Incorporating Landscape Scaling Relations into Catchment Classification for Optimizing Ecological Management
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Soil Survey and Data Preparation
2.3. Data Processing
2.4. Statistical Methods
3. Results
4. Discussion
4.1. Landscape Scaling Relations with Distinct Spatial Heterogeneity
4.2. Landscape Scaling Relations Optimizing Catchment Classification
4.3. Ecological Implication and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, S.L.; Li, D.L.; Hu, Y.N.; Xiao, R.; Zhang, Y. Spatially non-stationary response of ecosystem service value changes to urbanization in Shanghai, China. Eco. Indic. 2014, 45, 332–339. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, G.F.; Zhang, Q.W.; Zhang, Z.H. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons. Sci. Rep. 2016, 6, 25250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.L.; Wang, Y.; Li, Y.; Liu, F.; Shen, J.L.; Wang, J.; Xiao, R.L.; Wu, J.S. Changes in arable land in response to township urbanization in a Chinese low hilly region: Scale effects and spatial interactions. Appl. Geogr. 2017, 88, 24–37. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liu, F.; Li, Y.Y.; Song, L.F.; Li, H.; Meng, C.; Wu, J.S. Linking rice agriculture to nutrient chemical composition.; concentration and mass flux in catchment streams in subtropical central China. Agr. Ecosyst. Environ. 2014, 184, 9–20. [Google Scholar] [CrossRef]
- Cheng, L.; Xia, N.; Jiang, P.H.; Zhong, L.S.; Pian, Y.Z.; Duan, Y.W.; Huang, Q.H.; Li, M.C. Analysis of farmland fragmentation in China Modernization Demonstration Zone since “Reform and Openness”: A case study of South Jiangsu Province. Sci. Rep. 2015, 5, 11797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, J.X.; Turner, M.G. Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed. Ecosphere 2015, 6, 229. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Hamel, P.; Sharp, R.; Kowal, V.; Wolny, S.; Sim, S.; Mueller, C. Landscape configuration is the primary driver of impacts on water quality associated with agricultural expansion. Environ. Res. Lett. 2016, 11, 074012. [Google Scholar] [CrossRef]
- Liu, X.L.; Wang, Y.; Li, Y.; Liu, F.; Shen, J.L.; Wang, J.; Xiao, R.L.; Wu, J.S. Multi-scaled response of groundwater nitrate contamination to integrated anthropogenic activities in a rapidly urbanizing agricultural catchment. Environ. Sci. Pollut. Res. 2019, 26, 34931–34942. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liu, X.L.; Liu, F.; Li, Y.Y.; Song, L.F.; Li, H.; Ma, Q.M.; Wu, J.S. Relating land use patterns to stream nutrient levels in red soil agricultural catchments in subtropical central China. Environ. Sci. Pollut. Res. 2014, 21, 10481–10492. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zinda, J.A.; Yang, Z.J.; Yin, M.; Ou, X.K.; Xu, Q.; Yu, Q.C. Effects of topographic attributes on landscape pattern metrics based on redundancy ordination gradient analysis. Landsc. Ecol. Eng. 2017, 14, 67–77. [Google Scholar] [CrossRef]
- Su, S.L.; Ma, X.Y.; Xiao, R. Agricultural landscape pattern changes in response to urbanization at ecoregional scale. Ecol. Indic. 2014, 40, 10–18. [Google Scholar] [CrossRef]
- Wu, J.G.; Shen, W.J.; Sun, W.Z.; Tueller, P.T. Empirical patterns of the effects of changing scale on landscape metrics. Landsc. Ecol. 2002, 17, 761–782. [Google Scholar] [CrossRef]
- Wu, J.G. Effects of changing scale on landscape pattern analysis: Scaling relations. Landscape Ecol. 2004, 19, 125–138. [Google Scholar] [CrossRef]
- He, Y.; Bárdossy, A.; Zehe, E. A catchment classification scheme using local variance reduction method. J. Hydrol. 2011, 411, 140–154. [Google Scholar] [CrossRef]
- Ali, G.; Tetzlaff, D.; Soulsby, C.; McDonnell, J.J.; Capell, R. A comparison of similarity indices for catchment classification using a cross-regional dataset. Adv. Water Resour. 2012, 40, 11–22. [Google Scholar] [CrossRef]
- Zhang, N.; Li, H.B. Sensitivity and effectiveness and of landscape metric scalograms in determining the characteristic scale of a hierarchically structured landscape. Landsc. Ecol. 2013, 28, 343–363. [Google Scholar] [CrossRef]
- Frazier, A.E. Surface metrics: Scaling relationships and downscaling behavior. Landsc. Ecol. 2015, 31, 351–363. [Google Scholar] [CrossRef]
- Tongal, H.; Sivakumar, B. Cross-entropy clustering framework for catchment classification. J. Hydrol. 2017, 552, 433–446. [Google Scholar] [CrossRef]
- Lama, G.F.C.; Giovannini, M.R.M.; Errico, A.; Mirzaei, S.; Padulano, R.; Chirico, G.B.C.; Preti, F. Hydraulic Efficiency of Green-Blue Flood Control Scenarios for Vegetated Rivers: 1D and 2D Unsteady Simulations. Water 2021, 13, 2620. [Google Scholar] [CrossRef]
- Pham, Q.B.; Mohammadpour, R.; Linh, N.T.T.; Mohajane, M.; Pourjasem, A.; Sammen, S.S.; Nam, V.T. Application of soft computing to predict water quality in wetland. Environ. Sci. Pollut. Res. 2021, 28, 185–200. [Google Scholar] [CrossRef]
- Liu, X.L.; Li, Y.; Shen, J.L.; Fu, X.Q.; Xiao, R.L.; Wu, J.S. Landscape pattern changes at a catchment scale: A case study in the upper Jinjing river catchment in subtropical central China from 1933 to 2005. Landsc. Ecol. Eng. 2014, 10, 263–276. [Google Scholar] [CrossRef]
- Zou, G.H. Development of Soil Hydrological Property Model and Character of Nitrogen Distribution in a Typical Subtropical Catchment. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, 2015. (In Chinese). [Google Scholar]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. 2012, Computer software program produced by the authors at the University of Massachusetts.; Amherst. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 10 December 2019).
- Saura, S.; Castro, S. Scaling functions for landscape pattern metrics derived from remotely sensed data: Are their subpixel estimates really accurate? ISPRS J. Photogramm. 2007, 62, 201–216. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape ecology: The effect of pattern on process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Nelson, G.C.; Bennett, E.; Berhe, A.A.; Cassman, K.; DeFries, R.; Dietz, T.; Dobermann, A.; Dobson, A.; Janetos, A.; Levy, M.; et al. Anthropogenic Drivers of Ecosystem Change: An Overview. Ecol. Soc. 2006, 11, 29. [Google Scholar] [CrossRef]
ED | CONTAG | DIVISION | SHEI | LSI | IJI | SPLIT | MESH | LPI | AI | COHESION | PAFRAC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil physical properties | ||||||||||||
Theta | 0.210 * | 0.20 1 * | 0.253 ** | 0.233 * | 0.191 * | 0.037 | 0.004 | 0.016 | −0.063 | −0.108 | 0.013 | −0.008 |
KS | −0.249 ** | −0.114 | −0.194 * | −0.181 | −0.021 | −0.05 | 0.132 | 0.228 * | 0.19 * | 0.052 | −0.003 | 0.009 |
BD | −0.196 * | −0.228 * | −0.253 ** | −0.242 ** | −0.179 | −0.048 | 0.045 | 0.013 | 0.08 | 0.095 | −0.032 | −0.004 |
CLAY | 0.005 | 0.014 | −0.006 | −0.009 | −0.054 | 0.056 | −0.083 | −0.114 | −0.059 | −0.02 | 0.012 | −0.037 |
SAND | −0.531 *** | −0.155 | −0.490 *** | −0.416 *** | −0.055 | −0.103 | 0.107 | 0.193 * | 0.244 ** | 0.297 ** | 0.235 * | 0.045 |
Soil chemical properties | ||||||||||||
TSN | 0.301 *** | 0.159 | 0.293 ** | 0.289 ** | −0.057 | −0.078 | −0.194 * | −0.229 * | −0.246 ** | −0.230 * | −0.146 | −0.114 |
TSP | 0.09 | 0.071 | 0.095 | 0.105 | −0.077 | −0.086 | −0.183 * | −0.182 * | −0.195 * | −0.055 | 0.102 | −0.254 ** |
pH | −0.154 | −0.161 | −0.227 * | −0.205 * | 0.116 | −0.190 * | 0.005 | 0.005 | 0.043 | −0.092 | 0.015 | 0.013 |
Anthropogenic factors | ||||||||||||
PD | −0.325 *** | −0.244 ** | −0.440 *** | −0.410 *** | 0.323 *** | −0.290 ** | 0.199 ** | 0.248 ** | 0.264 ** | 0.256 ** | 0.369 *** | 0.037 |
RATIO | −0.365 *** | −0.193 * | −0.488 *** | −0.425 *** | 0.242 ** | −0.321 *** | 0.119 | 0.159 | 0.172 | 0.368 *** | 0.491 *** | 0.057 |
Topographic factor | ||||||||||||
RELIEF | 0.592 *** | 0.264 * | 0.711 *** | 0.634 *** | −0.38 *** | 0.237 * | −0.375 *** | −0.424 *** | −0.489 *** | −0.516 *** | −0.556 *** | −0.239 ** |
I | II | III | IV | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand | PD | Relief | Ratio | SSE | Sand | PD | Relief | Ratio | SSE | Sand | PD | Relief | Ratio | SSE | Sand | PD | Relief | Ratio | SSE | |
ED | 21.62 | 0.72 | 50.89 | 0.12 | 174.37 | 22.3 | 1.52 | 42.84 | 0.32 | 97.03 | 40.72 | 2.87 | 18.20 | 0.99 | 81.97 | 38.84 | 9.60 | 11.59 | 2.74 | 88.90 |
CONTAG | 21.95 | 0.75 | 51.21 | 0.12 | 110.24 | 22.34 | 1.52 | 42.32 | 0.29 | 28.72 | 40.43 | 2.90 | 18.21 | 1.01 | 48.60 | 38.84 | 9.60 | 11.59 | 2.74 | 25.25 |
DIVISION | 22.62 | 0.82 | 50.59 | 0.13 | 123.78 | 21.53 | 1.66 | 40.66 | 0.36 | 34.15 | 40.97 | 2.89 | 18.16 | 1.00 | 16.03 | 38.84 | 9.60 | 11.59 | 2.74 | 12.71 |
SHEI | 22.94 | 0.75 | 50.70 | 0.12 | 115.05 | 21.32 | 1.60 | 42.36 | 0.33 | 26.45 | 40.67 | 2.85 | 18.34 | 0.96 | 17.77 | 39.38 | 8.98 | 11.49 | 2.74 | 10.04 |
LSI | 25.58 | 0.89 | 49.35 | 0.15 | 31.15 | 17.63 | 1.75 | 39.27 | 0.34 | 55.00 | 39.76 | 2.93 | 17.81 | 1.02 | 43.21 | 38.84 | 9.60 | 11.59 | 2.74 | 49.40 |
IJI | 21.05 | 1.18 | 46.96 | 0.20 | 32.48 | 43.28 | 2.21 | 22.17 | 0.62 | 34.30 | 34.27 | 3.87 | 15.23 | 1.59 | 18.42 | 37.85 | 11.01 | 11.63 | 2.80 | 13.82 |
SPLIT | 24.17 | 1.14 | 46.68 | 0.20 | 10.92 | 29.64 | 2.45 | 26.79 | 0.66 | 35.93 | 41.50 | 3.14 | 15.99 | 1.21 | 17.51 | 37.85 | 11.01 | 11.63 | 2.80 | 21.39 |
MESH | 22.73 | 1.09 | 47.93 | 0.18 | 10.31 | 31.21 | 2.62 | 24.22 | 0.73 | 26.97 | 41.49 | 3.04 | 17.02 | 1.15 | 14.11 | 37.85 | 11.01 | 11.63 | 2.80 | 19.00 |
LPI | 23.70 | 1.09 | 47.39 | 0.18 | 6.73 | 35.42 | 2.83 | 20.53 | 0.78 | 21.84 | 41.47 | 3.35 | 15.31 | 1.33 | 10.76 | 36.08 | 11.32 | 10.90 | 3.13 | 12.69 |
PAFRAC | 25.63 | 1.10 | 47.79 | 0.18 | 1.82 | 17.46 | 1.66 | 40.02 | 0.32 | 4.31 | 42.14 | 2.56 | 18.43 | 0.84 | 3.36 | 34.33 | 6.38 | 13.33 | 2.15 | 2.44 |
AI | 21.75 | 1.22 | 46.46 | 0.22 | 6.00 | 41.07 | 2.72 | 19.71 | 0.86 | 10.04 | 35.78 | 3.91 | 14.09 | 1.50 | 24.13 | 37.71 | 9.63 | 11.06 | 2.97 | 8.74 |
COHESION | 21.96 | 1.25 | 46.19 | 0.22 | 2.35 | 40.62 | 2.80 | 18.59 | 0.94 | 7.74 | 21.68 | 4.01 | 17.12 | 1.64 | 41.58 | 39.38 | 8.98 | 11.49 | 2.74 | 10.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Liu, X.; Wang, Y. Incorporating Landscape Scaling Relations into Catchment Classification for Optimizing Ecological Management. Sustainability 2022, 14, 5408. https://doi.org/10.3390/su14095408
Peng Y, Liu X, Wang Y. Incorporating Landscape Scaling Relations into Catchment Classification for Optimizing Ecological Management. Sustainability. 2022; 14(9):5408. https://doi.org/10.3390/su14095408
Chicago/Turabian StylePeng, Yingxiang, Xinliang Liu, and Yi Wang. 2022. "Incorporating Landscape Scaling Relations into Catchment Classification for Optimizing Ecological Management" Sustainability 14, no. 9: 5408. https://doi.org/10.3390/su14095408