Sustainable Non-Cooperative User Detection Techniques in 5G Communications for Smart City Users
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
- i.
- MFDI:
- ii.
- CFDI:
- iii.
- HFDI:
4. Results
4.1. Probability of Detection (PD)
4.2. Probability of False Alarm (Pfa)
4.3. Probability of Miss Detection (Pmd)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, T.; Ge, X.; Wang, L.; Kwak, K.S.; Han, Y.; Liu, X. 5G converged cell-less communications in smart cities. IEEE Commun. Mag. 2017, 55, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Soltani, M.; Baykas, T.; Arslan, H. On reducing multiband spectrum sensing duration for cognitive radio networks. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016; pp. 1–5. [Google Scholar]
- Dhope, T.S.; Simunic, D. Spectrum sensing from smart city perceptive. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 0405–0410. [Google Scholar]
- Miah, M.S.; Schukat, M.; Barrett, E. A throughput analysis of an energy-efficient spectrum sensing scheme for the cognitive radio-based Internet of things. EURASIP J. Wirel. Commun. Netw. 2021, 201. [Google Scholar] [CrossRef]
- Teguig, D.; Scheers, B.; Le Nir, V. Throughput optimization for cooperative spectrum sensing in cognitive radio networks. In Proceedings of the 2013 Seventh International Conference on Next Generation Mobile Apps, Services and Technologies, Prague, Czech Republic, 25–27 September 2013; pp. 237–243. [Google Scholar]
- Derakhshani, M.; Le-Ngoc, T.; Nasiri-Kenari, M. Efficient cooperative cyclostationary spectrum sensing in cognitive radios at low SNR regimes. IEEE Trans. Wirel. Commun. 2011, 10, 3754–3764. [Google Scholar] [CrossRef]
- Elganimi, T.Y.; Rabie, K.M. Multidimensional Generalized Quadrature Index Modulation for 5G Wireless Communications. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–6. [Google Scholar]
- Kansal, L.; Berra, S.; Mounir, M.; Miglani, R.; Dinis, R.; Rabie, K. Performance Analysis of Massive MIMO-OFDM System Incorporated with Various Transforms for Image Communication in 5G Systems. Electronics 2022, 11, 621. [Google Scholar] [CrossRef]
- Tian, X.; Huang, Y.; Verma, S.; Jin, M.; Ghosh, U.; Rabie, K.M.; Do, D.T. Power allocation scheme for maximizing spectral efficiency and energy efficiency tradeoff for uplink NOMA systems in B5G/6G. Phys. Commun. 2020, 43, 101227. [Google Scholar] [CrossRef]
- Nasser, A.; Al Haj Hassan, H.; Abou Chaaya, J.; Mansour, A.; Yao, K.C. Spectrum sensing for cognitive radio: Recent advances and future challenge. Sensors 2021, 21, 2408. [Google Scholar] [CrossRef] [PubMed]
- Benazzouza, S.; Ridouani, M.; Salahdine, F.; Hayar, A. A survey on compressive spectrum sensing for cognitive radio networks. In Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco, 14–17 October 2019; pp. 535–541. [Google Scholar]
- Cooke, C.D.; Anderson, A.L. Autonomous Radios and Open Spectrum in Smart Cities. In Smart Cities: Foundations, Principles, and Applications; Wiley: New York, NY, USA, 2017; pp. 99–123. [Google Scholar]
- Rani, S.; Babbar, H.; Shah, S.H.A.; Singh, A. Improvement of energy conservation using blockchain-enabled cognitive wireless networks for smart cities. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Murugan, S.; Sumithra, M.G. Energy Efficient Cognitive Radio Spectrum Sensing for 5G Networks–A Survey. EAI Endorsed Trans. Energy Web 2021, 8, e8. [Google Scholar] [CrossRef]
- Tertinek, S. Optimum Detection of Deterministic and Random Signals. Report Written for the Advanced Signal Processing 1 SE. 2004, pp. 1–6. Available online: https://www2.spsc.tugraz.at/www-archive/AdvancedSignalProcessing/WS04-DSPPrinciples/TertinekPaper.pdf (accessed on 1 November 2022).
- Gong, S.; Wang, P.; Liu, W. Spectrum sensing under distribution uncertainty in cognitive radio networks. In Proceedings of the 2012 IEEE International Conference on Communications, Ottawa, ON, Canada, 10–15 June 2012; pp. 1512–1516. [Google Scholar] [CrossRef]
- Budati, A.K.; Valiveti, H. Identify the user presence by GLRT and NP detection criteria in cognitive radio spectrum sensing. Int. J. Commun. Syst. 2022, 35, e4142. [Google Scholar] [CrossRef]
- Biørn-Hansen, A.; Rieger, C.; Grønli, T.M.; Majchrzak, T.A.; Ghinea, G. An empirical investigation of performance overhead in cross-platform mobile development frameworks. Empir. Softw. Eng. 2020, 25, 2997–3040. [Google Scholar] [CrossRef]
- Zhang, Y.; He, W.; Li, X.; Peng, H.; Rabie, K.M.; Nauryzbayev, G.; ElHalawany, B.M.; Zhu, M. Covert Communication in Downlink NOMA Systems with Channel Uncertainty. IEEE Sens. J. 2022, 22, 19101–19112. [Google Scholar] [CrossRef]
- Liu, H.; Li, G.; Li, X.; Liu, Y.; Huang, G.; Ding, Z. Effective Capacity Analysis of STAR-RIS Assisted NOMA Networks. IEEE Wirel. Commun. Lett. 2022, 11, 1930–1934. [Google Scholar] [CrossRef]
- Li, X.; Gao, X.; Liu, Y.; Huang, G.; Zeng, M.; Qiao, D. Overlay Cognitive Radio-assisted NOMA Intelligent Transportation Systems with Imperfect SIC and CEEs. Chin. J. Electron. 2022, 32, 1–13. [Google Scholar] [CrossRef]
- Yang, L.; Yu, K.; Yang, S.X.; Chakraborty, C.; Lu, Y.; Guo, T. An intelligent trust cloud management method for secure clustering in 5G enabled internet of medical things. IEEE Trans. Ind. Inform. 2021, 18, 8864–8875. [Google Scholar] [CrossRef]
- Chakraborty, C.; Rodrigues, J.J. A comprehensive review on device-to-device communication paradigm: Trends, challenges and applications. Wirel. Pers. Commun. 2020, 114, 185–207. [Google Scholar] [CrossRef]
- Natarajan, M.; Arthi, R.; Murugan, K. Energy aware optimal cluster head selection in wireless sensor networks. In Proceedings of the 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6 July 2013; pp. 1–4. [Google Scholar]
- Arthi, R.; Rawat, D.S.; Pillai, A.; Nair, Y.; Kausik, S.S. Analysis of indoor localization algorithm for wifi using received signal strength. In International Conference on Emerging Trends and Advances in Electrical Engineering and Renewable Energy, International Conference on Emerging Trends and Advances in Electrical Engineering and Renewable Energy; Springer: Singapore, 2021; pp. 423–431. [Google Scholar]
- Kumar, B.A.; Hima Bindu, V.; Swetha, N. User Detection Using Cyclostationary Feature Detection in Cognitive Radio Networks with Various Detection Criteria. In International Conference on Innovative Computing and Communications; Springer: Singapore, 2021; pp. 1013–1029. [Google Scholar]
- Maeda, K.; Benjebbour, A.; Asai, T.; Furuno, T.; Ohya, T. Recognition among OFDM-based systems utilizing cyclostationarity-inducing transmission. In Proceedings of the 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, 17–20 April 2007; pp. 516–523. [Google Scholar]
- Budati, A.K.; Ghinea, G.; Ganesh, S.N.V. Novel Aninath Computation Detection Algorithm to Identify the UAV Users in 5G Networks. Wirel. Pers. Commun. 2022, 127, 963–978. [Google Scholar] [CrossRef]
- Sharma, S.; Rani, M.; Goyal, S.B. Energy efficient data dissemination with ATIM window and dynamic sink in wireless sensor networks. In Proceedings of the 2009 International Conference on Advances in Recent Technologies in Communication and Computing, Kottayam, India, 27–28 October 2009; pp. 559–564. [Google Scholar]
- Chen, W.; Wang, Z.; Ding, D.; Ghinea, G.; Liu, H. Distributed Formation-Containment Control for Discrete-Time Multiagent Systems Under Dynamic Event-Triggered Transmission Scheme. IEEE Trans. Syst. Man Cybern. Syst. 2022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, S.; Budati, A.K.; Hasan, M.K.; Valiveti, H.B.; Vulupala, S.R. Sustainable Non-Cooperative User Detection Techniques in 5G Communications for Smart City Users. Sustainability 2023, 15, 118. https://doi.org/10.3390/su15010118
Islam S, Budati AK, Hasan MK, Valiveti HB, Vulupala SR. Sustainable Non-Cooperative User Detection Techniques in 5G Communications for Smart City Users. Sustainability. 2023; 15(1):118. https://doi.org/10.3390/su15010118
Chicago/Turabian StyleIslam, Shayla, Anil Kumar Budati, Mohammad Kamrul Hasan, Hima Bindu Valiveti, and Sridhar Reddy Vulupala. 2023. "Sustainable Non-Cooperative User Detection Techniques in 5G Communications for Smart City Users" Sustainability 15, no. 1: 118. https://doi.org/10.3390/su15010118
APA StyleIslam, S., Budati, A. K., Hasan, M. K., Valiveti, H. B., & Vulupala, S. R. (2023). Sustainable Non-Cooperative User Detection Techniques in 5G Communications for Smart City Users. Sustainability, 15(1), 118. https://doi.org/10.3390/su15010118