Physiological Indices and Subjective Thermal Perception of Heat Stress-Exposed Workers in an Industrial Plant
Abstract
:1. Introduction
2. Methodology
2.1. The Industrial Plant
2.2. Measurement
3. Results
3.1. Physiological Indices
3.2. Subjective Thermal Perception
4. Discussion
4.1. Relationship between the Mean Skin Temperature and Thermal Sensation
4.2. WBGT Limits for Heat Stress Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics. Available online: http://www.stats.gov.cn/ (accessed on 15 March 2020).
- Meng, X.J.; Wang, Y.; Liu, T.N.; Xing, X.; Cao, Y.X.; Zhao, J.P. Influence of radiation on predictive accuracy in numerical simulation of thermal environment in industrial buildings with buoyancy-driven natural ventilation. Appl. Therm. Eng. 2016, 96, 473–480. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Xing, X.; Liu, Y.L.; Meng, X.J. Measurement and evaluation of indoor thermal environment in a naturally ventilated industrial building with high temperature heat sources. Build. Environ. 2016, 96, 35–45. [Google Scholar] [CrossRef]
- GBZ 2.2; Occupational Exposure Limits for Hazardous Agents in the Workplace, Part 2: Physical Agents. PRC Hygiene Ministry: Beijing, China, 2007.
- Qian, Q.Z.; Cao, X.K.; Meng, C.Y.; Bai, Y.P.; Li, Q.Z.; Zhu, H.; Li, X.R.; Li, J. Hypertension and its risk factors among high temperature workers in Hebei Steel Group. Occup. Health 2017, 33, 1466–1469. [Google Scholar]
- Zhang, L. Analysis on electrocardiogram of 732 workers exposed to high temperature in an electrical appliance manufacturing enterprise of Guangzhou City. Occup. Health 2016, 32, 2631–2633. [Google Scholar]
- Krishnamurthy, M.; Ramalingam, P.; Perumal, K.; Kamalakannan, L.P.; Chinnadurai, J.; Shanmugam, R.; Srinivasan, K.; Venugopal, V. Occupational heat stress impacts on health and productivity in a steel industry in southern India. Saf. Health Work 2017, 8, 99–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmatjo, R.; Motamedzade, M.; Aliabadi, M.; Kalatpou, O.; Farhadian, M. The effects of multiple firefighting activities on information processing and work performance in a smoke-diving room: An intervention study. Hum. Factor. Ergon. Manuf. Serv. Ind. 2017, 27, 261–267. [Google Scholar] [CrossRef]
- Park, H.-J.; Jeong, B.-Y. Construction Workers and Sustainability: Work-Related Risk Factors and Health Problems. Sustainability 2021, 13, 13179. [Google Scholar] [CrossRef]
- McArdle, B.; Dunham, W.; Holling, H.E.; Ladell, W.S.S.; Scott, J.W.; Thomson, M.L.; Weiner, J.S.; Hölling, H. The prediction of the physiological effects of warm and hot environments: The P4SR index. Med. Res. Coun. 1947, 47, 391–396. [Google Scholar]
- Belding, H.S.; Hatch, T.F. Index for evaluating heat stress in terms of resulting physiological strains. Heat. Pip. Air Condit. 1955, 27, 129–136. [Google Scholar]
- Moran, D.S.; Shitzer, A.; Pandolf, K.B. A physiological strain index to evaluate heat stress. Am. J. Physiol. 1998, 275, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Malchaire, J.; Piette, A.; Kampmann, B.; Mehnert, P.; Gebhardt, H.; Havenith, G.; Hartog, E.D.; Holmer, I.; Parsons, K.; Alfano, G.; et al. Development and validation of the predicted heat strain model. Ann. Occup. Hyg. 2001, 45, 123–135. [Google Scholar] [CrossRef]
- ISO Standard 7933; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Heat Stress Using Calculation of the Predicted Heat Strain. ISAO: Geneva, Switzerland, 2004.
- Malchaire, J. Occupational heat stress assessment by the predicted heat strain model. Ind. Health 2006, 44, 380–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowlinson, S.; Jia, A.Y. Application of the predicted heat strain model in development of localized, threshold-based heat stress management guidelines for the construction industry. Ann. Occup. Hyg. 2014, 58, 326–339. [Google Scholar] [PubMed] [Green Version]
- Jia, A.Y.; Rowlinson, S.; Ciccarelli, M. Climatic and psychosocial risks of heat illness incidents on construction site. Appl. Ergon. 2016, 53, 25–35. [Google Scholar] [CrossRef]
- Du, C.Q.; Li, B.Z.; Li, Y.Q.; Xu, M.N.; Yao, R.M. Modification of the predicted heat strain (PHS) model in predicting human thermal responses for Chinese workers in hot environments. Build. Environ. 2019, 165, 106349. [Google Scholar] [CrossRef]
- Yang, J.; Weng, W.G.; Zhang, B.T. Experimental and numerical study of physiological responses in hot environments. J. Therm. Biol. 2014, 45, 54–61. [Google Scholar] [CrossRef]
- Zheng, G.Z.; Li, K.; Bu, W.T.; Wang, Y.J. Fuzzy comprehensive evaluation of human physiological state in indoor high temperature environments. Build. Environ. 2019, 150, 108–118. [Google Scholar] [CrossRef]
- Meng, X.J.; Jia, K.F.; Zhang, D.W. Fuzzy comprehensive evaluation of human physiological state in the heat stress work environment. J. Safe Environ. 2021, 21, 1630–1635. [Google Scholar]
- Pantavou, K.; Theoharatos, G.; Mavrakis, A.; Santamouris, M. Evaluating thermal comfort conditions and health responses during an extremely hot summer in Athens. Build. Environ. 2011, 46, 339–344. [Google Scholar] [CrossRef]
- Zhang, H.; Huizenga, C.; Arens, E. Thermal sensation and comfort in transient non-uniform thermal environments. Eur. J. Appl. Physiol. 2004, 92, 728–733. [Google Scholar] [CrossRef]
- Nag, P.K.; Ashtekar, S.P.; Nag, A.; Kothari, D.; Bandyopadhyay, P.; Desai, H. Human heat tolerance in simulated environment. Indian J. Med. Res. 1997, 105, 728–733. [Google Scholar]
- Zhang, S.; Zhu, N.; Lv, S.L. Human response and productivity in hot environments with directed thermal radiation. Build. Environ. 2021, 187, 107408. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, N.; Lv, S.L. Responses of human perception and skin temperature to directed thermal radiation in hot environments. Build. Environ. 2021, 197, 107857. [Google Scholar] [CrossRef]
- Wang, D.J.; Chen, G.X.; Song, C. Experimental study on coupling effect of indoor air temperature and radiant temperature on human thermal comfort in non-uniform thermal environment. Build. Environ. 2019, 165, 106387. [Google Scholar] [CrossRef]
- Ghani, S.; Mahgoub, A.O.; Bakochristou, F.; Elbialy, E.A. Assessment of thermal comfort indices in an open air-conditioned stadium in hot and arid environment. J. Build. Eng. 2021, 40, 102378. [Google Scholar] [CrossRef]
- Ghani, S.; Bialy, E.M.; Bakochristou, F.; Gamaledin, S.M.A.; Rashwan, M.M.; Hughes, B. Thermal comfort investigation of an outdoor air-conditioned area in a hot and arid environment. Sci. Technol. Built Environ. 2017, 23, 1113–1131. [Google Scholar] [CrossRef] [Green Version]
- ISO Standard 7243; Ergonomics of the Thermal Environment—Assessment of Heat Stress Using the WBGT (Wet Bulb Globe Temperature) Index. ISAO: Geneva, Switzerland, 2017.
- ACGIH. TLVs® and BEIs®—Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2019. [Google Scholar]
- Gao, J. Study on the Evaluation Method of Indoor Thermal Environment in Naturally Ventilated Buildings with Different Temperature Heat Source. Ph.D. Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2016. [Google Scholar]
- Zare, S.; Shirvan, H.E.; Hemmatjo, R.; Nadri, F.; Jahani, Y.; Jamshidzadeh, K.; Paydar, P. A comparison of the correlation between heat stress indices (UTCI, WBGT, WBDT, TSI) and physiological parameters of workers in Iran. Weather Clim. Extrem. 2019, 26, 100213. [Google Scholar] [CrossRef]
- Tian, Z.; Zhu, N.; Zheng, G.Z.; Wei, H.J. Experimental study on physiological and psychological effects of heat acclimatization in extreme hot environments. Build. Environ. 2011, 46, 2033–2041. [Google Scholar] [CrossRef]
- GBZ/T 189.7; Measurement of Physical Agents in Workplace Part 7: Heat Stress. PRC Hygiene Ministry: Beijing, China, 2007.
- Nagano, K.; Takaki, A.; Hirakawa, M.; Tochihara, Y. Effects of ambient temperature steps on thermal comfort requirements. Int. J. Biometeorol. 2005, 50, 30–39. [Google Scholar] [CrossRef]
- Wang, Z.J.; He, Y.N.; Hou, J.; Jiang, L. Human skin temperature and thermal responses in asymmetrical cold radiation environments. Build. Environ. 2013, 67, 217–223. [Google Scholar] [CrossRef]
- ISO Standard 10551; Ergonomics of the Thermal Environment—Assessment of the Influence of the Thermal Environment Using Subjective Judgement Scales. ISAO: Geneva, Switzerland, 1995.
- GB/T 18977; Ergonomics of the Thermal Environment-Assessment of the Influence of the Thermal Environment Using Subjective Judgement Scales. Standards Press of China: Beijing, China, 2003.
- Zhao, H.X.; Zhou, S.N.; Xiao, H. The comparison and discussion of four criterions of Gross-error detection. Phys. Exp. Coll. 2017, 30, 105–107. [Google Scholar]
- Zhu, Y.X. Building Environment; China Architecture and Building Press: Beijing, China, 2010. [Google Scholar]
- Chen, C.P.; Hwang, R.L.; Chang, S.Y.; Liu, Y.T. Effects of temperature steps on human skin physiology and thermal sensation response. Build. Environ. 2011, 46, 2387–2397. [Google Scholar] [CrossRef]
Gender | Number | Age | Height (cm) | Weight (kg) | BMI |
---|---|---|---|---|---|
Male | 14 | 32.9 ± 4.7 | 174.1 ± 2.4 | 69.5 ± 6.4 | 22.9 ± 1.7 |
Variables | Instruments | Range | Accuracy |
---|---|---|---|
Air temperature | Multi-functional tester (JT2020) | −20–120 °C | ±0.5 °C |
Air relative humidity | 10–90% RH | ±3% | |
WBGT | 0–50 °C | ±0.5 °C | |
Air velocity | Multi-function ventilation meter (TSI 9565) | 0–50 m/s | ±0.015 m/s |
Skin temperature | Infrared pyrometer (DT-8806H) | 0–60 °C | ±0.2 °C |
Oral temperature | Electronic clinical thermometer (Omron MC-341) | 32–42 °C | ±0.1 °C |
Blood pressure | Wrist sphygmomanometer (Omron T30J) | 0–299 mmHg | ±0.3 mmHg |
Heart rate | 40–180 bpm | ±5% |
Variables | Rulers |
---|---|
Thermal sensation | Very cold (−4), cold (−3), cool (−2), slightly cool (−1), neutral (0), slightly warm (+1), warm (+2), hot (+3), very hot (+4) |
Thermal comfort | Comfortable (0), slightly comfortable (1), uncomfortable (2), very uncomfortable (3), extremely uncomfortable (4) |
Thermal preference | Much warmer (+3), warmer (+2), little warmer (+1), neutral (0), slightly cooler (−1), cooler (−2), much cooler (−3) |
Thermal acceptability | Acceptable (0), unacceptable (1) |
Thermal tolerance | Perfectly tolerable (0), slightly difficult to tolerate (1), fairly difficult to tolerate (2), very difficult to tolerate (3), intolerable (4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Xue, S.; An, K.; Cao, Y. Physiological Indices and Subjective Thermal Perception of Heat Stress-Exposed Workers in an Industrial Plant. Sustainability 2022, 14, 5019. https://doi.org/10.3390/su14095019
Meng X, Xue S, An K, Cao Y. Physiological Indices and Subjective Thermal Perception of Heat Stress-Exposed Workers in an Industrial Plant. Sustainability. 2022; 14(9):5019. https://doi.org/10.3390/su14095019
Chicago/Turabian StyleMeng, Xiaojing, Shukai Xue, Kangle An, and Yingxue Cao. 2022. "Physiological Indices and Subjective Thermal Perception of Heat Stress-Exposed Workers in an Industrial Plant" Sustainability 14, no. 9: 5019. https://doi.org/10.3390/su14095019