Integration of Distributed Generations in Smart Distribution Networks Using MultiCriteria Based Sustainable Planning Approach
Abstract
:1. Introduction
 TypeI: DGs injecting only active power.
 TypeII: DGs injecting only reactive power.
 TypeIII: DGs injecting both active and reactive power.
 TypeIV: DGs injecting active but consuming reactive power.
 (i)
 Evaluation with technoeconomicenvironmentalsocial performance metrics.
 (ii)
 Power loss minimization and maximization of voltage profile are considered.
 (iii)
 Studying the penetration of DGs to enhance the technoeconomic and environmental challenges of distribution networks.
 (iv)
 Costeconomic analysis of adopting DGs is considered.
 (v)
 Reduction in water consumption and GHG emissions, which is essential to mitigate climate change, as set forth in SDGs.
 (vi)
 Social impacts of the penetration of DGs.
 (vii)
 Evaluation of tradeoff solutions across sets of alternatives.
 (viii)
 Numerical evaluations are conducted across IEEE 33bus and 69bus ADNs.
 (ix)
 Validation of results with those reported in the literature as a benchmark.
2. Problem Formulation
2.1. Power Flow Computation
2.2. Performance Evaluation Indices
2.2.1. Technical Performance Indices
Power Loss
DG Penetration Level
Voltage Profile
Voltage Stability Index
2.2.2. CostEcononmic Performance Indices
Cost of Energy Loss
Energy Loss Saving
Cost of DG
Cost of Annual Investment
2.2.3. Environmental Performance Indices
Pollution Emission
Water Consumption
Land Use
2.2.4. Social Performance Indices
Life Quality
Social Awareness
2.3. Operational Constraints
2.3.1. Equality Constraints
2.3.2. Inequality Constraints
Voltage Constraint
DG Sizing Constraint
2.4. MultiCriteria Decision Making Analysis
2.4.1. Weighted Sum Method
2.4.2. Weighted Product Method
2.4.3. Technique for Order of Preference by Similarity to Ideal Solution
2.4.4. VIseKriterijumska Optimizacija I Kompromisno Resenje
3. Overview of Optimization Techniques
3.1. Moth Flame Optimization
Algorithm 1 Pseudo Code of MFO 

3.2. Marine Predators Algorithm
3.2.1. Phase 1
3.2.2. Phase 2
 First half of the population:$$\begin{array}{c}\hfill \overrightarrow{stepsiz{e}_{i}}=\overrightarrow{{R}_{L}}\otimes (\overrightarrow{{E}_{i}}\overrightarrow{{R}_{L}}\otimes \overrightarrow{{P}_{i}})\phantom{\rule{4pt}{0ex}}i=1,\dots ,\frac{n}{2}\end{array}$$$$\begin{array}{c}\hfill \overrightarrow{{P}_{i}}=\overrightarrow{{P}_{i}}+Q\times \overrightarrow{R}\otimes \overrightarrow{stepsiz{e}_{i}}\end{array}$$
 Second half of the population:$$\begin{array}{c}\hfill \overrightarrow{stepsiz{e}_{i}}=\overrightarrow{{R}_{B}}\otimes (\overrightarrow{{R}_{B}}\otimes \overrightarrow{{E}_{i}}\overrightarrow{{P}_{i}})\phantom{\rule{4pt}{0ex}}i=\frac{n}{2},\dots ,n\end{array}$$$$\begin{array}{cc}\hfill \overrightarrow{{P}_{i}}=& \overrightarrow{{E}_{i}}+Q\times CF\otimes \overrightarrow{stepsiz{e}_{i}}\hfill \end{array}$$$$\begin{array}{cc}\hfill CF=& {\left(\right)}^{1\frac{t}{T}}\left(\right)open="("\; close=")">2\frac{t}{T}\hfill \end{array}$$
3.2.3. Phase 3
Algorithm 2 Pseudo Code of MPA 

4. Results and Discussion
 (S0/C0): Base case (without DG).
 (S1/C13): Integrating DGs at UPF.
 (S2/C13): Integrating DGs at 0.90 LPF.
 (S3/C13): Integrating DGs at 0.85 LPF.
 (S4/C3): Integrating DGs at OPF.
4.1. Test System 1
4.1.1. TEES Performance Evaluation
4.1.2. Scenario 1
4.1.3. Scenario 2
4.1.4. Scenario 3
4.1.5. Scenario 4
4.1.6. Performance Analysis for the Proposed Method
4.2. Test System 2
4.2.1. TEES Performance Evaluation
4.2.2. Scenario 1
4.2.3. Scenario 2
4.2.4. Scenario 3
4.2.5. Scenario 4
4.2.6. Performance Analysis for the Proposed Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADN  Active distribution network 
AF  Annualized factor 
C_{E}  Cost of electricity unit 
C_{AI}  Cost of annual investment 
C_{PDG}  Cost of active power DG 
C_{QDG}  Cost of reactive power DG 
CU_{DG}  Cost of a DG unit 
CEPI  Costeconomic performance indices 
${C}_{{\mathrm{E}}_{\mathrm{L}\mathrm{o}\mathrm{s}\mathrm{s}}}$  Cost of energy loss/active power loss cost 
DG  Distributed generation 
DN  Distribution network 
EPI  Environmental performance indices 
Eg_{Aj}  Amount of energy produced by jth conventional power plant without employment of DG 
Eg_{j}  Amount of energy produced by jth conventional power plant with employment of DG 
${E}_{{\mathrm{D}\mathrm{G}}_{\mathrm{k}}}$  Amount of energy produced by kth DG plant 
EF_{i}  Emission factor of ith pollutant 
I_{R}  Interest rate based on annual cost 
LUI  Land use intensity 
LPF  Lagging power factor 
M$  Millions of USD 
MCDM  Multiplecriteria decision making 
ODGA  Optimal DG allocation 
OPF  Optimal power factor 
PF  Power factor 
PEM  Pollution emission minimization 
P_{LD}  Active power load 
P_{Loss}  Active power loss 
P_{LM}  Active power loss minimization 
P_{SS}  Active power release from substation 
Q_{LD}  Reactive power load 
Q_{Loss}  Reactive power loss 
Q_{LM}  Reactive power loss minimization 
Q_{SS}  Reactive power release from substation 
SPI  Social performance indices 
${S}_{{\mathrm{E}}_{\mathrm{L}\mathrm{o}\mathrm{s}\mathrm{s}}}$  Energy loss saving 
TEES  Technoeconomicenvironmentalsocial 
TPI  Technical performance indices 
UPF  Unity power factor 
WCF  Water consumption factor 
WCM  Water consumption minimization 
References
 Haseeb, M.; Kazmi, S.A.A.; Malik, M.M.; Ali, S.; Bukhari, S.B.A.; Shin, D.R. Multi objective based framework for energy management of smart microgrid. IEEE Access 2020, 8, 220302–220319. [Google Scholar] [CrossRef]
 Wagh, M.; Kulkarni, V. Modeling and optimization of integration of Renewable Energy Resources (RER) for minimum energy cost, minimum CO2 Emissions and sustainable development, in recent years: A review. Mater. Today Proc. 2018, 5, 11–21. [Google Scholar] [CrossRef]
 Ackermann, T.; Andersson, G.; Söder, L. Distributed generation: A definition. Electr. Power Syst. Res. 2001, 57, 195–204. [Google Scholar] [CrossRef]
 Selim, A.; Kamel, S.; Jurado, F. Efficient optimization technique for multiple DG allocation in distribution networks. Appl. Soft Comput. 2020, 86, 105938. [Google Scholar] [CrossRef]
 Quadri, I.A.; Bhowmick, S.; Joshi, D. A hybrid teaching–learningbased optimization technique for optimal DG sizing and placement in radial distribution systems. Soft Comput. 2019, 23, 9899–9917. [Google Scholar] [CrossRef]
 Suresh, M.; Belwin, E.J. Optimal DG placement for benefit maximization in distribution networks by using Dragonfly algorithm. Renew. Wind. Water Sol. 2018, 5, 1–8. [Google Scholar] [CrossRef]
 Khodabakhshian, A.; Andishgar, M.H. Simultaneous placement and sizing of DGs and shunt capacitors in distribution systems by using IMDE algorithm. Int. J. Electr. Power Energy Syst. 2016, 82, 599–607. [Google Scholar] [CrossRef]
 Selim, A.; Kamel, S.; Mohamed, A.A.; Elattar, E.E. Optimal Allocation of Multiple Types of Distributed Generations in Radial Distribution Systems Using a Hybrid Technique. Sustainability 2021, 13, 6644. [Google Scholar] [CrossRef]
 Hung, D.Q.; Mithulananthan, N.; Bansal, R. Analytical expressions for DG allocation in primary distribution networks. IEEE Trans. Energy Convers. 2010, 25, 814–820. [Google Scholar] [CrossRef]
 Georgilakis, P.S.; Hatziargyriou, N.D. Optimal distributed generation placement in power distribution networks: Models, methods, and future research. IEEE Trans. Power Syst. 2013, 28, 3420–3428. [Google Scholar] [CrossRef]
 Jain, S.; Kalambe, S.; Agnihotri, G.; Mishra, A. Distributed generation deployment: Stateoftheart of distribution system planning in sustainable era. Renew. Sustain. Energy Rev. 2017, 77, 363–385. [Google Scholar] [CrossRef]
 Trivedi, I.N.; Jangir, P.; Bhoye, M.; Jangir, N. An economic load dispatch and multiple environmental dispatch problem solution with microgrids using interior search algorithm. Neural Comput. Appl. 2018, 30, 2173–2189. [Google Scholar] [CrossRef]
 Marwali, M.N.; Jung, J.W.; Keyhani, A. Stability analysis of load sharing control for distributed generation systems. IEEE Trans. Energy Convers. 2007, 22, 737–745. [Google Scholar] [CrossRef]
 Esmaili, M.; Firozjaee, E.C.; Shayanfar, H.A. Optimal placement of distributed generations considering voltage stability and power losses with observing voltagerelated constraints. Appl. Energy 2014, 113, 1252–1260. [Google Scholar] [CrossRef]
 Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the art in research on microgrids: A review. IEEE Access 2015, 3, 890–925. [Google Scholar] [CrossRef]
 Naik, S.G.; Khatod, D.; Sharma, M. Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks. Int. J. Electr. Power Energy Syst. 2013, 53, 967–973. [Google Scholar] [CrossRef]
 Mahmoud, K.; Yorino, N.; Ahmed, A. Optimal distributed generation allocation in distribution systems for loss minimization. IEEE Trans. Power Syst. 2015, 31, 960–969. [Google Scholar] [CrossRef]
 Ehsan, A.; Yang, Q. Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Appl. Energy 2018, 210, 44–59. [Google Scholar] [CrossRef]
 Niknam, T.; Taheri, S.I.; Aghaei, J.; Tabatabaei, S.; Nayeripour, M. A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources. Appl. Energy 2011, 88, 4817–4830. [Google Scholar] [CrossRef]
 Moradi, M.H.; Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 2012, 34, 66–74. [Google Scholar] [CrossRef]
 García, J.A.M.; Mena, A.J.G. Optimal distributed generation location and size using a modified teaching–learning based optimization algorithm. Int. J. Electr. Power Energy Syst. 2013, 50, 65–75. [Google Scholar] [CrossRef]
 Ameli, A.; Bahrami, S.; Khazaeli, F.; Haghifam, M.R. A multiobjective particle swarm optimization for sizing and placement of DGs from DG owner’s and distribution company’s viewpoints. IEEE Trans. Power Deliv. 2014, 29, 1831–1840. [Google Scholar] [CrossRef]
 Sheng, W.; Liu, K.y.; Liu, Y.; Ye, X.; He, K. Reactive power coordinated optimisation method with renewable distributed generation based on improved harmony search. IET Gener. Transm. Distrib. 2016, 10, 3152–3162. [Google Scholar] [CrossRef]
 Ali, E.; Abd Elazim, S.; Abdelaziz, A. Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations. Renew. Energy 2017, 101, 1311–1324. [Google Scholar] [CrossRef]
 Abou ElEla, A.A.; ElSehiemy, R.A.; Abbas, A.S. Optimal placement and sizing of distributed generation and capacitor banks in distribution systems using water cycle algorithm. IEEE Syst. J. 2018, 12, 3629–3636. [Google Scholar] [CrossRef]
 Ramadan, A.; Ebeed, M.; Kamel, S.; Nasrat, L. Optimal allocation of renewable energy resources considering uncertainty in load demand and generation. In Proceedings of the 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE); 2019; pp. 124–128. [Google Scholar]
 Mohamed, M.A.E.S.; Mohammed, A.A.E.; Abd Elhamed, A.M.; Hessean, M.E. Optimal allocation of photovoltaic based and DSTATCOM in a distribution network under multi load levels. Eur. J. Eng. Technol. Res. 2019, 4, 114–119. [Google Scholar]
 Sambaiah, K.S.; Jayabarathi, T. Optimal allocation of renewable distributed generation and capacitor banks in distribution systems using salp swarm algorithm. Int. J. Renew. Energy Res. 2019, 9, 96–107. [Google Scholar]
 Remha, S.; Chettih, S.; Arif, S. A novel multiobjective bat algorithm for optimal placement and sizing of distributed generation in radial distributed systems. Adv. Electr. Electron. Eng. 2018, 15, 736–746. [Google Scholar] [CrossRef]
 Ganguly, S.; Samajpati, D. Distributed generation allocation with onload tap changer on radial distribution networks using adaptive genetic algorithm. Appl. Soft Comput. 2017, 59, 45–67. [Google Scholar] [CrossRef]
 Prasad, C.H.; Subbaramaiah, K.; Sujatha, P. Cost–benefit analysis for optimal DG placement in distribution systems by using elephant herding optimization algorithm. Renew. Wind Water Solar 2019, 6, 1–12. [Google Scholar] [CrossRef][Green Version]
 Almabsout, E.A.; ElSehiemy, R.A.; An, O.N.U.; Bayat, O. A hybrid local searchgenetic algorithm for simultaneous placement of DG units and shunt capacitors in radial distribution systems. IEEE Access 2020, 8, 54465–54481. [Google Scholar] [CrossRef]
 Nagaballi, S.; Kale, V.S. Pareto optimality and game theory approach for optimal deployment of DG in radial distribution system to improve technoeconomic benefits. Appl. Soft Comput. 2020, 92, 106234. [Google Scholar] [CrossRef]
 Hemeida, M.G.; Ibrahim, A.A.; Mohamed, A.A.A.; Alkhalaf, S.; ElDine, A.M.B. Optimal allocation of distributed generators DG based Manta Ray Foraging Optimization algorithm (MRFO). Ain Shams Eng. J. 2021, 12, 609–619. [Google Scholar] [CrossRef]
 Rupa, J.M.; Ganesh, S. Power flow analysis for radial distribution system using backward/forward sweep method. Int. J. Electr. Comput. Electron. Commun. Eng. 2014, 8, 1540–1544. [Google Scholar]
 Buayai, K.; Ongsakul, W.; Mithulananthan, N. Multiobjective microgrid planning by NSGAII in primary distribution system. Eur. Trans. Electr. Power 2012, 22, 170–187. [Google Scholar] [CrossRef]
 Selim, A.; Kamel, S.; Alghamdi, A.S.; Jurado, F. Optimal placement of DGs in distribution system using an improved harris hawks optimizer based on singleand multiobjective approaches. IEEE Access 2020, 8, 52815–52829. [Google Scholar] [CrossRef]
 Murty, V.V.; Kumar, A. Optimal placement of DG in radial distribution systems based on new voltage stability index under load growth. Int. J. Electr. Power Energy Syst. 2015, 69, 246–256. [Google Scholar] [CrossRef]
 Kazmi, S.A.A.; Ameer Khan, U.; Ahmad, W.; Hassan, M.; Ibupoto, F.A.; Bukhari, S.B.A.; Ali, S.; Malik, M.M.; Shin, D.R. Multiple (TEES)CriteriaBased Sustainable Planning Approach for MeshConfigured Distribution Mechanisms across Multiple Load Growth Horizons. Energies 2021, 14, 3128. [Google Scholar] [CrossRef]
 Oda, E.S.; Abd El Hamed, A.M.; Ali, A.; Elbaset, A.A.; Abd El Sattar, M.; Ebeed, M. Stochastic Optimal Planning of Distribution System Considering Integrated PhotovoltaicBased DG and DSTATCOM Under Uncertainties of Loads and Solar Irradiance. IEEE Access 2021, 9, 26541–26555. [Google Scholar] [CrossRef]
 Chiradeja, P.; Ramakumar, R. An approach to quantify the technical benefits of distributed generation. IEEE Trans. Energy Convers. 2004, 19, 764–773. [Google Scholar] [CrossRef]
 Baldwin, S. Carbon footprint of electricity generation. Lond. Parliam. Off. Sci. Technol. 2006, 268. [Google Scholar]
 Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies; Technical Report; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2011. [Google Scholar]
 Fritsche, U.; Berndes, G.; Cowie, A.; Johnson, F.; Dale, V.; Langeveld, H.; Sharma, N.; Watson, H.; Woods, J. Energy and Land Use: Global Land Outlook Working Paper; United Nations Convention to Combat Desertification (UNCCD): Bonn, Germany, 2017. [Google Scholar]
 Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
 Jin, J.; Rothrock, L.; McDermott, P.L.; Barnes, M. Using the analytic hierarchy process to examine judgment consistency in a complex multiattribute task. IEEE Trans. Syst. Man, Cybern. Part A Syst. Hum. 2010, 40, 1105–1115. [Google Scholar] [CrossRef]
 Mirjalili, S. Mothflame optimization algorithm: A novel natureinspired heuristic paradigm. Knowl.Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
 Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A natureinspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
 Sultana, S.; Roy, P.K. Multiobjective quasioppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 534–545. [Google Scholar] [CrossRef]
 Sultana, S.; Roy, P.K. Krill herd algorithm for optimal location of distributed generator in radial distribution system. Appl. Soft Comput. 2016, 40, 391–404. [Google Scholar] [CrossRef]
 Sharma, S.; Bhattacharjee, S.; Bhattacharya, A. QuasiOppositional Swine Influenza Model Based Optimization with Quarantine for optimal allocation of DG in radial distribution network. Int. J. Electr. Power Energy Syst. 2016, 74, 348–373. [Google Scholar] [CrossRef]
 Truong, K.H.; Nallagownden, P.; Elamvazuthi, I.; Vo, D.N. A quasioppositionalchaotic symbiotic organisms search algorithm for optimal allocation of DG in radial distribution networks. Appl. Soft Comput. 2020, 88, 106067. [Google Scholar] [CrossRef]
 Meena, N.K.; Swarnkar, A.; Gupta, N.; Niazi, K.R. Multiobjective Taguchi approach for optimal DG integration in distribution systems. IET Gener. Transm. Distrib. 2017, 11, 2418–2428. [Google Scholar] [CrossRef]
 Meena, N.K.; Parashar, S.; Swarnkar, A.; Gupta, N.; Niazi, K.R. Improved elephant herding optimization for multiobjective DER accommodation in distribution systems. IEEE Trans. Ind. Inform. 2017, 14, 1029–1039. [Google Scholar] [CrossRef]
 Saha, S.; Mukherjee, V. A novel multiobjective chaotic symbiotic organisms search algorithm to solve optimal DG allocation problem in radial distribution system. Int. Trans. Electr. Energy Syst. 2019, 29, e2839. [Google Scholar] [CrossRef]
 Ali, A.; Keerio, M.; Laghari, J. Optimal Site and Size of Distributed Generation Allocation in Radial Distribution Network Using Multiobjective Optimization. J. Mod. Power Syst. Clean Energy 2020, 9, 404–415. [Google Scholar] [CrossRef]
 Nguyen, T.P.; Vo, D.N. A novel stochastic fractal search algorithm for optimal allocation of distributed generators in radial distribution systems. Appl. Soft Comput. 2018, 70, 773–796. [Google Scholar] [CrossRef]
 AlRashidi, M.; AlHajri, M. Optimal planning of multiple distributed generation sources in distribution networks: A new approach. Energy Convers. Manag. 2011, 52, 3301–3308. [Google Scholar] [CrossRef]
 Nekooei, K.; Farsangi, M.M.; NezamabadiPour, H.; Lee, K.Y. An improved multiobjective harmony search for optimal placement of DGs in distribution systems. IEEE Trans. Smart Grid 2013, 4, 557–567. [Google Scholar] [CrossRef]
Description  Simulation Parameters  

DG Technology  Photovoltaic  Gasturbine 
DG Type by PF  UPF/TypeI  LPF/TypeIII 
$D{G}_{max}$ (MW/MVA)  0.001 to 2  0.001 to 2 
$C{U}_{DG}$ ($/kVA)  770  1800 
Service life (years)  20  10 
Interest rate (%)  7%  7% 
EF (kgCO_{2}/kWh)  0.058  0.093 
WCF (gal/MWh)  26  35 
LUI (m^{2}/MWh)  10  500 
PI  Objective  PI  Objective  PI  Objective 

V_{min}  ↑  C_{ELoss}  ↓  PEM  ↑ 
VSI  ↑  C_{PDG}  ↓  WCM  ↑ 
P_{LM}  ↑  C_{QDG}  ↓  LQ  ↑ 
Q_{LM}  ↑  C_{AI}  ↓  SA  ↑ 
DG_{PP}  ↑  LU  ↓  S_{ELoss}  ↑ 
Alternatives/Solutions  Weighted Attributes  

C_{1}× W_{1}  C_{2} × W_{2}  C_{3} × W_{3}  ⋯  C_{k} × W_{k}  
A_{1}  S_{11}  S_{12}  S_{13}  ⋯  S_{1m} 
A_{2}  S_{21}  S_{22}  S_{23}  ⋯  S_{2m} 
A_{3}  S_{31}  S_{32}  S_{33}  ⋯  S_{3m} 
⋯  ⋯  ⋯  ⋯  ⋯  ⋯ 
A_{n}  S_{n1}  S_{n2}  S_{n3}  ⋯  S_{nm} 
Performance  IEEE 33bus  IEEE 69bus 

Indices  (S0/C0_1)  (S0/C0_2) 
DG Size @ Bus (kVA)     
V_{min} (p.u)  0.9042  0.9102 
P_{Loss} (kW)  210.1  224.6 
Q_{Loss} (kVAR)  142.4  101.9 
VSI (p.u)  0.6672  0.6832 
Sr. No.  DG Size @ Bus  V_{min}  P_{Loss}  Q_{Loss}  P_{LM}  Q_{LM}  DG_{PP}  P_{SS}  Q_{SS} 

(kW)  (p.u)  (kW)  (kVAR)  (%)  (%)  (%)  (kW)  (kVAR)  
S1/C1  2000 @ 8  0.9478  115.7  83.4  44.91  41.47  45.77  1830.7  2383.4 
S1/C2  1319 @ 30  0.9789  84.1  59.3  59.99  58.39  51.99  1527.1  2359.3 
953 @ 13  
1217 @ 30  
S1/C3  1175 @ 24  0.9790  70.6  50.6  66.37  64.46  74.58  526.6  2350.6 
867 @ 14  
C_{ELoss}  S_{ELoss}  C_{PDG}  C_{QDG}  C_{AI}  PEM  WCM  LU  LQ  SA 
(M$)  (%)  ($/MWh)  ($/MVARh)  (M$)  (%)  (%)  (km^{2})  (%)  (%) 
0.060822  44.90  40.25  0  0.077462  49.75  48.05  0.175200  49.35  49.35 
0.044176  59.98  45.69  0  0.087996  57.00  55.07  0.199027  56.55  56.55 
0.037128  66.37  65.43  0  0.126224  80.70  77.94  0.285488  80.06  80.06 
Sr. No.  DG Size @ Bus  V_{min}  P_{Loss}  Q_{Loss}  P_{LM}  Q_{LM}  DG_{PP}  P_{SS}  Q_{SS} 

(kW)  (p.u)  (kW)  (kVAR)  (%)  (%)  (%)  (kW)  (kVAR)  
S2/C1  2000 @ 30  0.9401  77.9  58.6  62.89  58.86  45.77  1992.9  1486.6 
S2/C2  1035 @ 13  0.9814  34.8  26.65  83.43  81.29  61.67  1323.8  1151.7 
1660 @ 30  
1310 @ 24  
S2/C3  975 @ 13  0.9942  18.1  15.9  91.38  88.78  87.31  299.1  652.9 
1530 @ 30  
C_{ELoss}  S_{ELoss}  C_{PDG}  C_{QDG}  C_{AI}  PEM  WCM  LU  LQ  SA 
(M$)  (%)  ($/MWh)  ($/MVARh)  (M$)  (%)  (%)  (km^{2})  (%)  (%) 
0.040970  62.89  36.25  3.0  0.361080  44.09  42.80  7.8840  43.74  43.74 
0.018285  83.43  48.77  4.035  0.486555  59.26  57.62  10.6236  58.88  58.88 
0.009513  91.38  68.93  5.715  0.688760  82.45  80.13  15.0387  81.92  81.92 
Sr. No.  DG Size @ Bus  V_{min}  P_{Loss}  Q_{Loss}  P_{LM}  Q_{LM}  DG_{PP}  P_{SS}  Q_{SS} 

(kW)  (p.u)  (kW)  (kVAR)  (%)  (%)  (%)  (kW)  (kVAR)  
S3/C1  2000 @ 30  0.9403  74.0  55.5  64.77  61.05  45.77  2089.0  1301.5 
S3/C2  1031 @ 13  0.9816  30.9  24.2  85.26  82.99  62.68  1402.9  905.2 
1708 @ 30  
1570 @ 30  
S3/C3  1310 @ 24  0.9942  14.4  13.4  93.14  90.60  87.24  437.4  392.4 
932 @ 13  
C_{ELoss}  S_{ELoss}  C_{PDG}  C_{QDG}  C_{AI}  PEM  WCM  LU  LQ  SA 
(M$)  (%)  ($/MWh)  ($/MVARh)  (M$)  (%)  (%)  (km^{2})  (%)  (%) 
0.038899  64.76  34.25  4.5  0.361080  41.86  40.17  7.4460  41.60  41.60 
0.016277  85.25  47.11  6.1627  0.494499  57.52  55.95  10.1972  57.16  57.16 
0.007568  93.14  66.09  8.577  0.688218  79.49  77.29  14.1920  78.98  78.98 
Technique  DG Size @ Bus  P_{Loss} (kW)  Q_{Loss}  V_{min}  VSI  C_{ELoss}  S_{ELoss} 

(kW)  (P_{LM})  (kVAR)  (p.u)  (p.u)  (M$)  (M$)  
TLBO [49]  824.6 @ 10  75.5      0.8365  0.039703  0.070701 
1031.1 @ 24  (64.20%)  
886.2 @ 31  
QOTLBO [49]  880.8 @ 12  74.1      0.8656  0.038947  0.071457 
1059.2 @ 24  (64.88%)  
1071.4 @ 29  
KHA [50]  810.7 @ 13  75.4      0.8528  0.039636  0.070768 
836.8 @ 25  (64.26%)  
841.0 @ 30  
SIMBOQ [51]  763.8 @ 14  73.4      0.8738  0.038579  0.071825 
1041.5 @ 24  (65.19%)  
1135.2 @ 29  
QOSIMBOQ [51]  770.8 @ 14  72.8      0.8804  0.038263  0.072141 
1096.5 @ 24  (65.48%)  
1065.5 @ 30  
QOCSOS [52]  801.7 @ 13  72.8      0.8805  0.038256  0.072148 
1091.3 @ 24  (65.50%)  
1053.7 @ 30  
IRRO [33]  801 @ 13  72.8  50.7      0.038253  0.072151 
1090 @ 24  (65.50%)  
1054 @ 30  
MRFO [34]  1017.1 @ 24  72.9        0.038303  0.072101 
788.28 @ 13  (65.46%)  
1035.3 @ 30  
MPA  1181 @ 24  70.6  50.7  0.9792  0.8943  0.037128  0.073276 
868 @ 14  (66.37%)  
1222 @ 30  
Proposed  1217 @ 30  70.6  50.6  0.9790  0.8949  0.037128  0.073276 
1175 @ 24  (66.37%)  
867 @ 14 
Technique  DG Size @ Bus  P_{Loss} (kW)  Q_{Loss}  V_{min}  VSI  C_{ELoss}  S_{ELoss} 

(kW)  (P_{LM})  (kVAR)  (p.u)  (p.u)  (M$)  (M$)  
MOTA [53]  880 @ 14  15.7  
920 @ 25  (92.25%)  12.7    0.9760  0.008251  0.102153  
1560 @ 30  
IMOEHO [54]  929 @ 13  14.9  
1181 @ 24  (92.64%)      0.9814  0.007831  0.102573  
1473 @ 30  
MOPSO [55]  1124.6 @ 11  17.2  
989 @ 24  (91.84%)  13.5    0.9782  0.009040  0.101364  
1505.2 @ 30  
MOCSOS [55]  926.1 @ 13  15.1  
1257 @ 24  (92.83%)  12.3    0.9777  0.007936  0.102468  
1481.2 @ 30  
IDBEA [56]  749.1 @ 13  14.6  
1042 @ 24  (92.81%)      0.9733  0.007657  0.102747  
1239.5 @ 30  
MPA  1293.30 @ 24  14.4  
1583.43 @ 30  (93.14%)  13.4  0.9942  0.9794  0.007568  0.102836  
931.25 @ 14  
Proposed  1570 @ 30  14.4  
1310 @ 24  (93.14%)  13.3  0.9942  0.9803  0.007568  0.102836  
932 @ 13 
Sr. No.  DG Size @ Bus  PF  V_{min}  VSI  P_{Loss}  Q_{Loss}  P_{LM}  Q_{LM}  DG_{PP} 

(kVA)  (p.u)  (p.u)  (kW)  (kVAR)  (%)  (%)  (%)  
S4/C3_1  1597.50 @ 30  0.70  
1324.33 @ 24  0.90  0.9942  0.9801  11.7  11.3  94.41  92.03  89.20  
975.95 @ 13  0.82  
S4/C3_2  2000 @ 61  0.80  
815.96 @ 11  0.82  0.9943  0.9934  6.4  7.0  97.13  93.12  71.26  
504.89 @ 17  0.82  
C_{ELoss}  S_{ELoss}  C_{PDG}  C_{QDG}  C_{AI}  PEM  WCM  LU  LQ  SA 
(M$)  (%)  ($/MWh)  ($/MVARh)  (M$)  (%)  (%)  (km^{2})  (%)  (%) 
0.006170  94.41  62.45  11.8167  0.703705  78.05  75.94  13.62  77.56  77.56 
0.003379  97.13  53.91  9.56  0.599546  64.71  62.94  11.75  64.29  64.29 
Technique  DG Size @ Bus/PF  P_{Loss} (kW)  Q_{Loss}  V_{min}  VSI  C_{ELoss}  S_{ELoss} 

(kW)  (P_{LM})  (kVAR)  (p.u)  (p.u)  (M$)  (M$)  
SFSA [57]  876.8 @ 13/0.904  11.8  
1155.3 @ 24/0.892  (94.43%)      0.9691  0.006182  0.104222  
1454.9 @ 30/0.716  
SOS [52]  877.3 @ 13/0.905  11.7  
1188.4 @ 24/0.90  (94.44%)      0.9688  0.006171  0.104233  
1443.4 @ 30/0.713  
QOCSOS [52]  877.3 @ 13/0.905  11.7  
1188.4 @ 24/0.90  (94.44%)      0.9688  0.006171  0.104233  
1443.4 @ 30/0.713  
MPA  1324.16 @ 24/0.91  11.7  
1596.78 @ 30/0.71  (94.40%)  11.3  0.9942  0.9797  0.006175  0.104229  
972.78 @ 13/0.82  
Proposed  1597.50 @ 30/0.70  11.7  
1324.33 @ 24/0.90  ( 94.41%)  11.3  0.9942  0.9801  0.006170  0.104234  
975.95 @ 13/0.82 
Sr. No.  DG Size @ Bus  V_{min}  P_{Loss}  Q_{Loss}  P_{LM}  Q_{LM}  DG_{PP}  P_{SS}  Q_{SS} 

(kW)  (p.u)  (kW)  (kVAR)  (%)  (%)  (%)  (kW)  (kVAR)  
S1/C1  2000 @ 61  0.9700  81.8  39.7  63.57  61.10  42.91  1884  2734.3 
S1/C2  2000 @ 61  0.9913  70.5  35.9  68.63  64.85  55.66  1278.7  2730.5 
594 @ 18  
2000 @ 61  
S1/C3  451 @ 18  0.9930  68.9  35.5  69.30  65.10  61.71  995.1  2730.2 
425 @ 66  
C_{ELoss}  S_{ELoss}  C_{PDG}  C_{QDG}  C_{AI}  PEM  WCM  LU  LQ  SA 
(M$)  (%)  ($/MWh)  ($/MVARh)  (M$)  (%)  (%)  (km^{2})  (%)  (%) 
0.042999  63.57  40.25  0  0.077462  49.70  48.04  0.175200  49.31  49.31 
0.037033  68.62  52.13  0  0.100468  63.68  61.54  0.227234  63.18  63.18 
0.036234  69.30  57.77  0  0.111390  70.23  67.85  0.251937  69.68  69.68 
Sr. No.  DG Size @ Bus  V_{min}  P_{Loss}  Q_{Loss}  P_{LM}  Q_{LM}  DG_{PP}  P_{SS}  Q_{SS} 

(kW)  (p.u)  (kW)  (kVAR)  (%)  (%)  (%)  (kW)  (kVAR)  
S2/C1  2000 @ 61  0.9711  33.9  17.5  84.92  82.88  42.91  2036.1  1840.1 
S2/C2  2000 @ 61  0.9943  15.4  10.4  93.16  89.76  58.86  1348.6  1509.0 
743 @ 17  
505 @ 18  
S2/C3  2000 @ 61  0.9943  11.1  9.2  95.06  91.013  70.49  857.3  1271.8 
780 @ 11  
C_{ELoss}  S_{ELoss}  C_{PDG}  C_{QDG}  C_{AI}  PEM  WCM  LU  LQ  SA 
(M$)  (%)  ($/MWh)  ($/MVARh)  (M$)  (%)  (%)  (km^{2})  (%)  (%) 
0.017802  84.91  36.25  3.0  0.361080  44.36  43.17  7.8840  44.10  44.10 
0.008073  93.16  49.63  4.1145  0.495221  59.55  57.92  10.8129  59.17  59.17 
0.005834  95.05  59.37  4.9275  0.593073  70.38  68.43  12.9494  69.93  69.93 
Sr. No.  DG Size @ Bus  V_{min}  P_{Loss}  Q_{Loss}  P_{LM}  Q_{LM}  DG_{PP}  P_{SS}  Q_{SS} 

(kW)  (p.u)  (kW)  (kVAR)  (%)  (%)  (%)  (kW)  (kVAR)  
S3/C1  2000 @ 61  0.9711  30.5  15.9  86.40  84.39  42.91  2132.7  1656.5 
S3/C2  2000 @ 61  0.9940  11.5  8.7  94.87  91.45  59.18  1469.7  1250.3 
758 @ 17  
2000 @ 61  
S3/C3  798 @ 11  0.9943  7.0  7.2  96.87  92.87  70.85  1002.2  961.9 
504 @ 18  
C_{ELoss}  S_{ELoss}  C_{PDG}  C_{QDG}  C_{AI}  PEM  WCM  LU  LQ  SA 
(M$)  (%)  ($/MWh)  ($/MVARh)  (M$)  (%)  (%)  (km^{2})  (%)  (%) 
0.016051  86.40  34.25  4.5  0.361080  42.24  41.12  7.4460  40.40  40.40 
0.006054  94.87  47.13  6.2055  0.497929  56.89  55.35  10.2680  56.54  56.54 
0.003694  96.87  56.39  7.4295  0.596143  67.20  65.35  12.2933  66.77  66.77 
Technique  DG Size @ Bus  P_{Loss} (kW)  Q_{Loss}  V_{min}  VSI  C_{ELoss}  S_{ELoss} 

(kW)  (P_{LM})  (kVAR)  (p.u)  (p.u)  (M$)  (M$)  
591.9 @ 15  72.4  
TLBO [49]  818.8 @ 61  (67.77%)      0.9167  0.038056  0.079991 
900.3 @ 63  
533.4 @ 18  71.6  
QOTLBO [49]  1198.6 @ 61  (68.12%)      0.9196  0.037646  0.080401 
567.2 @ 63  
496.2 @ 12  69.6  
KHA [50]  311.3 @ 22  (69.04%)      0.9185  0.036562  0.081485 
1735.4 @ 61  
1500 @ 61  71.3  
SIMBOQ [51]  618.9 @ 9  (68.29%)      0.8954  0.037475  0.080572 
529.7 @ 17  
833.6 @ 9  71.0  
QOSIMBOQ [51]  451.1 @ 18  (68.43%)      0.8984  0.037317  0.08073 
1500 @ 61  
526.9 @ 11  69.4  
QOCSOS [52]  380.3 @ 18  (69.14%)      0.9185  0.036491  0.081556 
1719 @ 61  
1780 @ 61  71.1  
IRRO [33]  863 @ 50  (68.38%)  32.5      0.037406  0.080641 
784 @ 12  
1713.4 @ 61  69.4  
MRFO [34]  369.12 @ 18  (69.14%)        0.036492  0.081555 
524.23 @ 11  
465 @ 17  68.9  
MPA  1942 @ 61  (69.32%)  35.3  0.9911  0.9694  0.036208  0.081839 
425 @ 66  
2000 @ 61  68.9  
Proposed  451 @ 18  (69.30%)  35.5  0.9930  0.9697  0.036234  0.081813 
425 @ 66 
Technique  DG Size @ Bus  P_{Loss} (kW)  Q_{Loss}  V_{min}  VSI  C_{ELoss}  S_{ELoss} 

(kW)  (P_{LM})  (kVAR)  (p.u)  (p.u)  (M$)  (M$)  
1278 @ 61  12.8  
PSO [58]  301 @ 64  (94.30%)      0.9541  0.006727  0.111320 
324 @ 21  
1455.2 @ 61  10.5  
IMOHS [59]  476.9 @ 11  (95.33%)      0.9468  0.005518  0.112556 
312.4 @ 21  
1500 @ 61  7.9  
IDBEA [56]  370 @ 59  (96.45%)      0.9774  0.004183  0.113864 
575 @ 16  
471.5 @ 21  7.1  
MPA  854.15 @ 11  (96.86%)  7.3  0.9943  0.9943  0.003705  0.114342 
2000 @ 61  
2000 @ 61  7.0  
Proposed  798 @ 11  (96.87%)  7.2  0.9943  0.9944  0.003694  0.114353 
504 @ 18 
Technique  DG Size @ Bus/PF  P_{Loss} (kW)  Q_{Loss}  V_{min}  VSI  C_{ELoss}  S_{ELoss} 

(kW)  (P_{LM})  (kVAR)  (p.u)  (p.u)  (M$)  (M$)  
471.10 @ 17/0.570  6.6  
HHO [37]  2016.92 @ 61/0.760  (97.10%)        0.003458  0.114589 
719.10 @ 66/0.970  
608.1 @ 11/0.813  4.3  
QOCSOS [52]  2057.3 @ 61/0.814  (98.10%)      0.9772  0.002239  0.115808 
454.9 @ 18/0.833  
472.95 @ 21/0.80  6.4  
MPA  2000 @ 61/0.82  (97.15%)  7.0  0.9943  0.9936  0.003358  0.114689 
843.69 @ 11/0.82  
2000 @ 61/0.80  6.4  
Proposed  815.96 @ 11/0.82  ( 97.14%)  7.0  0.9943  0.9934  0.003379  0.114668 
504.89 @ 17/0.82 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, M.W.; Altamimi, A.; Kazmi, S.A.A.; Khan, Z.A.; Shin, D.R. Integration of Distributed Generations in Smart Distribution Networks Using MultiCriteria Based Sustainable Planning Approach. Sustainability 2023, 15, 384. https://doi.org/10.3390/su15010384
Khalil MW, Altamimi A, Kazmi SAA, Khan ZA, Shin DR. Integration of Distributed Generations in Smart Distribution Networks Using MultiCriteria Based Sustainable Planning Approach. Sustainability. 2023; 15(1):384. https://doi.org/10.3390/su15010384
Chicago/Turabian StyleKhalil, Muhammad Waqas, Abdullah Altamimi, Syed Ali Abbas Kazmi, Zafar A. Khan, and Dong Ryeol Shin. 2023. "Integration of Distributed Generations in Smart Distribution Networks Using MultiCriteria Based Sustainable Planning Approach" Sustainability 15, no. 1: 384. https://doi.org/10.3390/su15010384