Why Do Students Choose Buses over Private Motorcycles and Motorcycle-Based Ride-Sourcing? A Hybrid Choice Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Factors Affecting the Use of Motorcycles, MBRS, and City Buses
2.2. Methods Used in Determining Mode Choice Decision
3. Materials and Methods
3.1. Study Variables
3.2. Survey Instrument
3.3. Sample and Data Collection
3.4. Perception Variables
3.5. Hybrid Choice Model
4. Results and Discussion
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanchez, T.W. Poverty, Policy, and Public Transportation. Transp. Res. Part A Policy Pract. 2008, 42, 833–841. [Google Scholar] [CrossRef]
- Irawan, M.Z.; Bastarianto, F.F.; Rizki, M.; Belgiawan, P.F.; Joewono, T.B. Exploring the Frequency of Public Transport Use among Adolescents: A Study in Yogyakarta, Indonesia. Int. J. Sustain. Transp. 2021, 1–11. [Google Scholar] [CrossRef]
- Shrestha, B.P.; Millonig, A.; Hounsell, N.B.; McDonald, M. Review of Public Transport Needs of Older People in European Context. J. Popul. Ageing 2017, 10, 343–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahyuni, E.S.; Murti, B.; Joebagio, H. Public Transport Accessibility for People with Disabilities. J. Health Policy Manag. 2016, 1, 1–7. [Google Scholar] [CrossRef]
- de Ortuzar, J.D.; Willumsen, L.G. Modelling Transport, 4th ed.; John Wiley & Sons: West Sussex, UK, 2011; ISBN 9781119993315. [Google Scholar]
- Currie, G.; Wallis, I. Effective Ways to Grow Urban Bus Markets—A Synthesis of Evidence. J. Transp. Geogr. 2008, 16, 419–429. [Google Scholar] [CrossRef]
- Ke, F. What Makes People Use Public Transport? Available online: https://www.weforum.org/agenda/2015/03/what-makes-people-use-public-transport/ (accessed on 24 April 2020).
- Sadowsky, N.; Nelson, E. The Impact of Ride-Hailing Services on Public Transportation Use: A Discontinuity Regression Analysis; Economics Department Working Paper Series; Bowdoin Digital Commons: Brunswick, ME, USA, 2017; Available online: https://digitalcommons.bowdoin.edu/cgi/viewcontent.cgi?article=1012&context=econpapers (accessed on 13 April 2022).
- Circella, G.; Alemi, F. Transport Policy in the Era of Ridehailing and Other Disruptive Transportation Technologies, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 1. [Google Scholar]
- Rayle, L.; Dai, D.; Chan, N.; Cervero, R.; Shaheen, S. Just a Better Taxi? A Survey-Based Comparison of Taxis, Transit, and Ridesourcing Services in San Francisco. Transp. Policy 2016, 45, 168–178. [Google Scholar] [CrossRef] [Green Version]
- Schwieterman, J.; Smith, C.S. Sharing the Ride: A Paired-Trip Analysis of Uber Pool and Chicago Transit Authority Services in Chicago, Illinois. Res. Transp. Econ. 2018, 71, 9–16. [Google Scholar] [CrossRef]
- Yan, X.; Levine, J.; Zhao, X. Integrating Ridesourcing Services with Public Transit: An Evaluation of Traveler Responses Combining Revealed and Stated Preference Data. Transp. Res. Part C Emerg. Technol. 2018, 105, 683–696. [Google Scholar] [CrossRef]
- Nugroho, S.B.; Zusman, E.; Nakano, R. Explaining the Spread of Online Taxi Services in Semarang, Bogor and Bandung, Indonesia; a Discrete Choice Analysis. Travel Behav. Soc. 2020, 20, 358–369. [Google Scholar] [CrossRef]
- Irawan, M.Z.; Rizki, M.; Chalermpong, S.; Kato, H. Mapping the Motorcycle-Based Ride-Hailing Users in Yogyakarta: An Analysis of Socio-Economic Factors and Preferences. Asian Transp. Stud. 2022, 8, 100073. [Google Scholar] [CrossRef]
- Irawan, M.Z.; Bastarianto, F.F.; Dewanti; Sugiarto, S.; Rizka Fahmi Amrozi, M. Measuring the Perceived Need for Motorcycle-Based Ride-Hailing Services on Trip Characteristics among University Students in Yogyakarta, Indonesia. Travel Behav. Soc. 2021, 24, 303–312. [Google Scholar] [CrossRef]
- Irawan, M.Z.; Belgiawan, P.F.; Joewono, T.B.; Simanjuntak, N.I.M. Do Motorcycle-Based Ride-Hailing Apps Threaten Bus Ridership? A Hybrid Choice Modeling Approach with Latent Variables. Public Transp. 2019, 12, 207–231. [Google Scholar] [CrossRef]
- Stankov, I.; Garcia, L.M.T.; Mascolli, M.A.; Montes, F.; Meisel, J.D.; Gouveia, N.; Sarmiento, O.L.; Rodriguez, D.A.; Hammond, R.A.; Caiaffa, W.T.; et al. A Systematic Review of Empirical and Simulation Studies Evaluating the Health Impact of Transportation Interventions. Environ. Res. 2020, 186, 109519. [Google Scholar] [CrossRef] [PubMed]
- Khaerunnisa, S.H. The Route and Bus Stop Plan of Agglomeration Transportation on Educational Facility in Yogyakarta Urban Agglomeration Area. J. Civ. Eng. Forum 2020, 7, 23–36. [Google Scholar] [CrossRef]
- Irawan, M.Z. Perceived Disadvantages or Motorized Vehicle Use Habit? Investigating Obstacles in Bicycle Use among Adolescents in Yogyakarta, Indonesia. Transp. Res. Interdiscip. Perspect. 2022, 14, 100595. [Google Scholar] [CrossRef]
- Irawan, M.Z.; Sumi, T. Motorcycle-Based Adolescents’ Travel Behaviour during the School Morning Commute and the Effect of Intra-Household Interaction on Departure Time and Mode Choice. Transp. Plan. Technol. 2012, 35, 263–279. [Google Scholar] [CrossRef]
- Marquet, O.; Miralles-Guasch, C. City of Motorcycles. on How Objective and Subjective Factors Are behind the Rise of Two-Wheeled Mobility in Barcelona. Transp. Policy 2016, 52, 37–45. [Google Scholar] [CrossRef]
- Wheelen, D. Global Motorcycle Sales Growth Stumbled in 2019. Available online: https://www.rideapart.com/news/402593/global-motorcycle-sales-growth-stunted-2019/ (accessed on 5 November 2021).
- Guerra, E. Electric Vehicles, Air Pollution, and the Motorcycle City: A Stated Preference Survey of Consumers’ Willingness to Adopt Electric Motorcycles in Solo, Indonesia. Transp. Res. Part D Transp. Environ. 2019, 68, 52–64. [Google Scholar] [CrossRef]
- Tosi, J.D.; Poó, F.M.; Ledesma, R.D.; Firsenko, E. Safety of Child Passengers Who Ride to School on a Motorcycle: An Observational Study in Two Argentine Cities. IATSS Res. 2021, 45, 176–181. [Google Scholar] [CrossRef]
- Mirbaha, B.; Mohajeri, F. Investigating the Strategies for Reducing Motorcycle Mode Choice in Urban Trips: Case Study of Tehran City. Transp. Res. Rec. 2019, 2673, 58–69. [Google Scholar] [CrossRef]
- Fevriera, S.; de Groot, H.L.F.; Mulder, P. Does Urban Form Affect Motorcycle Use? Evidence from Yogyakarta, Indonesia; Taylor & Francis: Oxfordshire, UK, 2021; Volume 57, ISBN 0000000295789. [Google Scholar]
- Transaid. An Introductory Webinar on the Topic of Motorcycle Taxis in the Rural Context of Sub-Saharan Africa and South Asia; Transaid: London, UK, 2017; pp. 1–57. [Google Scholar]
- Suatmadi, A.Y.; Creutzig, F.; Otto, I.M. On-Demand Motorcycle Taxis Improve Mobility, Not Sustainability. Case Stud. Transp. Policy 2019, 7, 218–229. [Google Scholar] [CrossRef]
- Truong, L.T.; Nguyen, H.T.T. Mobile Phone Related Crashes among Motorcycle Taxi Drivers. Accid. Anal. Prev. 2019, 132, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Risdiyanto; Munawar, A.; Irawan, M.Z.; Nugraha, A.A. Model Selection of Online Motorcycle Taxi and Motorcycle Modes on Work Trips. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Jakarta, Indonesia, 3–4 August 2020; Volume 1007, pp. 4–10. [Google Scholar]
- Nguyen, M.H. Evaluating the Service Quality of the First Bus Rapid Transit Corridor in Hanoi City and Policy Implications; Springer: Cham, Switzerland, 2021; Volume 108, ISBN 9783030602697. [Google Scholar]
- Nadeem, M.; Azam, M.; Asim, M.; Al-Rashid, M.A.; Puan, O.C.; Campisi, T. Does Bus Rapid Transit System (Brts) Meet the Citizens’ Mobility Needs? Evaluating Performance for the Case of Multan, Pakistan. Sustainability 2021, 13, 7314. [Google Scholar] [CrossRef]
- de Dios Ortúzar, J. Future Transportation: Sustainability, Complexity and Individualization of Choices. Commun. Transp. Res. 2021, 1, 100010. [Google Scholar] [CrossRef]
- Le, T.P.L.; Trinh, T.A. Encouraging Public Transport Use to Reduce Traffic Congestion and Air Pollutant: A Case Study of Ho Chi Minh City, Vietnam. Procedia Eng. 2016, 142, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Baidoo, I.K.; Nyarko, E. Stated Preference Modeling for a Preferred Transportation Mode. Methodology 2015, 5, 134–140. [Google Scholar]
- Zhang, Y.; Guo, H.; Li, C.; Wang, W.; Jiang, X.; Liu, Y. Which One Is More Attractive to Traveler, Taxi or Tailored Taxi? An Empirical Study in China. Procedia Eng. 2016, 137, 867–875. [Google Scholar] [CrossRef] [Green Version]
- Anwar, A.H.M.M.; Yang, J. Examining the Effects of Transport Policy on Modal Shift from Private Car to Public Bus. Procedia Eng. 2017, 180, 1413–1422. [Google Scholar] [CrossRef]
- Laloma, A.; Rompis, S.Y.R.; Jefferson, L. Pengaruh Angkutan Online Terhadap Pemilihan Moda Transportasi Publik Di Kota Manado (Studi Kasus: Trayek Malalayang—Pusat Kota). J. Sipil Statik 2018, 6, 541–552. [Google Scholar]
- Habib, K.N. Mode Choice Modelling for Hailable Rides: An Investigation of the Competition of Uber with Other Modes by Using an Integrated Non-Compensatory Choice Model with Probabilistic Choice Set Formation. Transp. Res. Part A Policy Pract. 2019, 129, 205–216. [Google Scholar] [CrossRef]
- Si, Y.; Guan, H.; Cui, Y. Research on The Choice Behavior of Taxis and Express Services Based on The SEM-Logit Model. Sustainability 2019, 11, 2974. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Li, W.; Wei, S.; Zhang, T. Research on Passenger’s Travel Mode Choice Behavior Waiting at Bus Station Based on SEM-Logit Integration Model. Sustainability 2018, 10, 1996. [Google Scholar] [CrossRef] [Green Version]
- Aguilera-García, Á.; Manuel Vassallo, J. Ridesourcing vs. Traditional Taxi Services: Understanding Users’ Choices and Preferences in Spain. Transp. Res. Part A Policy Pract. 2022, 155, 161–178. [Google Scholar] [CrossRef]
- Bouscasse, H. Integrated Choice and Latent Variable Models: A Integrated Choice and Latent Variable; Grenoble Applied Economics Laboratory: Grenoble, France, 2018. [Google Scholar]
- Johansson, M.V.; Heldt, T. The Effects of Attitudes and Personality Traits on Mode Choice. Transp. Res. Part A 2006, 40, 507–525. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, S. Mode Choice Model for Public Transport with Categorized Latent Variables. Math. Probl. Eng. 2017, 2017, 7861945. [Google Scholar] [CrossRef] [Green Version]
- Masoumi, H.E. A Discrete Choice Analysis of Transport Mode Choice Causality and Perceived Barriers of Sustainable Mobility in the MENA Region. Transp. Policy 2019, 79, 37–53. [Google Scholar] [CrossRef]
- Temme, D.; Paulssen, M.; Dannewald, T. Incorporating Latent Variables in to Discrete Choice Models—A Simultaneous Estimation Approach Using SEM Software. Bus. Res. 2008, 1, 220–237. [Google Scholar] [CrossRef]
- Plavara Alex, A.; Vasudevan Saraswathy, M.; Palampoikayil Isaac, K. Latent Variable Enriched Mode Choice Model for Work Activity in Multi Modal Condition Prevalent in India. Int. J. Traffic Transp. Eng. 2016, 6, 378–389. [Google Scholar] [CrossRef]
- Kim, E.J. Analysis of Travel Mode Choice in Seoul Using an Interpretable Machine Learning Approach. J. Adv. Transp. 2021, 2021, 6685004. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S.; Zhao, J. Equality of Opportunity in Travel Behavior Prediction with Deep Neural Networks and Discrete Choice Models. Transp. Res. Part C Emerg. Technol. 2021, 132, 103410. [Google Scholar] [CrossRef]
- Bahamonde-Birke, F.J.; Hanappi, T. The Potential of Electromobility in Austria: Evidence from Hybrid Choice Models under the Presence of Unreported Information. Transp. Res. Part A Policy Pract. 2016, 83, 30–41. [Google Scholar] [CrossRef]
- Kim, J.; Rasouli, S.; Timmermans, H. Expanding Scope of Hybrid Choice Models Allowing for Mixture of Social Influences and Latent Attitudes: Application to Intended Purchase of Electric Cars. Transp. Res. Part A Policy Pract. 2014, 69, 71–85. [Google Scholar] [CrossRef]
- Valeri, E.; Cherchi, E. Does Habitual Behavior Affect the Choice of Alternative Fuel Vehicles? Int. J. Sustain. Transp. 2016, 10, 825–835. [Google Scholar] [CrossRef] [Green Version]
- Etzioni, S.; Daziano, R.A.; Ben-Elia, E.; Shiftan, Y. Preferences for Shared Automated Vehicles: A Hybrid Latent Class Modeling Approach. Transp. Res. Part C Emerg. Technol. 2021, 125, 103013. [Google Scholar] [CrossRef]
- Kolarova, V.; Cherchi, E. Impact of Trust and Travel Experiences on the Value of Travel Time Savings for Autonomous Driving. Transp. Res. Part C Emerg. Technol. 2021, 131, 103354. [Google Scholar] [CrossRef]
- Manca, F.; Sivakumar, A.; Polak, J.W. Capturing the Effect of Multiple Social Influence Sources on the Adoption of New Transport Technologies and Services. J. Choice Model. 2022, 42, 100344. [Google Scholar] [CrossRef]
- Kim, S.; Rasouli, S. The Influence of Latent Lifestyle on Acceptance of Mobility-as-a-Service (MaaS): A Hierarchical Latent Variable and Latent Class Approach. Policy Pract. 2022, 159, 304–319. [Google Scholar] [CrossRef]
- Andani, I.G.A.; La Paix Puello, L.; Geurs, K. Modelling Effects of Changes in Travel Time and Costs of Toll Road Usage on Choices for Residential Location, Route and Travel Mode across Population Segments in the Jakarta-Bandung Region, Indonesia. Transp. Res. Part A Policy Pract. 2021, 145, 81–102. [Google Scholar] [CrossRef]
- Schmid, B.; Axhausen, K.W. In-Store or Online Shopping of Search and Experience Goods: A Hybrid Choice Approach. J. Choice Model. 2019, 31, 156–180. [Google Scholar] [CrossRef]
- Belgiawan, P.F.; Joewono, T.B.; Irawan, M.Z. Determinant Factors of Ride-Sourcing Usage: A Case Study of Ride-Sourcing in Bandung, Indonesia. Case Stud. Transp. Policy 2022. [Google Scholar] [CrossRef]
- Márquez, L.; Pico, R.; Cantillo, V. Understanding Captive User Behavior in the Competition between BRT and Motorcycle Taxis. Transp. Policy 2018, 61, 1–9. [Google Scholar] [CrossRef]
- Morikawa, T.; Ben-Akiva, M.; McFadden, D. Discrete Choice Models Incorporating Revealed Preferences and Psychometric Data. Adv. Econom. 2002, 16, 29–55. [Google Scholar] [CrossRef]
- Tao, S.; Corcoran, J.; Mateo-Babiano, I. Modelling Loyalty and Behavioural Change Intentions of Busway Passengers: A Case Study of Brisbane, Australia. IATSS Res. 2017, 41, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Henser, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis, 1st ed.; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Irawan, M.Z. Exploring the Performance of TransJogja Bus and the Behavior of Its Passengers. In Proceedings of the 5th International Conference on Science and Technology, Yogyakarta, Indonesia, 30–31 July 2019; Volume 1, pp. 1–6. [Google Scholar] [CrossRef]
- Ghani, M.N.N.; Ahmad, M.Z.; Tan, S. Transportation mode choice: Are latent factors important? Proc. East. Asia Soc. Transp. Stud. 2007, 6, 894–904. [Google Scholar]
- Bilge, A.; Glerum, A.; Bierlaire, M. Mode Choice with Attitudinal Latent Class: A Swiss Case Study. In Proceedings of the Second International Choice Modeling Conference, Leeds, UK, 4–6 July 2011; pp. 1–16. [Google Scholar]
- Nikitas, A.; Karlsson, M. A Worldwide State-of-the-Art Analysis for Bus Rapid Transit: Looking for the Success Formula. J. Public Transp. 2015, 18, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Zhao, S.; Li, J. The Effects of Latent Attitudinal Variables and Sociodemographic Differences on Travel Behavior in Two Small, Underdeveloped Cities in China. Sustainability 2019, 11, 1306. [Google Scholar] [CrossRef] [Green Version]
- Van Lierop, D.; Badami, M.G.; El-Geneidy, A.M. What Influences Satisfaction and Loyalty in Public Transport? A Review of the Literature. Transp. Rev. 2018, 38, 52–72. [Google Scholar] [CrossRef]
- Daziano, R.A.; Rizzi, L.I. Analyzing the Impact of a Fatality Index on a Discrete, Interurban Mode Choice Model with Latent Safety, Security, and Comfort. Saf. Sci. 2015, 78, 11–19. [Google Scholar] [CrossRef]
- Currie, G.; Delbosc, A. Spiral Plot Analysis of Variation in Perceptions of Urban Public Transport Performance between International Cities. Transp. Res. Rec. J. Transp. Res. Board 2015, 2538, 54–64. [Google Scholar] [CrossRef]
- Chaudhry, B.; El-amine, S.; Shakshuki, E. Passenger Safety in Ride-Sharing Services. Procedia Comput. Sci. 2018, 130, 1044–1050. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Li, X.; Guo, X. Evaluation of Public Transportation Operation Based on Data Envelopment Analysis. Procedia-Soc. Behav. Sci. 2013, 96, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Beirão, G.; Sarsfield Cabral, J.A. Understanding Attitudes towards Public Transport and Private Car: A Qualitative Study. Transp. Policy 2007, 14, 478–489. [Google Scholar] [CrossRef]
- Prasad, P.; Maitra, B. Identifying Areas of Interventions for Improvement of Shared Modes for School Trips. Transp. Res. Part A Policy Pract. 2019, 121, 122–135. [Google Scholar] [CrossRef]
- Miller, P.; de Barros, A.G.; Kattan, L.; Wirasinghe, S.C. Analyzing the Sustainability Performance of Public Transit. Transp. Res. Part D Transp. Environ. 2016, 44, 177–198. [Google Scholar] [CrossRef]
- Lai, W.T.; Chen, C.F. Behavioral Intentions of Public Transit Passengers-The Roles of Service Quality, Perceived Value, Satisfaction and Involvement. Transp. Policy 2011, 18, 318–325. [Google Scholar] [CrossRef]
- Aminzadegan, S.; Shahriari, M.; Mehranfar, F.; Abramović, B. Factors Affecting the Emission of Pollutants in Different Types of Transportation: A Literature Review. Energy Rep. 2022, 8, 2508–2529. [Google Scholar] [CrossRef]
- Acharjee, A.; Pratim Sarkar, P.; Pal, J. Effect of Socioeconomic and Latent Variables in Vehicle Ownership: A Case Study of Agartala City, India. Int. J. Eng. Technol. 2017, 7, 472. [Google Scholar] [CrossRef] [Green Version]
- Kurniawan, D.A. Mengapa Kendaraan Pribadi Terus Bertumbuh? Available online: https://pustral.ugm.ac.id/2017/10/05/mengapa-kendaraan-pribadi-terus-bertumbuh/ (accessed on 13 July 2020).
- Chicago Transit Authority CTA Board Approves New Service Standards. Available online: https://www.transitchicago.com/cta-board-approves-new-service-standards/ (accessed on 13 April 2022).
- Liu, Y.; Lyu, C.; Liu, Z.; Cao, J. Exploring a Large-Scale Multi-Modal Transportation Recommendation System. Transp. Res. Part C Emerg. Technol. 2021, 126, 103070. [Google Scholar] [CrossRef]
- Israel, G.D. Determining Sample Size; University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, EDIS: Gainesville, FL, USA, 1992; Volume 10. [Google Scholar]
- Koppelman, F.S.; Chu, C. Effect of Sample Size on Disaggregate Choice Model Estimation and Prediction; Transportation Research Record; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 1983; pp. 60–69. [Google Scholar]
- Ben-akiva, M.; McFadden, D.; Train, K.; Walker, J.; Bhat, C.; Bierlaire, M.; Bolduc, D.; Boersch-Supan, A.; Brownstone, D.; Bunch, D.S.; et al. Hybrid Choice Models: Progress and Challenges. Mark. Lett. 2002, 13, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.M.; Yang, X.G. Study of Dispatching at Minimum Waiting Time of Public Transportation Transfer under the Condition of ITS. Zhongguo Gonglu Xuebao/China J. Highw. Transp. 2004, 17, 82. [Google Scholar]
- Shen, X.; Feng, S.; Li, Z.; Hu, B. Analysis of Bus Passenger Comfort Perception Based on Passenger Load Factor and In-Vehicle Time. Springerplus 2016, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corazza, M.V.; Musso, A.; Finikopoulos, K.; Sgarra, V. A Methodology for the Evaluation of Road Accidents Health Care Costs for Powered Two-Wheelers: The Rome Case Study. Case Stud. Transp. Policy 2017, 5, 417–424. [Google Scholar] [CrossRef]
Research Variables | Measurement Techniques | |
---|---|---|
Gender | 1 | Male |
2 | Female | |
Age | Continuous | |
Education | 1 | Tenth-grade high school students |
2 | Eleventh-grade high school students | |
3 | Twelfth-grade high school students | |
4 | First-year university students | |
5 | Second-year university students or more | |
Income (in thousand IDR) | 1 | <IDR 250 (<USD 17.4) |
2 | IDR 250–499 (USD 17.4–34.80) | |
3 | IDR 500–999 (USD 34.81–69.61) | |
4 | IDR 1000–1499 (USD 69.62–104.42) | |
5 | IDR 1500–2000 (USD 104.43–139.23) | |
6 | >IDR 2000 (>USD 139.23) | |
Motorcycle driving license ownership | 1 | Yes |
2 | No | |
Private vehicle ownership | 1 | Having a private motorcycle |
2 | Having a motorcycle but using it with other family members | |
3 | Not having a motorcycle | |
Travel cost from home to schools/colleges | ||
Motorcycles | Continuous | |
MBRS | Continuous | |
Trans Jogja Bus | Continuous | |
Travel time from home to schools/colleges | ||
Motorcycles | Continuous | |
MBRS | Continuous | |
Trans-Jogja Bus | Continuous | |
Latent variables for each mode | Likert scale | |
16 indicators of each mode | 1 | Strongly disagree |
2 | Disagree | |
3 | Neutral | |
4 | Agree | |
5 | Strongly agree |
Variables | Indicators and Previous Reference Studies * | |
---|---|---|
Flexibility | 1 | Mode A can be used to travel anytime [67] |
2 | Mode A can be used to go any places in Yogyakarta city [68] | |
3 | To reach a destination, a transfer is not needed when using mode A [82] | |
Security and Safety | 4 | Using mode A is relatively safe from theft [70,71] |
5 | Mode A can be used safely at night [72] | |
6 | Mode A can help avoid sexual abuse [73] | |
7 | People prefer to use mode A because it has a lower accident risk [74] | |
Convenience/Comfort | 8 | Mode A is a transport mode which can be used while relaxing [75] |
9 | Mode A is a transport mode which offers big seats [70] | |
10 | Mode A is a transport mode which offers comfortable suspension [70] | |
Pro-Environment | 11 | Using mode A supports the effort to reduce the use of fuel oil [77] |
12 | Using mode A supports the effort to reduce air pollution [75] | |
13 | I assume that using mode A contributes to the prevention/reduction of global warming [67] | |
Image/Lifestyle | 14 | Using mode A is one of the students’ lifestyles in Yogyakarta [78] |
15 | Using mode A in the urban area of Yogyakarta is comfortable [78] | |
16 | A person’s self-image (prestige) is well-maintained by using mode A [83] |
Variables | Descriptions | Codes | Respondents | % |
---|---|---|---|---|
X1 | Gender | |||
Male | 1 | 198 | 37.6 | |
Female | 2 | 329 | 62.4 | |
X2 | Age | |||
≤15 Years | 1 | 27 | 5.1 | |
16–19 Years old | 2 | 227 | 43.1 | |
20–24 Years old | 3 | 265 | 50.3 | |
≥25 Years old | 4 | 8 | 1.5 | |
X3 | Education | |||
High school students (Tenth Grade) | 1 | 49 | 9.3 | |
High school students (Eleventh Grade) | 2 | 68 | 12.9 | |
High school students (Twelfth Grade) | 3 | 108 | 20.5 | |
University students (First year) | 4 | 27 | 5.1 | |
University students (Second year or more) | 5 | 275 | 52.2 | |
X4 | Income (in thousand IDR) | |||
<IDR 250 (<USD 17.4) | 1 | 113 | 21.4 | |
IDR 250–499 (USD 17.4–34.80) | 2 | 158 | 30.0 | |
IDR 500–999 (USD 34.81–69.61) | 3 | 134 | 25.4 | |
IDR 1000–1499 (USD 69.62–104.42) | 4 | 85 | 16.1 | |
IDR 1500–2000 (USD 104.43–139.23) | 5 | 23 | 4.4 | |
>IDR 2000 (>USD 139.23) | 6 | 14 | 2.7 | |
X5 | Motorcycle Driving License Ownership | |||
Yes | 1 | 327 | 62.0 | |
No | 2 | 200 | 38.0 | |
X6 | Private vehicle ownership | |||
Having a private motorcycle | 1 | 255 | 48.4 | |
Having a motorcycle but sharing it with other family members | 2 | 187 | 35.5 | |
Not having a motorcycle | 3 | 85 | 16.1 | |
X7 | Travel cost from home to schools/colleges | |||
Motorcycle (in thousand IDR) | ||||
<IDR 11 (<USD 0.77) | 1 | 446 | 84.6 | |
IDR 11–20 (USD 0.77–1.39) | 2 | 78 | 14.8 | |
IDR 21–30 (USD 1.40–2.09) | 3 | 2 | 0.4 | |
>IDR 30 (>USD 2.09) | 4 | 1 | 0.2 | |
MBRS (in thousand IDR) | ||||
<IDR 11 (<USD 0.77) | 1 | 200 | 38.0 | |
IDR 11–20 (USD 0.77–1.39) | 2 | 237 | 45.0 | |
IDR 21–30 (USD 1.40–2.09) | 3 | 68 | 12.9 | |
>IDR 30 (>USD 2.09) | 4 | 22 | 4.2 | |
City bus (in thousand IDR) | ||||
<IDR 11 (<USD 0.77) | 1 | 517 | 98.1 | |
IDR 11–20 (USD 0.77–1.39) | 2 | 9 | 1.7 | |
IDR 21–30 (USD 1.40–2.09) | 3 | 1 | 0.2 | |
>IDR 30 (>USD 2.09) | 4 | 0 | 0.0 | |
X8 | Travel time | |||
Motorcycle | ||||
<11 min | 1 | 251 | 47.6 | |
11–20 min | 2 | 188 | 35.7 | |
21–30 min | 3 | 57 | 10.8 | |
>30 min | 4 | 31 | 5.9 | |
MBRS | ||||
<11 min | 1 | 154 | 29.2 | |
11–20 min | 2 | 243 | 46.1 | |
21–30 min | 3 | 85 | 16.1 | |
>30 min | 4 | 45 | 8.5 | |
City bus (Trans Jogja Bus) | ||||
<11 min | 1 | 39 | 7.4 | |
11–20 min | 2 | 198 | 37.6 | |
21–30 min | 3 | 157 | 29.8 | |
>30 min | 4 | 133 | 25.2 |
No. | Latent Variables (LVm) | Cronbach’s Alpha | ||
---|---|---|---|---|
Motorcycles | MBRS | Trans Jogja Bus | ||
1 | Flexibility (LV1) | 0.810 | 0.702 | 0.710 |
2 | Security and Safety (LV2) | 0.716 | 0.748 | 0.633 |
3 | Convenience/comfort (LV3) | 0.792 | 0.751 | 0.813 |
4 | Pro-Environment (LV4) | 0.879 | 0.921 | 0.938 |
5 | Image/lifestyles (LV5) | 0.670 | 0.691 | 0.711 |
Latent Variables (LVm) | Indicators (Im) | Motorcycles | MBRS | Trans Jogja Bus | |||
---|---|---|---|---|---|---|---|
Mean | SD * | Mean | SD * | Mean | SD * | ||
Flexibility (LV1) | Being able to go anytime (I1) | 4.46 | 0.66 | 3.69 | 0.80 | 2.67 | 0.97 |
Being able to go anywhere (I2) | 4.42 | 0.69 | 3.73 | 0.74 | 3.01 | 1.07 | |
Not requiring a transfer (I3) | 4.29 | 0.72 | 3.70 | 0.81 | 2.49 | 0.92 | |
Security and Safety (LV2) | Being safe from theft of goods (I4) | 3.49 | 0.90 | 3.14 | 0.79 | 2.70 | 0.83 |
Being safe to go at night (I5) | 2.89 | 0.90 | 2.81 | 0.88 | 3.00 | 0.93 | |
Avoiding sexual harassment (I6) | 3.10 | 0.95 | 2.64 | 0.76 | 2.66 | 0.80 | |
Having a lower accident risk (I7) | 2.81 | 0.86 | 2.90 | 0.75 | 3.46 | 0.91 | |
Convenience/Comfort (LV3) | Being able to go while relaxing (I8) | 3.42 | 0.95 | 3.13 | 0.89 | 3.82 | 0.84 |
Offering big seats (I9) | 3.09 | 0.92 | 2.76 | 0.77 | 3.83 | 0.79 | |
Offering comfortable suspension (I10) | 3.51 | 0.72 | 3.13 | 0.63 | 3.63 | 0.78 | |
Pro-environment (LV4) | Supporting the effort to save fuel (I11) | 2.50 | 1.04 | 2.65 | 0.90 | 4.02 | 0.89 |
Supporting the efforts to reduce pollution (I12) | 2.19 | 0.93 | 2.56 | 0.87 | 3.94 | 0.99 | |
Supporting the efforts to prevent global warming (I13) | 2.23 | 0.94 | 2.56 | 0.89 | 3.92 | 0.94 | |
Image/Lifestyles (LV5) | Maintaining the student lifestyle (I14) | 3.67 | 0.88 | 3.27 | 0.77 | 3.23 | 0.79 |
Being comfortable (I15) | 3.95 | 0.84 | 3.33 | 0.76 | 3.54 | 0.82 | |
Maintaining prestige by using this mode (I16) | 3.41 | 0.89 | 3.19 | 0.68 | 3.27 | 0.77 |
LV | Indicators | Parameter (ϒ1) | t-Stat | Intercept (δ1) | t-Stat | St. Dev. (σ1) | t-Stat | |||
---|---|---|---|---|---|---|---|---|---|---|
Flexibility | I1.1 | 1 (−) | 0 (−) | 1 (−) | ||||||
I2.1 | 0.52 | 4.94 | *** | 1.5 | 10.96 | *** | 1.14 | 13.19 | *** | |
I3.1 | 0.36 | 3.85 | *** | 1.4 | 10.72 | *** | 1.09 | 13.87 | *** | |
ξ1.1.1 | 0.53 | 9.9 | *** | |||||||
ξ1.1.2 | 1.49 | 17.86 | *** | |||||||
Convenience/Comfort | I8.1 | 1 (−) | 0 (−) | 1 (−) | ||||||
I9.1 | 1.32 | 8.19 | *** | 0.75 | 7.01 | *** | 0.90 | 18.37 | *** | |
I10.1 | 0.84 | 7.31 | *** | 1.02 | 13.12 | *** | 0.69 | 18.32 | *** | |
ξ3.1.1 | 0.61 | 22.54 | *** | |||||||
ξ3.1.2 | 1.15 | 22.73 | *** | |||||||
Pro-Environment | I11.1 | 1 (−) | 0 (−) | 1 (−) | ||||||
I12.1 | 1.24 | 6.39 | *** | 1.04 | 3.4 | *** | 0.85 | 15.78 | *** | |
I13.1 | 1.32 | 6.7 | *** | 1.21 | 3.87 | *** | 0.83 | 15.43 | *** | |
ξ4.1.1 | 0.49 | 19.5 | *** | |||||||
ξ4.1.2 | 1.08 | 22.61 | *** |
LV | Indicators | Parameter (ϒ2) | t-Stat | Intercept (δ2) | t-Stat | St. Dev. (σ2) | t-Stat | |||
---|---|---|---|---|---|---|---|---|---|---|
Security and Safety | I4.2 | 1 (−) | 0 (−) | 1 (−) | ||||||
I5.2 | 1.54 | 6.97 | *** | 0.93 | 4.8 | *** | 1.09 | 17.85 | *** | |
I6.2 | 1.43 | 7.7 | *** | 0.59 | 3.56 | *** | 0.89 | 17.27 | *** | |
I7.2 | 1.53 | 8.83 | *** | 1.05 | 6.62 | *** | 0.84 | 17.43 | *** | |
ξ2.2.1 | 0.76 | 25.33 | *** | |||||||
ξ2.2.2 | 1.45 | 22.53 | *** | |||||||
Image/Lifestyles | I14.2 | 1 (−) | 0 (−) | 1 (−) | ||||||
I15.2 | 1.09 | 8 | *** | 1.11 | 11.03 | *** | 0.96 | 19.29 | *** | |
I16.2 | 1.13 | 8.73 | *** | 0.91 | 9.64 | *** | 0.83 | 18.67 | *** | |
ξ5.2.1 | 0.85 | 24.83 | *** | |||||||
ξ5.2.2 | 1.31 | 21.07 | *** |
LV | Indicators | Parameter (ϒ3) | t-Stat | Intercept (δ3) | t-Stat | St. Dev. (σ3) | t-Stat | |||
---|---|---|---|---|---|---|---|---|---|---|
Convenience/Comfort | I8.3 | 1 (−) | 0 (−) | 1 (−) | ||||||
I9.3 | 0.38 | 3.67 | *** | 1.06 | 18.61 | *** | 0.96 | 17.8 | *** | |
I10.3 | 0.54 | 5.12 | *** | 0.79 | 14.97 | *** | 0.91 | 18 | *** | |
ξ3.3.1 | 0.72 | 19.05 | *** | |||||||
ξ3.3.2 | 1.19 | 22 | *** | |||||||
Lifestyles | I14.3 | 1 (−) | 0 (−) | 1 (−) | ||||||
I15.3 | 0.64 | 5.4 | *** | 1.22 | 12.37 | *** | 1.1 | 19.34 | *** | |
I16.3 | 0.69 | 5.73 | *** | 0.82 | 8.97 | *** | 1.02 | 19.48 | *** | |
ξ5.3.1 | 0.94 | 25.2 | *** | |||||||
ξ5.3.2 | 1.15 | 20.39 | *** |
Sociodemographic Characteristics | Latent Variables of Motorcycles | ||||||||
---|---|---|---|---|---|---|---|---|---|
m = Flexibility | m = Pro-Environment | m = Convenience | |||||||
Estimates | t-Stat | Sig | Estimates | t-Stat | Sig | Estimates | t-Stat | Sig | |
Gender (λ1.m.1) | 0.24 | 2.43 | ** | −0.02 | −0.39 | −0.01 | −0.22 | ||
Age (λ2.m.1) | 0.04 | 1.82 | * | −0.01 | −0.41 | −0.01 | −0.83 | ||
Education (λ3.m.1) | 0.01 | 0.05 | 0.15 | 3.62 | *** | 0.09 | 2.61 | ** | |
Income (λ4.m.1) | 0.09 | 2.23 | ** | −0.09 | −3.94 | *** | −0.07 | −3.16 | *** |
Vehicle ownership (λ5.m.1) | −0.28 | −3.45 | *** | −0.16 | −3.47 | *** | −0.19 | −4.39 | *** |
Driving license ownership (λ6.m.1) | −0.56 | −4.29 | *** | 0.18 | 2.23 | ** | 0.02 | 0.3 | |
Intercept (ζm.1) | 0 | - | −1.70 | −5.52 | *** | −0.10 | −0.37 | ||
Standard deviation(σm.1) | 0.39 | 0.03 | *** |
Sociodemographic Characteristics | MBRS Latent Variables | |||||
---|---|---|---|---|---|---|
m = Lifestyles | m = Security and Safety | |||||
Estimates | t-Stat | Sig | Estimates | t-Stat | Sig | |
Gender (λ1.m.2) | −0.06 | −1.09 | −0.19 | −3.84 | *** | |
Age (λ2.m.2) | −0.06 | −5.36 | *** | −0.05 | −2.96 | *** |
Education (λ3.m.2) | −0.07 | −1.76 | * | 0.05 | 1.49 | |
Income (λ4.m.2) | 0.06 | 2.33 | ** | −0.03 | −1.45 | |
Vehicle ownership (λ5.m.2) | 0.09 | 2.03 | ** | 0.02 | 0.39 | |
Driving license ownership (λ6.m.2) | −0.20 | −2.77 | ** | −0.05 | −0.68 | |
Intercept (ζm.2) | 0 | − | 0.35 | 1.28 | ||
Standard deviation (σm.2) | 0.40 | 0.03 | *** |
Sociodemographic Characteristics | Latent Variables of the Bus | |||||
---|---|---|---|---|---|---|
m = Lifestyles | m = Convenience | |||||
Estimates | t-Stat | Sig | Estimates | t-Stat | Sig | |
Gender (λ1.m.3) | 0.0583 | 0.74 | 0.00278 | 0.03 | ||
Age (λ2.m.3) | −0.0275 | −1.62 | −0.0419 | −1.6 | ||
Education (λ3.m.3) | −0.247 | −4.27 | *** | −0.162 | −2.77 | ** |
Income (λ4.m.3) | −0.0203 | −0.63 | 0.109 | 3.08 | *** | |
Vehicle ownership (λ5.m.3) | 0.181 | 2.7 | ** | 0.282 | 3.91 | *** |
Driving license ownership (λ6.m.3) | −0.355 | −3.31 | *** | −0.366 | −3.21 | *** |
Intercept (ζm.3) | 0 | − | 1.28 | 2.73 | ** | |
Standard deviation (σm.3) | 0.389 | 0.0268 | *** |
Mode | Parameter | Est. | t-Stat | Sig |
---|---|---|---|---|
General | Travel time (α1) | −0.52 | −3.16 | *** |
Travel cost (α2) | −0.06 | −3.25 | *** | |
Motorcycle | Intercept (ω1) | −7.86 | −1.26 | |
Flexibility (β1.1) | 0.09 | 0.07 | ||
Convenience (β3.1) | 14.4 | 1.77 | * | |
Pro-environment (β4.1) | −10.3 | −1.52 | ||
MBRS | Intercept (ω2) | 2.03 | 1.67 | |
Security and Safety (β2.2) | −1.58 | −1.10 | ||
Image/Lifestyle (β5.2) | 5.73 | 2.86 | *** | |
Bus | Intercept(ω3) | 0 | (−) | |
Convenience (β3.3) | 2.74 | 1.70 | * | |
Image/Lifestyles (β5.3) | 1.16 | 0.85 | ||
Final LL | −13,252.32 | |||
R-squared | 0.502 | |||
Number of observations | 527 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Risdiyanto, R.; Munawar, A.; Irawan, M.Z.; Fauziah, M.; Belgiawan, P.F. Why Do Students Choose Buses over Private Motorcycles and Motorcycle-Based Ride-Sourcing? A Hybrid Choice Approach. Sustainability 2022, 14, 4959. https://doi.org/10.3390/su14094959
Risdiyanto R, Munawar A, Irawan MZ, Fauziah M, Belgiawan PF. Why Do Students Choose Buses over Private Motorcycles and Motorcycle-Based Ride-Sourcing? A Hybrid Choice Approach. Sustainability. 2022; 14(9):4959. https://doi.org/10.3390/su14094959
Chicago/Turabian StyleRisdiyanto, Risdiyanto, Ahmad Munawar, Muhammad Zudhy Irawan, Miftahul Fauziah, and Prawira Fajarindra Belgiawan. 2022. "Why Do Students Choose Buses over Private Motorcycles and Motorcycle-Based Ride-Sourcing? A Hybrid Choice Approach" Sustainability 14, no. 9: 4959. https://doi.org/10.3390/su14094959
APA StyleRisdiyanto, R., Munawar, A., Irawan, M. Z., Fauziah, M., & Belgiawan, P. F. (2022). Why Do Students Choose Buses over Private Motorcycles and Motorcycle-Based Ride-Sourcing? A Hybrid Choice Approach. Sustainability, 14(9), 4959. https://doi.org/10.3390/su14094959