# Development of Strategies for Taiwan’s Corrugated Box Precision Printing Machine Industry—An Implementation for SWOT and EDAS Methods

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials

#### 2.1. CBPPM Industry

#### 2.2. SWOT

#### 2.3. DANP

#### 2.4. EDAS

## 3. Methods

#### 3.1. Establishment of the Developmental Strategy Selection Model

#### 3.2. SWOT Analysis

#### 3.3. DANP

#### 3.3.1. Step 1: Establishing Expert Opinions and a Direct-Influence Relation Matrix

_{ij}represents the effect of factor i on factor j. The score given by each expert is a non-negative n × n matrix, and ${E}^{h}=\left[{e}_{ij}^{h}\right]$ 1 ≤ h ≤ H. E

^{1}, E

^{2}, …, E

^{H}represents the experts’ response matrix, and each factor of E

^{h}is expressed as ${e}_{ij}^{h}$. The individual direct relation matrix ${E}^{h}$ for each expert’s n × n matrix can be calculated using Equation (1).

#### 3.3.2. Step 2: Calculating the Average Direct-Influence Relation Matrix

#### 3.3.3. Step 3: Checking Consistency

#### 3.3.4. Step 4: Establishing the Normalized Direct-Influence Relation Matrix

**D**, as shown in Equations (4) and (5):

#### 3.3.5. Step 5: Establishing the Total-Influence Relation Matrix

**D**is multiplied by itself increases. Additionally, $\underset{m\to \infty}{\mathrm{lim}}{\mathit{D}}^{m}={[\mathit{O}]}_{n\times n}$, and $\underset{m\to \infty}{\mathrm{lim}}\left(\mathit{I}+\mathit{D}+{\mathit{D}}^{2}+\dots +{\mathit{D}}^{m}\right)={(\mathit{I}-\mathit{D})}^{-1}$, where I is an $n\times n$ unit matrix. Total influence matrix

**T**is an $n\times n$ matrix $={[{t}_{ij}]}_{n\times n},{D}_{i}={{\displaystyle \sum}}_{j=1}^{n}{t}_{ij},{S}_{j}={{\displaystyle \sum}}_{i=1}^{n}{t}_{ij},i,j=1,2,\cdots ,n,$ where

#### 3.3.6. Step 6: Calculating the Normalized Total-Influence Relation Matrix

**W**, as follows:

#### 3.3.7. Step 7: Calculating the Original Weights of the Dimensions and Criteria

**W**is multiplied by itself α times until it converges to the long-term equilibrium value, through which the weight of each dimension and criterion is obtained.

#### 3.3.8. Step 8: Calculating the Overall Weight of All Criteria

#### 3.4. EDAS

#### 3.4.1. Step 1: Establishing a Decision Matrix

**X**, with n alternatives and m criteria, is established as shown in Equation (11):

#### 3.4.2. Step 2: Calculating the Average Solution of All Criteria

#### 3.4.3. Step 3: Calculating the PDA ($PD{A}_{ij}$) and NDA ($ND{A}_{ij}$) from the Average Value

#### 3.4.4. Step 4: Calculating the Weighted PDA ($S{P}_{i}$) and NDA ($S{N}_{i}$)

#### 3.4.5. Step 5: Normalizing ${SP}_{i}$ and ${SN}_{i}$

#### 3.4.6. Step 6: Calculating the Comprehensive Evaluation Scores ($A{S}_{i}$) of All Alternatives

#### 3.4.7. Step 7: Ranking the Alternatives

## 4. Results and Discussion

#### 4.1. Using SWOT Analysis to Construct a Hierarchy of Developmental Strategies

#### 4.2. DANP Analysis

_{1}) in the Strengths dimension was the most critical factor (weight = 0.120) and thus should be continually developed and reinforced. Collaboration with academia (O

_{2}) in the Opportunities dimension had the lowest importance (weight = 0.039), indicating that the industry should strengthen their strategic collaborations and customer relations.

#### 4.3. EDAS

_{1}; 0.815), specialization strategy (A

_{4}; 0.738), differentiation strategy (A

_{2}; 0.680), technological strategy (A

_{3}; 0.645), and cost leadership strategy (A

_{5}; 0.541) (Table 8). In other words, strategic alliance > specialization strategy > differentiation strategy > technological strategy > cost leadership strategy. Therefore, business operators in the CBPPM industry should prioritize strategic alliances.

## 5. Conclusions and Suggestions

#### 5.1. Conclusions

#### 5.2. Study Limitations

#### 5.3. Recommendations for Follow-Up Study

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- TransBiz. Available online: https://transbiz.com.tw/amazon-alibaba-globalmarketstrategy/ (accessed on 1 February 2021).
- What They Think. Available online: https://whattheythink.com/articles/104174-how-will-print-industry-change-2021-beyond/ (accessed on 1 January 2021).
- Weng, J.; Liu, T. Enterprise strategy analysis based on SWOT analysis, advances in social science. Educ. Hum. Res.
**2018**, 199, 274–277. [Google Scholar] - Wang, X.F. In the History of Corrugated Paper. Available online: https://xueqiu.com/4787692535/159606473 (accessed on 1 September 2020).
- Gürel, E.; Tat, M. SWOT analysis: A theoretical review SWOT. J. Int. Soc. Res.
**2017**, 10, 994–1004. [Google Scholar] [CrossRef] - Weihrich, H. The TOWS matrix—A tool for situational analysis. Long Range Plan.
**1982**, 15, 54–66. [Google Scholar] [CrossRef] - Lin, Y.T. Investigating the Marketing Strategy of Packaging and Printing Industry from the Perspective of SWOT and Buyer Utility Matrix—The Case of a Company; National University of Kaohsiung, Department of International Business Administration: Kaohsiung, Taiwan, 2018; Unpublished Paper. [Google Scholar]
- Shri, C.; Gupta, M.; Agrawal, A. Strategy formulation for performance improvement of Indian corrugated industry: An application of SWOT analysis and QSPM matrix. J. Appl. Packag. Res.
**2015**, 17, 60–75. [Google Scholar] - Chen, C.H. A Successful Business Model Based on SWOT-Scorecard Analysis: A Case Study of Jin Hong Sheng Industrial Company; ASIA University, Department of Business Administration: Taichung, Taiwan, 2016; Unpublished Paper. [Google Scholar]
- Karyono, O.; Agustina, K. Determining the priority strategy in the implementation of E-Government through SWOT analysis model. Budapest Int. Res. Crit. Inst. J.
**2019**, 2, 66–74. [Google Scholar] [CrossRef] [Green Version] - Sanaul, H. SWOT analysis and strategies to develop sustainable tourism in Bangladesh. UTMS J. Econ.
**2017**, 8, 159–167. [Google Scholar] - Chen, Z.M.; Huang, K.I.; Wang, K.L. Research on the Competitive Strategy of Taiwan Machine Tool Industry Controller; TungHai University, Department of Business Administration: Taichung, Taiwan, 2019; Unpublished Paper. [Google Scholar]
- Irfan, M.; Hao, Y.; Panjwani, M.K.; Khan, D.; Chandio, A.A.; Li, H. Competitive assessment of South Asia’s wind power industry: SWOT analysis and value chain combined model. Energy Strat. Rev.
**2020**, 32, 100540. [Google Scholar] [CrossRef] - Zhang, Y.; Rysiecki, L.; Gong, Y.; Shi, Q. A SWOT analysis of the UK EV battery supply chain. Sustainability
**2020**, 12, 9807. [Google Scholar] [CrossRef] - Stoilova, S.; Munier, N. Analysis of policies of railway operators using SWOT criteria and the SIMUS method: A case for the Bulgarian railway network. Sustainability
**2021**, 13, 6948. [Google Scholar] [CrossRef] - Fontela, E.; Gabus, A. (Eds.) The DEMATEL Observer; Battelle Institute, Geneva Research Center: Geneva, Switzerland, 1976. [Google Scholar]
- Chang, S.S. Fuzzy Multi-Criteria Decision Making for Evaluation Method, 2nd ed.; Wu-Nan Book: Taipei, Taiwan, 2016. [Google Scholar]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process, 1st ed.; RWS Publications: Pittsburgh, Pennsylvania, 1996. [Google Scholar]
- Ou Yang, Y.P.; Shieh, H.M.; Tzeng, G.H. A novel hybrid MCDM model combined with DEMATEL and ANP with applications. Int. J. Oper. Res.
**2008**, 5, 160–168. Available online: https://scholar.google.com.tw/scholar?q=A+novel+hybrid+MCDM+model+combined+with+DEMATEL+and+ANP+with+applications&hl=zh-TW&as_sdt=0&as_vis=1&oi=scholart (accessed on 24 February 2022). - Chou, H.W.; Chao, C.H. Development of Strategies for Taiwan’s Unmanned Vehicle Industry—An Implementation for SWOT and DANP Methods; National Central University, Department of Information Management: Taoyuan, Taiwan, 2019. [Google Scholar]
- Huang, C.Y.; Hsieh, H.L.; Chen, H. Evaluating the investment projects of spinal medical device firms using the real option and DANP-mV based MCDM methods. Int. J. Environ. Res. Public Health
**2020**, 17, 3335. [Google Scholar] [CrossRef] [PubMed] - Hsu, I.C.; Shih, Y.J.; Pai, F.Y. Applying the modified Delphi method and DANP to determine the critical selection criteria for local middle and top management in multinational enterprises. Mathematics
**2020**, 8, 1396. [Google Scholar] [CrossRef] - Balog, A.; Băjenaru, L.; Cristescu, I. Analyzing the factors affecting the quality of IoT-based smart wearable devices using the DANP method. Stud. Inform. Control
**2019**, 28, 431–442. [Google Scholar] [CrossRef] - Liu, C.H.; Liu, B. Using DANP-mV model to improve the paid training measures for travel agents amid the COVID-19 pandemic. Mathematics
**2021**, 9, 1924. [Google Scholar] [CrossRef] - Kim, S.Y.; Nguyen, M.V.; Dao, T.T.N. Prioritizing complexity using fuzzy DANP: Case study of international development projects. Eng. Constr. Archit. Manag.
**2021**, 28, 1114–1133. [Google Scholar] [CrossRef] - Stokic, M.; Vujanovic, D.; Sekulic, D. A New Comprehensive Approach for Efficient Road Vehicle Procurement Using Hybrid DANP-TOPSIS Method. Sustainability
**2020**, 12, 4044. [Google Scholar] [CrossRef] - Ghobadia, M.; Nasria, M.; Ahmadipari, M. Land suitability assessment (LSA) for aquaculture site selection via an integrated GIS-DANP multi-criteria method; a case study of Lorestan province, Iran. Aquaculture
**2021**, 530, 735776. [Google Scholar] [CrossRef] - Yen, G.F.; Tsao, H.C. Reexamining Consumers’ Cognition and Evaluation of Corporate Social Responsibility via a DANP and IPA Method. Sustainability
**2020**, 12, 529. [Google Scholar] [CrossRef] [Green Version] - Ghorabaee, M.K.; Amiri, M.; Zavadskas, E.K.; Turskis, Z. Multi-criteria group decision-making using an extended EDAS method with interval type-2 fuzzy sets. Ekon. Manag.
**2017**, 20, 48–68. [Google Scholar] [CrossRef] - Stanujkic, D.; Zavadskas, E.K.; Ghorabaee, M.K.; Turskis, Z. An extension of the EDAS method based on the use of interval grey numbers. Stud. Inform. Control
**2017**, 26, 5–12. [Google Scholar] [CrossRef] - Kahraman, C.; Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Cevik Onar, S.; Yazdani, M.; Oztaysi, B. Intuitionistic fuzzy EDAS method: An application to solid waste disposal site selection. J. Environ. Eng. Landsc. Manag.
**2017**, 25, 1–12. [Google Scholar] [CrossRef] - Kundakci, N. An integrated method using MACBETH and EDAS methods for evaluating steam boiler alternatives. J. Multi-Criteria Decis. Anal.
**2019**, 26, 27–34. [Google Scholar] [CrossRef] - Zindani, D.; Maity, S.R.; Bhowmik, S. Fuzzy-EDAS (Evaluation based on distance from average solution) for material selection problems. In Advances in Computational Methods in Manufacturing; Zindani, D., Maity, S.R., Bhowmik, S., Eds.; Springer: Singapore, 2019; pp. 755–771. [Google Scholar]
- Torkayesh, S.E.; Amiri, A.; Iranizad, A.; Torkayesh, A.E. Entropy based EDAS decision making model for neighborhood selection: A case study in Istanbul. J. Ind. Eng. Decis. Mak.
**2020**, 1, 1–11. [Google Scholar] [CrossRef] - Naik, B.; Paul, S.; Mishra, S.P.; Rout, S.P.; Barua, A.; Bagal, D.K. Performance analysis of M40 grade concrete by partial replacement of Portland Pozzolana cement with marble powder and fly ash using Taguchi-EDAS method. J. Appl. Sci. Comput.
**2019**, 6, 733. Available online: https://www.researchgate.net/publication/333776237 (accessed on 24 February 2022). - Rashid, T.; Ali, A.; Chu, Y.M. Hybrid BW-EDAS MCDM methodology for optimal industrial robot selection. PLoS ONE
**2021**, 16, e0246738. [Google Scholar] [CrossRef] [PubMed] - Lei, F.; Wei, G.; Shen, W.; Guo, Y. PDHL-EDAS method for multiple attribute group decision making and its application to 3D printer selection. Technol. Econ. Dev. Econ.
**2022**, 28, 179–200. [Google Scholar] [CrossRef] - Sahoo, S.; Choudhury, B. Optimal selection of an electric power wheelchair using an integrated COPRAS and EDAS approach based on Entropy weighting technique. Decis. Sci. Lett.
**2022**, 11, 21–34. [Google Scholar] [CrossRef] - Naik, M.G.; Kishore, R.; Mousavi Dehmourdi, S.A. Modeling A Multi-Criteria Decision Support System for Prequalification Assessment of Construction Contractors Using CRITIC and EDAS Models. Oper. Res. Eng. Sci. Theory Appl.
**2021**, 4, 79–101. [Google Scholar] [CrossRef] - Chairman, C.A.; Ravichandran, M.; Mohanavel, V.; Sathish, T.; Rashedi, A.; Alarifi, I.M.; Badruddin, I.A.; Anqi, A.E.; Afzal, A. Mechanical and Abrasive Wear Performance of Titanium Di-Oxide Filled Woven Glass Fibre Reinforced Polymer Composites by Using Taguchi and EDAS Approach. Materials
**2021**, 14, 5257. [Google Scholar] [CrossRef] - Osuna, E.E.; Aranda, A. Combining SWOT and AHP Techniques for Strategic Planning. In Proceedings of the ISAHP 2007, Viña del Mar, Chile, 2–6 August 2007. [Google Scholar]
- Şeker, Ş.; Özgürler, M. Analysis of the Turkish consumer electronics firm using SWOT-AHP method. Procedia Soc. Behav. Sci.
**2012**, 58, 1544–1554. [Google Scholar] [CrossRef] [Green Version] - Tsai, P.H.; Lin, G.Y.; Zheng, Y.L.; Chen, Y.C.; Chen, P.Z.; Su, Z.C. Exploring the effect of Starbucks’ green marketing on consumers’ purchase decisions from consumers’ perspective. J. Retail. Consum. Serv.
**2020**, 56, 102162. [Google Scholar] [CrossRef] - Keshavarz-Ghorabaee, M.; Zavadskas, E.K.; Olfat, L.; Turskis, Z. Multi-criteria inventory classification using a new method of Evaluation Based on Distance from Average Solution (EDAS). Informatica
**2015**, 26, 435–451. [Google Scholar] [CrossRef] - Keshavarz-Ghorabaee, M.; Zavadskas, E.K.; Amiri, M.; Turskis, Z. Extended EDAS method for fuzzy multi-criteria decision-making: An application to supplier selection. Int. J. Comput. Commun. Control
**2016**, 11, 358–371. [Google Scholar] [CrossRef] [Green Version] - Murry, J.W.; Hommons, J.O. Delphi: A versatile methodology for conducting qualitative research. Rev. High. Educ.
**1995**, 18, 423–436. [Google Scholar] [CrossRef] - Faherty, V. Continuing social work education: Results of a Delphi survey. J. Educ. Soc. Work
**1979**, 15, 12–19. [Google Scholar] [CrossRef] - Holden, M.C.; Wedman, J.F. Future issues of computer-mediated communication: The results of a Delphi study. Educ. Technol. Res. Dev.
**1993**, 41, 5–24. [Google Scholar] [CrossRef] - Meng, X. The influence of Alliance innovation network structure upon enterprise innovation: A case study of China’s energy-saving and environment-protection industry. Int. J. Bus. Manag.
**2018**, 13, 208–220. [Google Scholar] [CrossRef] [Green Version] - Mamédio, D.; Rocha, C.; Szczepanik, D.; Kato, H. Strategic alliances and dynamic capabilities: A systematic review. J. Strategy Manag.
**2019**, 12, 83–102. [Google Scholar] [CrossRef] - Huang, W.S.; Lin, C.C. The Analysis of the Business Model of the Machinery Company in Taiwan—A Case Study of a Domestic Machinery Manufacturer; Chaoyang University of Technology, Department of Business Administration: Taichung, Taiwan, 2020; Unpublished Paper. [Google Scholar]
- Tsai, J.Y.; Chen, C.T. Business Strategies of Taiwan’s Commercial Vehicle Sales under the Internet of Vehicles—An Example from Company A; Tamkang University, Department of International Business: New Taipei, Taiwan, 2020; Unpublished Paper. [Google Scholar]
- Liao, G.J.; Wei, C.S. A Case Study on the Business Model for Logistics Company: The Case of Jiajia Business Service Co., Ltd.; Shu-Te University, Department of Management: Kaohsiung, Taiwan, 2020; Unpublished Paper. [Google Scholar]

Selection Criteria | Importance | Quartile Range | Removed or Not Removed | |
---|---|---|---|---|

Strength | Long product life | 4.64 | 0.50 | Not removed |

High customizability | 4.73 | 0.50 | Not removed | |

Small industrial scale | 3.91 | 0.00 | Removed | |

Difficult entry into the industry and few competitors | 3.73 | 0.50 | Removed | |

Low substitutability | 3.91 | 0.00 | Removed | |

High level of customer loyalty | 4.55 | 0.50 | Not removed | |

Weakness | Small industrial scale and weak research and development capabilities | 3.82 | 0.50 | Removed |

High research and development costs | 4.64 | 0.50 | Not removed | |

Shortage of technical talent | 4.73 | 0.50 | Not removed | |

Reliance on imports for key components | 4.64 | 0.50 | Not removed | |

Difficulties in professional training of sales teams | 3.82 | 0.50 | Removed | |

Lack of system integration capabilities | 4.55 | 0.50 | Not removed | |

Unestablished specifications and standards for printing machines | 3.91 | 0.00 | Removed | |

Opportunities | Creation of a unique brand | 4.55 | 0.50 | Not removed |

Expansion of blue ocean market | 3.82 | 0.50 | Removed | |

Collaboration with academia | 4.64 | 0.50 | Not removed | |

Increasing awareness of environmental problems (Restrictions of Hazardous Substances Directive [RoHS]) | 4.55 | 0.50 | Not removed | |

Exchange and collaboration through international exhibitions | 4.64 | 0.50 | Not removed | |

High machine repurchase rate | 4.73 | 0.50 | Not removed | |

Disparities among businesses in the industry | 3.73 | 0.50 | Removed | |

Emerging markets as potential markets | 3.91 | 0.00 | Removed | |

Threats | Problems concerning patent and intellectual property rights | 4.64 | 0.50 | Not removed |

Low production costs and high flexibility in developing countries | 4.64 | 0.50 | Not removed | |

Few brand benefits | 3.55 | 0.50 | Removed | |

Difficulties in raw material cost control | 4.55 | 0.50 | Not removed | |

Insufficient innovation capabilities | 4.55 | 0.50 | Not removed | |

Susceptibility to global economic trends and fluctuations in exchange rates | 3.64 | 0.50 | Removed |

Criteria | Developmental Strategy | Importance | Quartile Range | Removed or Not |
---|---|---|---|---|

Strategy | Strategic alliance | 4.73 | 0.50 | Not removed |

Analysis strategy | 3.64 | 0.50 | Removed | |

Differentiation strategy | 4.55 | 0.50 | Not removed | |

Diversification strategy | 3.91 | 0.00 | Removed | |

Technology strategy | 4.73 | 0.50 | Not removed | |

Specialization strategy | 4.64 | 0.50 | Not removed | |

Product strategy | 3.64 | 0.50 | Removed | |

BCG matrix | 3.91 | 0.00 | Removed | |

Cost leadership strategy | 4.73 | 0.50 | Not removed | |

Competitive strategy | 3.73 | 0.50 | Removed | |

Co-opetition strategy | 3.64 | 0.50 | Removed | |

Innovation strategy | 3.55 | 0.50 | Removed |

Dimensions | S | W | O | T | |

S W O T | 0.000 3.857 3.714 3.571 | 2.571 0.000 2.571 1.000 | 2.000 1.571 0.000 2.000 | 1.429 1.714 3.714 0.000 | |

Strengths | S_{1} | S_{2} | S_{3} | ||

S_{1}S _{2}S _{3} | 0.000 4.000 3.857 | 3.286 0.000 3.714 | 3.571 3.286 0.000 | ||

Weaknesses | W_{1} | W_{2} | W_{3} | W_{4} | |

W_{1}W _{2}W _{3}W _{4} | 0.000 3.857 3.429 4.000 | 3.429 0.000 3.714 3.857 | 3.571 3.429 0.000 3.714 | 3.286 3.000 3.286 0.000 | |

Opportunities | O_{1} | O_{2} | O_{3} | O_{4} | O_{5} |

O_{1}O _{2}O _{3}O _{4}O _{5} | 0.000 3.286 3.714 3.571 3.429 | 2.857 0.000 3.286 3.571 3.571 | 3.714 3.429 0.000 3.286 3.571 | 3.857 3.714 3.857 0.000 3.286 | 3.143 3.714 3.286 3.429 0.000 |

Threats | T_{1} | T_{2} | T_{3} | T_{4} | |

T_{1}T _{2}T _{3}T _{4} | 0.000 3.857 3.429 3.571 | 3.714 0.000 3.143 3.571 | 3.286 3.429 0.000 3.857 | 3.714 3.429 4.000 0.000 |

SWOT | S | W | O | T | |

S W O T | 0.640 1.024 1.219 0.932 | 0.617 0.478 0.806 0.529 | 0.538 0.572 0.555 0.560 | 0.566 0.675 0.924 0.455 | |

Strengths | S_{1} | S_{2} | S_{3} | ||

S_{1}S _{2}S _{3} | 6.922 7.542 7.735 | 6.696 6.646 7.162 | 6.642 6.875 6.757 | ||

Weakness | W_{1} | W_{2} | W_{3} | W_{4} | |

W_{1}W _{2}W _{3}W _{4} | 2.667 2.912 2.923 3.177 | 2.843 2.609 2.885 3.112 | 2.800 2.788 2.591 3.050 | 2.574 2.554 2.598 2.575 | |

Opportunities | O_{1} | O_{2} | O_{3} | O_{4} | O_{5} |

O_{1}O _{2}O _{3}O _{4}O _{5} | 11.735 12.323 12.336 12.135 12.133 | 11.412 11.627 11.808 11.636 11.640 | 11.928 12.315 12.113 12.108 12.126 | 12.421 12.829 12.829 12.413 12.607 | 11.609 12.026 11.999 11.817 11.627 |

Threats | T_{1} | T_{2} | T_{3} | T_{4} | |

T_{1}T _{2}T _{3}T _{4} | 10.720 10.975 10.852 11.174 | 10.660 10.403 10.528 10.855 | 10.746 10.748 10.414 10.981 | 11.188 11.168 11.096 11.149 |

Dimensions | Original Weights | Rank | Criteria | Original Weights | Rank | Overall Weights | Rank |
---|---|---|---|---|---|---|---|

Strengths(S) | 0.342 | 1 | S_{1} | 0.352 | 1 | 0.120 | 1 |

S_{2} | 0.326 | 2 | 0.111 | 2 | |||

S_{3} | 0.322 | 3 | 0.110 | 3 | |||

Weakness(W) | 0.220 | 3 | W_{1} | 0.261 | 1 | 0.057 | 6–8 |

W_{2} | 0.256 | 2 | 0.056 | 9 | |||

W_{3} | 0.251 | 3 | 0.055 | 10 | |||

W_{4} | 0.231 | 4 | 0.051 | 11 | |||

Opportunities(O) | 0.205 | 4 | O_{1} | 0.201 | 2–3 | 0.041 | 13–14 |

O_{2} | 0.192 | 5 | 0.039 | 16 | |||

O_{3} | 0.201 | 2–3 | 0.041 | 13–14 | |||

O_{4} | 0.210 | 1 | 0.043 | 12 | |||

O_{5} | 0.197 | 4 | 0.040 | 15 | |||

Threats(T) | 0.233 | 2 | T_{1} | 0.251 | 2 | 0.059 | 5 |

T_{2} | 0.244 | 4 | 0.057 | 6–8 | |||

T_{3} | 0.246 | 3 | 0.057 | 6–8 | |||

T_{4} | 0.258 | 1 | 0.060 | 4 |

Criteria | A_{1} | A_{2} | A_{3} | A_{4} | A_{5} | $\mathit{A}{\mathit{V}}_{\mathit{j}}$ |
---|---|---|---|---|---|---|

S_{1} | 0.880 | 0.857 | 0.855 | 0.843 | 0.827 | 0.852 |

S_{2} | 0.702 | 0.752 | 0.780 | 0.730 | 0.739 | 0.740 |

S_{3} | 0.868 | 0.820 | 0.830 | 0.841 | 0.880 | 0.848 |

W_{1} | 0.757 | 0.807 | 0.830 | 0.807 | 0.805 | 0.801 |

W_{2} | 0.855 | 0.818 | 0.805 | 0.766 | 0.809 | 0.810 |

W_{3} | 0.889 | 0.766 | 0.766 | 0.741 | 0.780 | 0.788 |

W_{4} | 0.818 | 0.802 | 0.820 | 0.795 | 0.793 | 0.806 |

O_{1} | 0.855 | 0.877 | 0.866 | 0.782 | 0.841 | 0.844 |

O_{2} | 0.727 | 0.818 | 0.780 | 0.809 | 0.768 | 0.780 |

O_{3} | 0.777 | 0.755 | 0.768 | 0.798 | 0.727 | 0.765 |

O_{4} | 0.827 | 0.816 | 0.857 | 0.823 | 0.782 | 0.821 |

O_{5} | 0.891 | 0.880 | 0.830 | 0.843 | 0.857 | 0.860 |

T_{1} | 0.855 | 0.805 | 0.830 | 0.843 | 0.855 | 0.837 |

T_{2} | 0.805 | 0.789 | 0.784 | 0.782 | 0.770 | 0.786 |

T_{3} | 0.818 | 0.805 | 0.766 | 0.793 | 0.782 | 0.793 |

T_{4} | 0.766 | 0.830 | 0.816 | 0.777 | 0.805 | 0.799 |

Criteria | $\mathbf{PDA}\text{}\left(\mathit{P}\mathit{D}{\mathit{A}}_{\mathit{i}\mathit{j}}\right)$ | $\mathbf{NDA}\text{}\left(\mathit{N}\mathit{D}{\mathit{A}}_{\mathit{i}\mathit{j}}\right)$ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|

A_{1} | A_{2} | A_{3} | A_{4} | A_{5} | A_{1} | A_{2} | A_{3} | A_{4} | A_{5} | |

S_{1} | 0.135 | 0.067 | 0.062 | 0 | 0 | 0 | 0 | 0 | 0.082 | 0.129 |

S_{2} | 0 | 0.087 | 0.173 | 0 | 0 | 0.172 | 0 | 0 | 0.086 | 0.059 |

S_{3} | 0.117 | 0 | 0 | 0 | 0.156 | 0 | 0.141 | 0.112 | 0.071 | 0 |

W_{1} | 0.196 | 0 | 0 | 0 | 0 | 0 | 0.070 | 0.146 | 0.067 | 0.064 |

W_{2} | 0 | 0 | 0.069 | 0.198 | 0.004 | 0.195 | 0.073 | 0 | 0 | 0 |

W_{3} | 0 | 0.123 | 0.126 | 0.204 | 0.027 | 0.363 | 0 | 0 | 0 | 0 |

W_{4} | 0 | 0.061 | 0 | 0.079 | 0.055 | 0.082 | 0 | 0.090 | 0 | 0 |

O_{1} | 0.080 | 0.154 | 0.117 | 0 | 0 | 0 | 0 | 0 | 0.248 | 0.057 |

O_{2} | 0 | 0.165 | 0 | 0.137 | 0 | 0.216 | 0 | 0.052 | 0 | 0.087 |

O_{3} | 0.089 | 0 | 0.060 | 0.155 | 0 | 0 | 0.085 | 0 | 0 | 0.174 |

O_{4} | 0.078 | 0 | 0.168 | 0.057 | 0 | 0 | 0.073 | 0 | 0 | 0.179 |

O_{5} | 0.151 | 0.113 | 0 | 0 | 0 | 0 | 0 | 0.151 | 0.105 | 0.058 |

T_{1} | 0 | 0.149 | 0.025 | 0 | 0 | 0.100 | 0 | 0 | 0.066 | 0.100 |

T_{2} | 0 | 0 | 0.018 | 0.066 | 0.102 | 0.111 | 0.062 | 0 | 0 | 0 |

T_{3} | 0 | 0 | 0.088 | 0 | 0.083 | 0.127 | 0.086 | 0 | 0.051 | 0 |

T_{4} | (0.119) | 0 | 0 | 0.118 | 0 | 0 | 0.142 | 0.104 | 0 | 0.071 |

Alternative | $\mathit{S}{\mathit{P}}_{\mathit{i}}$ | $\mathit{S}{\mathit{N}}_{\mathit{i}}$ | $\mathit{N}\mathit{S}{\mathit{P}}_{\mathit{i}}$ | $\mathit{N}\mathit{S}{\mathit{N}}_{\mathit{i}}$ | $\mathit{A}{\mathit{S}}_{\mathit{i}}$ | Rank |
---|---|---|---|---|---|---|

A_{1} | 0.182 | 0.342 | 0.666 | 0.964 | 0.815 | 1 |

A_{2} | 0.230 | 0.183 | 0.843 | 0.517 | 0.680 | 3 |

A_{3} | 0.226 | 0.164 | 0.829 | 0.462 | 0.645 | 4 |

A_{4} | 0.253 | 0.194 | 0.929 | 0.547 | 0.738 | 2 |

A_{5} | 0.107 | 0.245 | 0.391 | 0.690 | 0.541 | 5 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lin, C.-T.; Chiang, C.-Y.
Development of Strategies for Taiwan’s Corrugated Box Precision Printing Machine Industry—An Implementation for SWOT and EDAS Methods. *Sustainability* **2022**, *14*, 5144.
https://doi.org/10.3390/su14095144

**AMA Style**

Lin C-T, Chiang C-Y.
Development of Strategies for Taiwan’s Corrugated Box Precision Printing Machine Industry—An Implementation for SWOT and EDAS Methods. *Sustainability*. 2022; 14(9):5144.
https://doi.org/10.3390/su14095144

**Chicago/Turabian Style**

Lin, Chin-Tsai, and Cheng-Yu Chiang.
2022. "Development of Strategies for Taiwan’s Corrugated Box Precision Printing Machine Industry—An Implementation for SWOT and EDAS Methods" *Sustainability* 14, no. 9: 5144.
https://doi.org/10.3390/su14095144