbohydr. Polym. Technol. Appl. 2021, 2, 100156. [Google Scholar] [CrossRef]
- Orsi, L.; Voege, L.L.; Stranieri, S. Eating Edible Insects as Sustainable Food? Exploring the Determinants of Consumer Acceptance in Germany. Food Res. Int. 2019, 125, 108573. [Google Scholar] [CrossRef]
- Lucchese-Cheung, T.; Aguiar, L.K.D.; Da Silva, R.F.F.; Pereira, M.W. Determinants of the Intention to Consume Edible Insects in Brazil. J. Food Prod. Mark. 2020, 26, 297–316. [Google Scholar] [CrossRef]
- Liu, A.-J.; Li, J.; Gómez, M.I. Factors Influencing Consumption of Edible Insects for Chinese Consumers. Insects 2019, 11, 10. [Google Scholar] [CrossRef]
- Florença, S.G.; Guiné, R.P.F.; Gonçalves, F.J.A.; Barroca, M.J.; Ferreira, M.; Costa, C.A.; Correia, P.M.R.; Cardoso, A.P.; Campos, S.; Anjos, O.; et al. The Motivations for Consumption of Edible Insects: A Systematic Review. Foods 2022, 11, 3643. [Google Scholar] [CrossRef] [PubMed]
- Guiné, R.P.F.; Florença, S.G.; Costa, C.A.; Correia, P.M.R.; Ferreira, M.; Duarte, J.; Cardoso, A.P.; Campos, S.; Anjos, O. Development of a Questionnaire to Assess Knowledge and Perceptions about Edible Insects. Insects 2022, 13, 47. [Google Scholar] [CrossRef]
- Likert, R. A Technique for the Measurement of Attitudes. Arch. Psychol. 1932, 22, 5–55. [Google Scholar]
- Leighton, K.; Kardong-Edgren, S.; Schneidereith, T.; Foisy-Doll, C. Using Social Media and Snowball Sampling as an Alternative Recruitment Strategy for Research. Clin. Simul. Nurs. 2021, 55, 37–42. [Google Scholar] [CrossRef]
- Broen, M.P.G.; Moonen, A.J.H.; Kuijf, M.L.; Dujardin, K.; Marsh, L.; Richard, I.H.; Starkstein, S.E.; Martinez–Martin, P.; Leentjens, A.F.G. Factor Analysis of the Hamilton Depression Rating Scale in Parkinson’s Disease. Park. Relat. Disord. 2015, 21, 142–146. [Google Scholar] [CrossRef]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark Iv. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Stevens, J.P. Applied Multivariate Statistics for the Social Sciences, 5th ed.; Routledge: New York, NY, USA, 2009; ISBN 978-0-8058-5903-4. [Google Scholar]
- Rohm, A.J.; Swaminathan, V. A Typology of Online Shoppers Based on Shopping Motivations. J. Bus. Res. 2004, 57, 748–757. [Google Scholar] [CrossRef]
- Tanaka, K.; Akechi, T.; Okuyama, T.; Nishiwaki, Y.; Uchitomi, Y. Development and Validation of the Cancer Dyspnoea Scale: A Multidimensional, Brief, Self-Rating Scale. Br. J. Cancer 2000, 82, 800–805. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.H.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Prentice Hall: Hoboken, NJ, USA, 2009; ISBN 978-0-13-813263-7. [Google Scholar]
- Maroco, J.; Garcia-Marques, T. Qual a fiabilidade do alfa de Cronbach? Questões antigas e soluções modernas? Lab. Psicol. 2006, 4, 65–90. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.B. Educational Measurements Their Interpretation; Wadsworth Pub. Co.: Belmont, CA, USA, 1964. [Google Scholar]
- Dolnicar, S. A Review of Data-Driven Market Segmentation in Tourism. J. Travel Tour. Mark. 2002, 12, 1–22. [Google Scholar] [CrossRef]
- Witten, R.; Witte, J. Statistics, 9th ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- EC REGULATION (EC) No 258/97 of the European Parliament and of the Couoncil of 27 January 1997 Concerning Novel Foods and Novel Food Ingredients. Off. J. Eur. Comm. 1997, L 43, 1–9.
- EU Regulation (EU) 2015/2283 of the European Parliament and of the Council on Novel Foods, Amending Regulation (EU) No. 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No. 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No. 1852/2001. Off. J. Eur. Union 2015, L 327, 1–22.
- EFSA. Safety of Dried Yellow Mealworm (Tenebrio Molitor Larva) as a Novel Food Pursuant to Regulation (EU) 2015/2283 | EFSA. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/6343 (accessed on 22 June 2022).
- Schiel, L.; Wind, C.; Krueger, S.; Braun, P.G.; Koethe, M. Applicability of Analytical Methods for Determining the Composition of Edible Insects in German Food Control. J. Food Compos. Anal. 2022, 104676. [Google Scholar] [CrossRef]
- Arppe, T.; Niva, M.; Jallinoja, P. The Emergence of the Finnish Edible Insect Arena: The Dynamics of an ‘Active Obstacle’. Geoforum 2020, 108, 227–236. [Google Scholar] [CrossRef]
- Liceaga, A.M. Processing Insects for Use in the Food and Feed Industry. Curr. Opin. Insect Sci. 2021, 48, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Gahukar, R.T. Edible Insects Collected from Forests for Family Livelihood and Wellness of Rural Communities: A Review. Glob. Food Secur. 2020, 25, 100348. [Google Scholar] [CrossRef]
- Gahukar, R.T. Entomophagy Can Support Rural Livelihood in India. Curr. Sci. 2012, 103, 10. [Google Scholar]
- Gahukar, R.T. Entomophagy for Nutritional Security in India: Potential and Promotion. Curr. Sci. 2018, 115, 1078–1084. [Google Scholar] [CrossRef]
- Etuk, E.B.; Okeudo, N.J.; Esonu, B.O.; Udedibie, A.B.I. Antinutritional Factors in Sorghum: Chemistry, Mode of Action and Effects on Livestock and Poultry. Online J. Anim. Feed Res. (OJAFR) 2012, 2, 113–119. [Google Scholar]
- Gazuwa, S.Y.; Denkok, Y. Organic Metabolites, Alcohol Content, and Microbial Contaminants in Sorghum-Based Native Beers Consumed in Barkin Ladi Local Government Area, Nigeria. J. Sci. Res. Rep. 2017, 17, 1–8. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Correia, P.; Coelho, C.; Costa, C.A. The Role of Edible Insects to Mitigate Challenges for Sustainability. Open Agric. 2021, 6, 24–36. [Google Scholar] [CrossRef]
- Ordoñez-Araque, R.; Egas-Montenegro, E. Edible Insects: A Food Alternative for the Sustainable Development of the Planet. Int. J. Gastron. Food Sci. 2021, 23, 100304. [Google Scholar] [CrossRef]
- Oonincx, D.G.; Dierenfeld, E.S. An Investigation Into the Chemical Composition of Alternative Invertebrate Prey. Zoo Biol. 2012, 31, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, D.; Zhou, S.; Duan, S.; Duan, H.; Guo, J.; Yan, W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods 2022, 11, 3961. [Google Scholar] [CrossRef]
- Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient Composition and Protein Quality Evaluation of Eri Silkworm (Samia Ricinii) Prepupae and Pupae. Food Chem. 2011, 128, 400–403. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Homolková, D.; Božik, M.; Plachý, V.; Vrabec, V. Effect of Developmental Stage on the Nutritional Value of Edible Insects. A Case Study with Blaberus Craniifer and Zophobas Morio. J. Food Compos. Anal. 2020, 92, 103570. [Google Scholar] [CrossRef]
- Anaduaka, E.G.; Uchendu, N.O.; Osuji, D.O.; Ene, L.N.; Amoke, O.P. Nutritional Compositions of Two Edible Insects: Oryctes Rhinoceros Larva and Zonocerus Variegatus. Heliyon 2021, 7, e06531. [Google Scholar] [CrossRef]
- Kouhsari, F.; Saberi, F.; Kowalczewski, P.Ł.; Lorenzo, J.M.; Kieliszek, M. Effect of the Various Fats on the Structural Characteristics of the Hard Dough Biscuit. LWT 2022, 159, 113227. [Google Scholar] [CrossRef]
- van Huis, A.; Oonincx, D.G.A.B. The Environmental Sustainability of Insects as Food and Feed. A Review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible Insects in a Food Safety and Nutritional Perspective: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- Palmieri, N.; Perito, M.A.; Macrì, M.; Lupi, C. Exploring Consumers’ Willingness to Eat Insects in Italy. Br. Food J. 2019, 121, 2937–2950. [Google Scholar] [CrossRef]
- Balezentis, T.; Morkunas, M.; Volkov, A.; Ribasauskiene, E.; Streimikiene, D. Are Women Neglected in the EU Agriculture? Evidence from Lithuanian Young Farmers. Land Use Policy 2021, 101, 105129. [Google Scholar] [CrossRef] [PubMed]
- Ragsdale, K.; Read-Wahidi, M.R.; Wei, T.; Martey, E.; Goldsmith, P. Using the WEAI+ to Explore Gender Equity and Agricultural Empowerment: Baseline Evidence among Men and Women Smallholder Farmers in Ghana’s Northern Region. J. Rural Stud. 2018, 64, 123–134. [Google Scholar] [CrossRef]
- Unay-Gailhard, İ.; Bojnec, Š. Gender and the Environmental Concerns of Young Farmers: Do Young Women Farmers Make a Difference on Family Farms? J. Rural Stud. 2021, 88, 71–82. [Google Scholar] [CrossRef]
- Ingutia, R.; Sumelius, J. Determinants of Food Security Status with Reference to Women Farmers in Rural Kenya. Sci. Afr. 2022, 15, e01114. [Google Scholar] [CrossRef]
- Owusu, V.; Yiridomoh, G.Y. Assessing the Determinants of Women Farmers’ Targeted Adaptation Measures in Response to Climate Extremes in Rural Ghana. Weather Clim. Extrem. 2021, 33, 100353. [Google Scholar] [CrossRef]
- Sell, M.; Minot, N. What Factors Explain Women’s Empowerment? Decision-Making among Small-Scale Farmers in Uganda. Women’s Stud. Int. Forum 2018, 71, 46–55. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Florença, S.G.; Anjos, O.; Correia, P.M.R.; Ferreira, B.M.; Costa, C.A. An Insight into the Level of Information about Sustainability of Edible Insects in a Traditionally Non-Insect-Eating Country: Exploratory Study. Sustainability 2021, 13, 12014. [Google Scholar] [CrossRef]
- Florença, S.G.; Correia, P.M.R.; Costa, C.A.; Guiné, R.P.F. Edible Insects: Preliminary Study about Perceptions, Attitudes, and Knowledge on a Sample of Portuguese Citizens. Foods 2021, 10, 709. [Google Scholar] [CrossRef]
- Zakari, A.; Toplak, J. Investigation into the Social Behavioural Effects on a Country’s Ecological Footprint: Evidence from Central Europe. Technol. Forecast. Soc. Chang. 2021, 170, 120891. [Google Scholar] [CrossRef]
- Saboya de Aragão, B.; Alfinito, S. The Relationship between Human Values and Conscious Ecological Behavior among Consumers: Evidence from Brazil. Clean. Responsible Consum. 2021, 3, 100024. [Google Scholar] [CrossRef]
- Hartmann, C.; Shi, J.; Giusto, A.; Siegrist, M. The Psychology of Eating Insects: A Cross-Cultural Comparison between Germany and China. Food Qual. Prefer. 2015, 44, 148–156. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Gonçalves, A.T.S.; Moura, A.P.; Varela, P.; Cunha, L.M. Insects as Food and Feed in Portugal and Norway—Cross-Cultural Comparison of Determinants of Acceptance. Food Qual. Prefer. 2022, 102, 104650. [Google Scholar] [CrossRef]
- Schardong, I.S.; Freiberg, J.A.; Santana, N.A.; Richards, N.S.P. dos S. Brazilian Consumers’ Perception of Edible Insects. Cienc. Rural 2019, 49, e20180960. [Google Scholar] [CrossRef]
- Gasca-Álvarez, H.J.; Costa-Neto, E.M. Insects as a Food Source for Indigenous Communities in Colombia: A Review and Research Perspectives. J. Insects Food Feed 2022, 8, 593–603. [Google Scholar] [CrossRef]
- Ebenebe, C.I.; Amobi, M.I.; Udegbala, C.U.; Ufele, A.N.; Nweze, B.O. Survey of Edible Insect Consumption in South-Eastern Nigeria. J. Insects Food Feed 2017, 3, 241–252. [Google Scholar] [CrossRef]
- Ehounou, G.P.; Ouali-N’Goran, S.W.M.; Niassy, S. Assessment of Entomophagy in Abidjan (Cote D’ivoire, West Africa). Afr. J. Food Sci. 2018, 12, 6–14. [Google Scholar]
- Anankware, J.P.; Osekre, E.A.; Obeng-Ofori, D.; Khamala, C.M. Identification and Classification of Common Edible Insects in Ghana. Int. J. Entomol. Res. 2016, 1, 33–39. [Google Scholar]
- Hlongwane, Z.T.; Slotow, R.; Munyai, T.C. Indigenous Knowledge about Consumption of Edible Insects in South Africa. Insects 2020, 12, 22. [Google Scholar] [CrossRef]
- Matandirotya, N.R.; Filho, W.L.; Mahed, G.; Maseko, B.; Murandu, C.V. Edible Insects Consumption in Africa towards Environmental Health and Sustainable Food Systems: A Bibliometric Study. Int. J. Environ. Res. Public Health 2022, 19, 14823. [Google Scholar] [CrossRef]
- Ruby, M.B.; Rozin, P.; Chan, C. Determinants of Willingness to Eat Insects in the USA and India. J. Insects Food Feed 2015, 1, 215–225. [Google Scholar] [CrossRef]
- Szendrő, K.; Tóth, K.; Nagy, M.Z. Opinions on Insect Consumption in Hungary. Foods 2020, 9, 1829. [Google Scholar] [CrossRef] [PubMed]
- Detilleux, L.; Wittock, G.; Dogot, T.; Francis, F.; Caparros Megido, R. Edible Insects, What about the Perceptions of Belgian Youngsters? Br. Food J. 2021, 123, 1985–2002. [Google Scholar] [CrossRef]
- House, J. Insects as Food in the Netherlands: Production Networks and the Geographies of Edibility. Geoforum 2018, 94, 82–93. [Google Scholar] [CrossRef]
- Penedo, A.O.; Bucher Della Torre, S.; Götze, F.; Brunner, T.A.; Brück, W.M. The Consumption of Insects in Switzerland: University-Based Perspectives of Entomophagy. Foods 2022, 11, 2771. [Google Scholar] [CrossRef]
- Kulma, M.; Tůmová, V.; Fialová, A.; Kouřimská, L. Insect Consumption in the Czech Republic: What the Eye Does Not See, the Heart Does Not Grieve Over. J. Insects Food Feed 2020, 6, 525–535. [Google Scholar] [CrossRef]
- Orkusz, A.; Wolańska, W.; Harasym, J.; Piwowar, A.; Kapelko, M. Consumers’ Attitudes Facing Entomophagy: Polish Case Perspectives. Int. J. Environ. Res. Public Health 2020, 17, 2427. [Google Scholar] [CrossRef]
- Zielińska, E.; Zieliński, D.; Karaś, M.; Jakubczyk, A. Exploration of Consumer Acceptance of Insects as Food in Poland. J. Insects Food Feed 2020, 6, 383–392. [Google Scholar] [CrossRef]
- Gałęcki, R.; Zielonka, Ł.; Zasȩpa, M.; Gołȩbiowska, J.; Bakuła, T. Potential Utilization of Edible Insects as an Alternative Source of Protein in Animal Diets in Poland. Front. Sustain. Food Syst. 2021, 5, 675796. [Google Scholar] [CrossRef]
N° | Item Description |
---|---|
1 | Entomophagy is a dietary practice that consists in the consumption of insects by humans. |
2 | There are thousands of species of insects that are consumed by humans in the world. |
3 | Insects are a more sustainable alternative when compared with other sources of animal protein. |
4 | Insect production for human consumption emits much less greenhouse gases than beef production. |
5 | Insects efficiently convert organic matter into protein. |
6 | The production of insect protein uses considerably less feed than beef protein. |
7 | Insects are a possibility for responding to the growing world demand for protein. |
8 | The production of chicken protein requires much less water than insect protein. * |
9 | The ecological footprint (impact) of insects is smaller when compared with other animal proteins. |
10 | The production of insect protein requires much more area than pork protein. * |
11 | Insects are collected as a means of pest control for some cultivated crops. |
12 | The loss of biodiversity is lower with insect production compared with other animal food production. |
13 | The energy input needed for production of insect protein is lower than for the production of other proteins from animal origin. |
14 | Insects have poor nutritional value. * |
15 | Insects are a good source of energy. |
16 | Insects have high protein content. |
17 | Insect proteins are of poorer quality compared with other animal species. * |
18 | Insects provide essential amino acids necessary for humans. |
19 | Insects contain group B vitamins. |
20 | Insects contain dietary fibre. |
21 | Insects contain minerals of nutritional interest, such as calcium, iron, and magnesium. |
22 | Insects contain fat, including unsaturated fatty acids. |
23 | Insects contain anti-nutrients, such as oxalates and phytic acid. |
24 | There are appropriate regulations to guarantee the food safety of edible insects. |
25 | Insects contain bioactive compounds beneficial to human health. |
26 | Insects are potential sources of allergens. |
27 | Aflatoxins, which are carcinogens, can be present in insects. |
Country | N | % |
---|---|---|
Croatia | 686 | 9.9 |
Greece | 636 | 9.2 |
Latvia | 300 | 4.3 |
Lebanon | 357 | 5.2 |
Lithuania | 510 | 7.4 |
Mexico | 1139 | 16.5 |
Poland | 520 | 7.5 |
Portugal | 527 | 7.6 |
Romania | 492 | 7.1 |
Serbia | 344 | 5.0 |
Slovenia | 517 | 7.5 |
Spain | 575 | 8.3 |
Turkey | 296 | 4.3 |
Total | 6899 | 100 |
Methods 1 | WGL | BGL | NN | FN | CE | MC | WA |
---|---|---|---|---|---|---|---|
WGL | 100% | ||||||
BGL | 43% | 100% | |||||
NN | 43% | 99% | 100% | ||||
FN | 41% | 52% | 51% | 100% | |||
CE | 43% | 98% | 99% | 50% | 100% | ||
MC | 44% | 99% | 99% | 52% | 98% | 100% | |
WA | 69% | 45% | 37% | 41% | 45% | 45% | 100% |
Factor | %VE 1 | Items | Loadings | Factor Name | Cronbach’s Alpha (α) |
---|---|---|---|---|---|
F1 | 19.45 | 3. Insects more sustainable than other animal proteins | 0.650 | Sustainability (SUS) | 0.899 |
4. Insects emit fewer greenhouse gases than cows | 0.748 | 0.905 2 | |||
5. Insects efficiently convert organic matter into protein | 0.685 | ||||
6. Insects use considerably less feed than cows | 0.781 | ||||
7. Insects can meet the growing demand for protein | 0.718 | ||||
9. The footprint of insects is smaller than other animals | 0.755 | ||||
11. Insect collection is a pest control mechanism | 0.528 | ||||
12. Insects originate lower loss of biodiversity | 0.670 | ||||
13. Insects require less energy than other animals | 0.750 | ||||
F2 | 13.70 | 18. Insects provide essential amino acids | 0.639 | Nutrition (NUT) | 0.832 |
19. Insects contain group B vitamins | 0.740 | 0.844 3 | |||
20. Insects contain dietary fibre | 0.694 | ||||
21. Insects contain minerals of nutritional interest | 0.740 | ||||
22. Insects contain fat, including unsaturated fatty acids | 0.711 | ||||
23. Insects contain anti-nutrients | 0.499 | ||||
25. Insects contain bioactive compounds | 0.444 | ||||
F3 | 9.25 | 1. Entomophagy consists in the consumption of insects | 0.545 | Insects as Protein Food (IPF) | 0.712 |
2. There are thousands of species of edible insects | 0.580 | ||||
14. Insects have poor nutritional value (reversed) | 0.558 | ||||
15. Insects are a good source of energy | 0.516 | ||||
16. Insects have high protein content | 0.518 | ||||
17. Insect proteins are of poorer quality (reversed) | 0.450 | ||||
F4 | 6.67 | 26. Insects can contain allergens | 0.790 | Health Risks (HR) | 0.577 |
27. Insects can contain aflatoxins | 0.740 | ||||
F5 | 6.32 | 8. Chickens require less water than insects (reversed) | 0.794 | Production Factors (PF) | 0.617 |
10. Insects require more area than pigs (reversed) | 0.823 |
Factor | %VE 1 | Items (Loadings) | Factor Name | Cronbach’s Alpha (α) |
---|---|---|---|---|
F1 | 22.51 | Item 3 (0.696), item 4 (0.778), item 5 (0.715), item 6 (0.793), item 7 (0.758), item 9 (0.750), item 12 (0.641), item 13 (0.732) | Sustainability (SUS) | 0.905 |
F2 | 18.27 | Item 15 (0.594), item 16 (0.560), item 18 (0.714), item 19 (0.746), item 20 (0.711), item 21 (0.788), item 22 (0.653), item 25 (0.579) | Nutrition (NUT) | 0.872 |
F3 | 7.15 | Item 8 (0.802), item 10 (0.801) | Production Factors (PF) | 0.617 |
F4 | 7.14 | Item 14 (−0.401), item 17 (−0.492), item 26 (0.761), item 27 (0.780) | Health Concerns (HC) | <0.5 |
Initial Solution 1 | Factors | ANOVA | Cluster 1 | Cluster 2 | Cluster 3 | ||||
---|---|---|---|---|---|---|---|---|---|
F | p-Value | PC 2 | FCC 3 | PC 2 | FCC 3 | PC 2 | FCC 3 | ||
BLG | F1 (SUS) | 1467 | p < 0.0005 | 50% | −0.433 | 25% | −0.057 | 25% | 0.901 |
F2 (NUT) | 2961 | p < 0.0005 | −0.526 | 1.129 | −1.068 | ||||
F3 (PF) | 1712 | p < 0.0005 | −0.334 | −0.338 | 0.990 | ||||
F4 (HC) | 34 | p < 0.0005 | 0.092 | −0.147 | −0.031 | ||||
CE | F1 (SUS) | 3287 | p < 0.0005 | 61% | −0.061 | 10% | −1.815 | 29% | 0.741 |
F2 (NUT) | 169 | p < 0.0005 | −0.080 | −0.402 | 0.304 | ||||
F3 (PF) | 3776 | p < 0.0005 | −0.576 | 0.687 | 0.969 | ||||
F4 (HC) | 158 | p < 0.0005 | 0.157 | −0.446 | −0.177 | ||||
MC | F1 (SUS) | 2098 | p < 0.0005 | 53% | 0.126 | 35% | 0.378 | 12% | −1.613 |
F2 (NUT) | 152 | p < 0.0005 | −0.186 | 0.260 | 0.056 | ||||
F3 (PF) | 841 | p < 0.0005 | 0.274 | −0.595 | 0.519 | ||||
F4 (HC) | 1340 | p < 0.0005 | 0.502 | −0.565 | −0.538 | ||||
NN | F1 (SUS) | 3286 | p < 0.0005 | 61% | −0.063 | 10% | −1.845 | 29% | 0.737 |
F2 (NUT) | 171 | p < 0.0005 | −0.090 | −0.382 | 0.312 | ||||
F3 (PF) | 3747 | p < 0.0005 | −0.573 | 0.701 | 0.966 | ||||
F4 (HC) | 163 | p < 0.0005 | 0.159 | −0.459 | −0.181 |
Variables | Cluster 1 Fearful | Cluster 2 Farming | Cluster 3 Ecological | Total | |
---|---|---|---|---|---|
Sex (p < 0.0005; V = 0.054) | Female | 65.9% | 57.5% | 58.9% | 63.0% |
Male | 33.5% | 42.0% | 40.2% | 36.3% | |
Other | 0.6% | 0.5% | 0.9% | 0.7% | |
Age group (p = 0.327; V = 0.018) | Young adults (18–30 y) | 48.4% | 46.1% | 48.8% | 48.3% |
Adults (31–50 y) | 35.8% | 36.3% | 36.7% | 36.1% | |
Senior adults (51 y or over) | 15.8% | 17.6% | 14.5% | 15.6% | |
Education level (p < 0.0005; V = 0.066) | Postgraduate education (master’s or PhD) | 30.3% | 21.8% | 35.5% | 31.0% |
University degree | 32.6% | 32.0% | 32.3% | 32.5% | |
No University degree | 37.1% | 46.2% | 32.2% | 36.5% |
Variables | Cluster 1 Fearful | Cluster 2 Farming | Cluster 3 Ecological | Total | |
---|---|---|---|---|---|
Country (p < 0.0005; V = 0.221) | Croatia | 10.9% | 16.8% | 5.3% | 9.8% |
Greece | 10.9% | 9.5% | 5.6% | 9.2% | |
Latvia | 5.7% | 2.3% | 2.3% | 4.4% | |
Lebanon | 6.3% | 2.6% | 3.7% | 5.2% | |
Lithuania | 7.5% | 3.0% | 8.6% | 7.4% | |
Mexico | 12.8% | 20.2% | 23.1% | 16.5% | |
Poland | 6.5% | 2.7% | 11.4% | 7.6% | |
Portugal | 7.5% | 7.7% | 7.7% | 7.6% | |
Romania | 8.2% | 8.2% | 4.5% | 7.1% | |
Serbia | 5.8% | 9.5% | 1.9% | 5.0% | |
Slovenia | 6.7% | 6.0% | 9.7% | 7.5% | |
Spain | 5.4% | 8.3% | 14.4% | 8.3% | |
Turkey | 5.7% | 3.2% | 1.7% | 4.3% | |
Living environment (p = 0.005; V = 0.033) | Rural | 16.0% | 18.3% | 13.2% | 15.4% |
Urban | 67.6% | 66.2% | 71.3% | 68.6% | |
Suburban | 16.4% | 15.5% | 15.5% | 16.0% |
Variables | Cluster 1 Fearful | Cluster 2 Farming | Cluster 3 Ecological | Total | |
---|---|---|---|---|---|
Professional area (p < 0.0005; V = 0.107) | Food/Nutrition | 30.0% | 24.0% | 38.2% | 31.9% |
Agriculture | 7.8% | 8.5% | 8.6% | 8.1% | |
Environment | 5.2% | 3.2% | 5.4% | 5.1% | |
Biology | 4.9% | 2.2% | 7.8% | 5.5% | |
Health | 12.4% | 16.1% | 11.4% | 12.5% | |
Tourism | 3.1% | 3.8% | 2.1% | 2.9% | |
Others | 36.6% | 42.2% | 26.5% | 34.0% | |
Family income (p < 0.0005; V = 0.057) | Much below average | 6.0% | 8.7% | 5.5% | 6.1% |
Below average | 16.6% | 19.3% | 15.5% | 16.5% | |
Average | 40.4% | 40.0% | 38.1% | 39.7% | |
Above average | 32.5% | 26.0% | 33.4% | 32.2% | |
Much above average | 4.5% | 6.0% | 7.5% | 5.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guiné, R.P.F.; Florença, S.G.; Costa, C.A.; Correia, P.M.R.; Ferreira, M.; Cardoso, A.P.; Campos, S.; Anjos, O.; Chuck-Hernández, C.; Sarić, M.M.; et al. Investigation of the Level of Knowledge in Different Countries about Edible Insects: Cluster Segmentation. Sustainability 2023, 15, 450. https://doi.org/10.3390/su15010450
Guiné RPF, Florença SG, Costa CA, Correia PMR, Ferreira M, Cardoso AP, Campos S, Anjos O, Chuck-Hernández C, Sarić MM, et al. Investigation of the Level of Knowledge in Different Countries about Edible Insects: Cluster Segmentation. Sustainability. 2023; 15(1):450. https://doi.org/10.3390/su15010450
Chicago/Turabian StyleGuiné, Raquel P. F., Sofia G. Florença, Cristina A. Costa, Paula M. R. Correia, Manuela Ferreira, Ana P. Cardoso, Sofia Campos, Ofélia Anjos, Cristina Chuck-Hernández, Marijana Matek Sarić, and et al. 2023. "Investigation of the Level of Knowledge in Different Countries about Edible Insects: Cluster Segmentation" Sustainability 15, no. 1: 450. https://doi.org/10.3390/su15010450
APA StyleGuiné, R. P. F., Florença, S. G., Costa, C. A., Correia, P. M. R., Ferreira, M., Cardoso, A. P., Campos, S., Anjos, O., Chuck-Hernández, C., Sarić, M. M., Djekic, I., Papageorgiou, M., Baro, J. M. F., Korzeniowska, M., Černelič-Bizjak, M., Bartkiene, E., Tarcea, M., Boustani, N. M., Klava, D., & Damarli, E. (2023). Investigation of the Level of Knowledge in Different Countries about Edible Insects: Cluster Segmentation. Sustainability, 15(1), 450. https://doi.org/10.3390/su15010450