Are Trees Planted along the Roads Sustainable? A Large-Scale Study in the Czech Republic
Abstract
:1. Introduction
1.1. Aspects of Roadside Tree Planting for Species Selection
1.2. Research Objectives
2. Materials and Methods
2.1. Study Area
2.2. Tree Inventory Data
2.3. Data Analysis
3. Results and Discussion
3.1. Actual Taxonomic Composition of Trees
3.1.1. Tree Genera
3.1.2. Tree Species
3.2. Trends in Species Selection for Roadside Plantings
3.3. Resilience of Roadside Tree Populations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sorvig, K.; Thompson, J.W. Sustainable Landscape Construction: A Guide to Green Building Outdoors; Island Press: Washington, DC, USA, 2018. [Google Scholar]
- Van Der Zanden, A.M.; Cook, T.W. Sustainable Landscape Management: Design, Construction, and Maintenance; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Moser, A.; Rötzer, T.; Pauleit, S.; Pretzsch, H. The Urban Environment Can Modify Drought Stress of Small-Leaved Lime (Tilia cordata Mill.) and Black Locust (Robinia pseudoacacia L.). Forests 2016, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Hitchmough, J. Exotic plants and plantings in the sustainable, designed urban landscape. Landsc. Urban Plan. 2011, 100, 380–382. [Google Scholar] [CrossRef]
- Gillner, S.; Korn, S.; Hofmann, M.; Roloff, A. Contrasting strategies for tree species to cope with heat and dry conditions at urban sites. Urban Ecosyst. 2017, 20, 853–865. [Google Scholar] [CrossRef]
- Coffin, A. From roadkill to road ecology: A review of the ecological effects of roads. J. Transp. Geogr. 2007, 15, 396–406. [Google Scholar] [CrossRef]
- Kocur-Bera, K.; Dudzińska, M. Roadside vegetation-The impact on safety. Eng. Rural Dev. 2015, 14, 594–600. [Google Scholar]
- Pescador, M.; Peris, S. Infuence of road on bird nest predation: An experimental study in the Iberian Peninsula. Landsc. Urban Plan. 2007, 82, 66–71. [Google Scholar] [CrossRef]
- Brantley, H.; Gayle, H.; Deshmukh, P.; Baldauf, R. Field assessment of the effects of roadside vegetation on near-road black carbon and particulate matter. Sci. Total Environ. 2013, 468, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, P.; Isakov, V.; Venkatram, A.; Yang, B.; Zhang, K.; Logan, R.; Baldauf, R. The effects of roadside vegetation characteristics on local, near-road air quality. Air Qual. Atmos. Health 2018, 12, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Zaki, S.A.; Toh, H.J.; Yakub, F.; Mohd Saudi, A.S.; Ardila-Rey, J.A.; Muhammad-Sukki, F. Effects of Roadside Trees and Road Orientation on Thermal Environment in a Tropical City. Sustainability 2020, 12, 1053. [Google Scholar] [CrossRef] [Green Version]
- Lucey, A.; Barton, S. Public Perception and Sustainable Management Strategies for Roadside Vegetation. Transp. Res. Rec. 2011, 2262, 164–170. [Google Scholar] [CrossRef]
- Cackowski, J.; Nasar, J.L. The Restorative Effects of Roadside Vegetation Implications for Automobile Driver Anger and Frustration. Environ. Behav. 2003, 35, 736–751. [Google Scholar] [CrossRef] [Green Version]
- Hykš, O.; Neubergová, K. Mature Vegetation along Roads. Trans. Transp. Sci. 2014, 7, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Bulíř, P. Vegetační Doprovody Silnic; VŠÚOZ Průhonice: Průhonice, Czech Republic, 1988; 198p. (In Czech) [Google Scholar]
- Svoboda, P. Krajinárstvo III; VŠLD Zvolen: Zvolen, Czechoslovakia, 1973. (In Slovak) [Google Scholar]
- Guneroglu, N.; Bekar, M.; Kaya Sahin, E. Plant selection for roadside design: “the view of landscape architects”. Environ. Sci. Pollut. Res. 2019, 26, 34430–34439. [Google Scholar] [CrossRef]
- Arborist Standard SPPK A02 010; Care of Woody Plants along Roads and Railway Lines; Faculty of Forestry and Wood Technology, Mendel University in Brno, Nature Conservation Agency of the Czech Republic: Brno/Prague, Czech Republic, 2020; 35p. Available online: https://standardy.nature.cz/res/archive/064/072623.pdf?seek=1606749445 (accessed on 15 March 2022).
- Cimbůrková, M.; Šerá, B. Specifika vegetace kolem silnic a dálnic—Problematika začlenění dřevin do volné krajiny. Životní Prostředí 2011, 45, 162–165. [Google Scholar]
- Jakobsson, S.; Bernes, C.; Bullock, J.M.; Verheyen, K.; Lindborg, R. How does roadside vegetation management affect the diversity of vascular plants and invertebrates? A systematic review. Environ. Evid. 2018, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- European Environmental Agency. Climate Change, Impacts and Vulnerability in Europe 2016: An Indicator-Based Report. EEA Report 1/2017; European Environmental Agency: Copenhagen, Denmark, 2017. [Google Scholar] [CrossRef]
- Boyd, I.L.; Freer-Smith, P.H.; Gilligan, C.A.; Godfray, H.C. The Consequence of Tree Pests and Diseases for Ecosystem Services. Science 2013, 342, 1235773. [Google Scholar] [CrossRef]
- Šerá, B. Road vegetation in Central Europe—An example from the Czech Republic. Biologia 2008, 63, 1085–1088. [Google Scholar] [CrossRef]
- Kaprová, K.; Szórádová, A.; Vojáčková, B. Patterns in recent urban tree plantations and their implications for urban greenery management under the climate change. J. Landsc. Manag. 2018, 9, 22–29. [Google Scholar]
- Asanok, L.; Kamyo, T.; Norsaengsri, M.; Yotapakdee, T.; Navakam, S. Assessment of the Diversity of Large Tree Species in Rapidly Urbanizing Areas along the Chao Phraya River Rim, Central Thailand. Sustainability 2021, 13, 10342. [Google Scholar] [CrossRef]
- Divakara, B.N.; Nikitha, C.U.; Nölke, N.; Tewari, V.P.; Kleinn, C. Tree Diversity and Tree Community Composition in Northern Part of Megacity Bengaluru, India. Sustainability 2022, 14, 1295. [Google Scholar] [CrossRef]
- Sjőman, H.; Őstberg, J.; Bűhler, O. Diversity and distribution of the urban tree population in ten major Nordic cities. Urban For. Urban Green 2012, 11, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Jim, C.Y.; Chen, W.Y. Diversity and distribution of landscape trees in the compact Asian city of Taipei. Appl. Geogr. 2009, 29, 577–587. [Google Scholar] [CrossRef]
- The Road Act, No. 13/1997 s. 1 (Czech Republic) (Zákon č. 13/1997 Sb. o pozemních komunikacích, ve znění pozdějších předpisů). (In Czech)
- Kotz, S.; Read, C.B.; Balakrishnan, N.; Vidakovic, B. Encyclopedia of Statistical Sciences, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Brasier, C.M. Ophiostoma novoulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathologia 1991, 115, 151–161. [Google Scholar] [CrossRef]
- Beh, E.J. Simple Correspondence Analysis: A Bibliographic Review. Int. Stat. Rev. 2004, 72, 257–284. [Google Scholar] [CrossRef]
- Lázaro-Lobo, A.; Ervin, G.N. A global examination on the diferential impacts of roadsides on native vs. exotic and weedy plant species. Glob. Ecol. Conserv. 2019, 17, e00555. [Google Scholar] [CrossRef]
- Gelbard, J.L.; Belnap, J. Roads as conduits for exotic plant invasions in a semiarid landscape. Conserv. Biol. 2003, 17, 420–432. [Google Scholar] [CrossRef]
- Christen, D.; Matlack, G. The role of roadsides in plant invasions: A demographic approach. Conserv. Biol. 2006, 20, 385–391. [Google Scholar] [CrossRef]
- Pyšek, P.; Danihelka, J.; Sádlo, J.; Chrtek, J.; Chytrý, M.; Jarošík, V.; Kaplan, Z.; Krahulec, F.; Moravcová, L.; Pergl, J.; et al. Catalogue of Alien Plants of the Czech Republic (2nd Edition): Checklist Update, Taxonomic Diversity and Invasion Patterns; Preslia. Česká Botanická Společnost: Prague, Czech Republic, 2012; Volume 84, pp. 155–255. [Google Scholar]
- Pergl, J.; Sádlo, J.; Petrusek, A.; Lastuvka, Z.; Musil, J.; Perglová, I.; Sanda, R.; Šefrová, H.; Šíma, J.; Vohralík, V.; et al. Black, Grey and Watch Lists of alien species in the Czech Republic based on environmental impacts and management strategy. NeoBiota 2016, 28, 1–37. [Google Scholar] [CrossRef]
- Moser-Reischl, A.; Rahman, M.A.; Pretzsch, H.; Pauleit, S.; Rötzer, T. Inter- and intraannual growth patterns of urban small-leaved lime (Tilia cordata mill.) at two public squares with contrasting microclimatic conditions. Int. J. Biometeorol. 2016, 61, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Roloff, A.; Grundmann, B.; Korn, S. Trockenstress bei Stadtbäumen—Mechanismen und Reaktionen der Anpassung, Nutzen für die Artenwahl. Stadt+Grün 2020, 59, 54–60. [Google Scholar]
- Kozlowski, T.T. Responses of Woody Plants to Flooding and Salinity. Tree Physiol. 1997, 17, 13–21. [Google Scholar] [CrossRef]
- Gross, A.; Holdenrieder, O.; Pautasso, M.; Queloz, V.; Sieber, T.N. Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol. Plant Pathol. 2014, 15, 5–21. [Google Scholar] [CrossRef]
- Jankovký, L.; Holdenrieder, O. Chalara fraxinea—Ash Dieback in the Czech Republic. Plant Prot. Sci. 2009, 45, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Roloff, A.; Bonn, S.; Gillner, S. Konsequenzen des Klimawandels—Vorstellung der Klima-Arten-Matrix (KLAM) zur Auswahl geeigneter Baumarten. Stadt+Grün 2008, 57, 53–61. [Google Scholar]
- Swoczyna, T.; Kalaji, H.M.; Pietkiewicz, S.; Borowski, J. Ability of various tree species to acclimation in urban environments probed with the JIP-test. Urban For. Urban Green. 2015, 14, 544–553. [Google Scholar] [CrossRef]
- Fuchs, S.; Schuldt, B.; Leuschner, C. Identification of drought-tolerant tree species through climate sensitivity analysis of radial growth in Central European mixed broadleaf forests. For. Ecol. Manag. 2021, 494, 119287. [Google Scholar] [CrossRef]
- Zhang, C.; Stratopoulos, L.M.F.; Pretzsch, H.; Rötzer, T. How Do Tilia cordata Greenspire Trees Cope with Drought Stress Regarding Their Biomass Allocation and Ecosystem Services? Forests 2019, 10, 676. [Google Scholar] [CrossRef] [Green Version]
- Melichar, J.; Kaprová, K. Revealing preferences of Prague’s homebuyers toward greenery amenities: The empirical evidence of distance–size effect. Landsc. Urban Plan. 2013, 109, 56–66. [Google Scholar] [CrossRef]
- Horváthová, E.; Baďura, T.; Duchková, H. The value of the shading function of urban trees: A replacement cost approach. Urban For. Urban Green. 2021, 62, 127–166. [Google Scholar] [CrossRef]
- Braun Kohlová, M.; Nepožitková, P.; Melichar, J. How Do Observable Characteristics of Post-Mining Forests Affect Their Attractiveness for Recreation? Land 2021, 10, 910. [Google Scholar] [CrossRef]
Threshold (by % of Relative Abundance) | Genera | Share in % |
---|---|---|
>10% | Acer | 18.82 |
Fraxinus | 13.17 | |
Tilia | 12.88 | |
Malus | 11.46 | |
>5% | Betula | 6.96 |
Populus | 5.83 | |
Quercus | 5.65 | |
>1% | Sorbus | 3.30 |
Prunus | 2.95 | |
Pyrus | 2.82 | |
Salix | 2.66 | |
Cerasus | 2.53 | |
Pinus | 1.75 | |
Juglans | 1.56 | |
Aesculus | 1.44 | |
Picea | 1.36 | |
Alnus | 1.30 | |
>0.1% | Robinia | 0.96 |
Crateagus | 0.71 | |
Ulmus | 0.58 | |
Larix | 0.36 | |
Carpinus | 0.30 | |
Fagus | 0.13 | |
>0.01% | Thuja | 0.09 |
Corylus | 0.06 | |
Pseudotsuga | 0.06 | |
Padus | 0.05 | |
Platanus | 0.04 | |
Rhus | 0.04 | |
Catalpa | 0.03 | |
Chamaecyparis | 0.03 | |
Juniperus | 0.03 | |
Hippophae | 0.03 | |
Aronia | 0.023 | |
Abies | 0.018 | |
Ailanthus | 0.014 | |
Taxus | 0.011 | |
>0.001% | Armeniaca | 0.008 |
Eleagnus | 0.007 | |
Castanea | 0.005 | |
Total | 100 |
NUTS3 Region | NUTS3 Code | Acer | Fraxinus | Tilia | Malus | Betula | Populus | Quercus | Chi2 Test (df = 6) 1 |
---|---|---|---|---|---|---|---|---|---|
Prague | CZ010 | (data not available) | |||||||
Central Bohemian Region | CZ020 | 21.1 | 10.6 | 14.0 | 10.5 | 4.7 | 5.5 | 5.3 | 1.7 |
South Bohemian Region | CZ031 | 18.6 | 13.0 | 14.7 | 12.1 | 8.3 | 5.2 | 8.7 | 2.3 |
Plzeň Region | CZ032 | 15.2 | 8.1 | 7.2 | 26.6 | 4.7 | 5.5 | 10.4 | 29.9 *** |
Karlovy Vary Region | CZ041 | (data not available) | |||||||
Ústí nad Labem Region | CZ042 | 22.0 | 14.8 | 4.2 | 8.3 | 4.6 | 8.4 | 4.0 | 10.0 |
Liberec Region | CZ051 | 14.1 | 12.5 | 9.3 | 14.4 | 7.0 | 4.9 | 9.9 | 6.3 |
Hradec Králové Region | CZ052 | 24.1 | 18.0 | 12.6 | 5.2 | 5.6 | 7.2 | 2.8 | 8.7 |
Pardubice Region | CZ053 | 20.8 | 11.8 | 15.3 | 13.4 | 8.5 | 3.1 | 2.5 | 4.5 |
Vysočina Region | CZ063 | 13.5 | 16.7 | 19.6 | 7.0 | 12.9 | 5.4 | 2.5 | 14.5 ** |
South Moravian Region | CZ064 | (data not available) | |||||||
Olomouc Region | CZ071 | (data not available) | |||||||
Zlín Region | CZ072 | (data not available) | |||||||
Moravian-Silesian Region | CZ080 | 10.1 | 14.9 | 10.4 | 13.4 | 6.7 | 10.1 | 4.3 | 8.6 |
Total average | 18.8 | 13.2 | 12.9 | 11.5 | 7.0 | 5.8 | 5.6 | ||
Minimum | 10.1 | 8.1 | 4.2 | 5.2 | 4.6 | 3.1 | 2.5 | ||
Maximum | 24.1 | 18.0 | 19.6 | 26.6 | 12.9 | 10.1 | 10.4 |
Threshold (by % of Relative Abundance) | Tree Species | Share in % |
---|---|---|
>10% | Fraxinus excelsior | 12.52 |
Malus spp. | 11.46 | |
>5% | Tilia cordata | 9.96 |
Acer platanoides | 7.97 | |
Acer pseudoplatanus | 7.47 | |
Betula pendula | 6.96 | |
>1% | Quercus robur | 4.92 |
Sorbus aucuparia | 3.05 | |
Pyrus communis | 2.82 | |
Tilia platyphyllos | 2.79 | |
Acer negundo | 2.48 | |
Cerasus avium | 2.42 | |
Populus nigra | 2.35 | |
Populus x canadensis | 1.84 | |
Juglans regia | 1.54 | |
Salix caprea | 1.49 | |
Prunus domestica | 1.44 | |
Aesculus hippocastanum | 1.43 | |
Pinus sylvestris | 1.31 | |
Alnus glutinosa | 1.29 | |
Prunus insititia | 1.25 | |
>0.1% | Robinia pseudoacacia | 0.96 |
Populus tremula | 0.93 | |
Salix alba | 0.81 | |
Picea abies | 0.77 | |
Crataegus laevigata | 0.62 | |
Fraxinus pennsylvanica | 0.62 | |
Picea pungens | 0.50 | |
Acer campestre | 0.50 | |
Quercus rubra | 0.44 | |
Acer saccharinum | 0.37 | |
Larix decidua | 0.36 | |
Pinus nigra | 0.35 | |
Populus suaveolens | 0.31 | |
Carpinus betulus | 0.30 | |
Salix fragilis | 0.29 | |
Ulmus laevis | 0.24 | |
Quercus petraea | 0.21 | |
Ulmus glabra | 0.18 | |
Ulmus minor | 0.16 | |
Populus alba | 0.13 | |
Populus nigra | 0.13 | |
Fagus sylvatica | 0.13 | |
Sorbus aria | 0.13 | |
Sorbus intermedia | 0.12 | |
Prunus cerasifera | 0.11 | |
Tilia x euchlora | 0.11 | |
Populus simonii | 0.11 | |
>0.02% (in alphabetical order) | Alnus incana; Aronia melanocarpa; Catalpa bignonioides; Cerasus serrulata; Corylus avellana; Corylus colurna; Crataegus monogyna; Fraxinus ornus; Hippophae rhamnoides; Chamaecyparis lawsoniana; Juglans nigra; Juniperus communis; Padus avium; Picea glauca; Picea omorika; Pinus heldreichii; Pinus mugo; Pinus strobus; Platanus x hispanica; Populus balsamifera; Prunus spinosa; Pseudotsuga menziesii; Quercus palustris; Rhus typhina; Salix matsudana; Salix x sepulcralis; Thuja occidentalis; Tilia tomentosa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mácová, K.; Szórádová, A.; Kolařík, J. Are Trees Planted along the Roads Sustainable? A Large-Scale Study in the Czech Republic. Sustainability 2022, 14, 5026. https://doi.org/10.3390/su14095026
Mácová K, Szórádová A, Kolařík J. Are Trees Planted along the Roads Sustainable? A Large-Scale Study in the Czech Republic. Sustainability. 2022; 14(9):5026. https://doi.org/10.3390/su14095026
Chicago/Turabian StyleMácová, Kateřina, Andrea Szórádová, and Jaroslav Kolařík. 2022. "Are Trees Planted along the Roads Sustainable? A Large-Scale Study in the Czech Republic" Sustainability 14, no. 9: 5026. https://doi.org/10.3390/su14095026
APA StyleMácová, K., Szórádová, A., & Kolařík, J. (2022). Are Trees Planted along the Roads Sustainable? A Large-Scale Study in the Czech Republic. Sustainability, 14(9), 5026. https://doi.org/10.3390/su14095026