Potential of Using Selected Industrial Waste Streams in Loop-Closing of Material Flows—The Example of the Silesian Voivodeship in Poland
Abstract
:1. Introduction
- In terms of material consumption, Poland is in third place among the Community countries, and material efficiency in Poland is 3.5 times lower than the average in the European Union (EU).
- Poland has the highest share in Europe in terms of the use of fossil fuels, from which comes as much as 90% of the primary energy consumed in Poland.
- According to statistical data, as much as 45% of all waste is generated by coal mining (hard coal and brown coal) and metal ore mining. These are waste, a small part of which is recycled, which confirms the low effectiveness of Polish waste management.
- One of the more perspective groups of industrial waste is the by-products of combustion, of which about 35% is disposed in landfills. This represents a significant resource loss, given that this waste can be an important source of recovery of economically important minerals.
- The mining and quarrying industries are the largest waste-generating industries. Annually, they generate about 67 million tons of waste.
- The Polish construction market is the seventh largest in the EU and one of the fastest growing in Europe. Across the EU, the sector is responsible for using around half of all extracted raw materials. This is an important reference point in closing the waste cycle.
- Regenerate
- Share
- Optimize
- Loop
- Virtualize
- Exchange.
- ◦
- Pollution of underground and surface waters due to leaching of hazardous substances from the landfill area
- ◦
- Air pollution as a result of dusting
- ◦
- Poil pollution connected with leaching and dusting processes
- ◦
- Harmful and direct and indirect impact on plants, animals, and people.
2. Materials and Methods
3. Results
3.1. Quantitative Analysis of Industrial Waste Streams, Taking into Account the Type of Economic Activity
3.2. Identification of Waste Streams and Their Treatment Potential by the Example of the Silesian Voivodeship
- Waste generated at washing and cleaning minerals
- Dust-slag compounds from the wet treatment of furnace waste
- Waste from mineral non-metal ferrous excavation
- Soil and stones
- Coal fly ash
- Wastes from the processing of slag
3.2.1. Mining Waste
3.2.2. Waste from Power Plants
3.3. Industrial Waste Management System in the Context of the Circular Economy
3.4. Identification of Sector Links
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, S.-Y.; Du, M.A.; Huang, I.-T.; Liu, I.-H.; Chang, E.-E.; Chiang, P.-C. Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: A review. J. Clean. Prod. 2015, 108, 409–421. [Google Scholar] [CrossRef]
- Arthur, L.; Hondo, D.; Hughes, M.; Kohonen, R. Prospects for Transitioning from a Linear to Circular Economy in Developing Asia. Asian Development Bank Institute. 2022. Available online: https://www.adb.org/sites/default/files/publication/774936/adbi-transitioning-linear-circular-economy-developing-asia-web.pdf (accessed on 5 April 2022).
- GRID-Arendal. Circular Economy on the African Continent: Perspectives and Potential; GRID-Arendal: Arendal, Norway, 2021. [Google Scholar]
- Schandl, H.; King, S.; Walton, A.; Kaksonen, A.H.; Tapsuwan, S.; Baynes, T.M. National Circular Economy Roadmap for Plastics, Glass, Paper and Tyres; CSIRO: Canberra, Australia, 2020. [Google Scholar]
- MPiT—Ministerstwo Przedsiębiorczości i Technologii. Mapa Drogowa Transformacji w Kierunku Gospodarki o Obiegu Zamkniętym. 2019. Available online: https://www.gov.pl/web/przedsiebiorczosc-technologia/rada-ministrow-przyjela-projekt-mapy-drogowej-goz (accessed on 7 November 2021).
- Das, K. Integrating reverse logistics into the strategic planning of a supply chain. Int. J. Prod. Res. 2012, 50, 1438–1456. [Google Scholar] [CrossRef]
- Fajfer, J.; Krieger, W.; Rolka, M.; Antolak, O. Opracowanie Metodyki Wykonania Spisu Zamkniętych Obiektów Unieszkodliwiania Odpadów Wydobywczych Oraz Opuszczonych Obiektów Unieszkodliwiania Odpadów Wydobywczych, Które Wywierają Negatywny Wpływ na Środowisko; Państwowy Instytut Geologiczny: Sosnowiec, Poland, 2010. [Google Scholar]
- Kulczycka, J. Górnictwo i Energetyka Jako Elementy Gospodarki o Obiegu Zamkniętym. XXIV Międzynarodowa Konferencja Popioły z Energetyki. 2017. Available online: http://unia-ups.pl/wp-content/uploads/2016/03/Kulczycka.pdf (accessed on 11 September 2021).
- Bové, A.T.; Swartz, S. Starting at the Source: Sustainability in Supply Chains. McKinsey on Sustainability and Resource Productivity. 2016. Available online: https://www.mckinsey.com/business-functions/sustainability/our-insights/starting-at-the-source-sustainability-in-supply-chains (accessed on 7 November 2021).
- European Commission. Towards a Circular Economy: A Zero Waste Programme for Europe; Communication from the Commission to the European Parliament; The Council, the European Economic and Social Committee and the Committee of the Regions: Brussels, Belgium, 2014; 2.7.2014, COM (2014) 398 final. [Google Scholar]
- European Commission. Closing the Loop—An EU Action Plan for the Circular Economy; Communication from the Commission to the European Parliament; The Council, the European Economic and Social Committee and the Committee of the Regions: Brussels, Belgium, 2015; 2.12.2015, COM (2015) 614 final. [Google Scholar]
- EUROSTAT [Dataset]. Available online: http://ec.europa.eu/eurostat (accessed on 20 August 2021).
- Statistics Poland [Dataset]. Environment. 2017. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ (accessed on 3 May 2021).
- Statistics Poland [Dataset]. Environment. 2021. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ (accessed on 17 August 2021).
- Dz.U. 2019 Poz. 701. Ustawa z Dnia 14 Grudnia 2012 r. o Odpadach. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20130000021 (accessed on 17 August 2021).
- Dz.U. 2014 Poz. 1923. Rozporządzenie Ministra Środowiska z Dnia 9 Grudnia 2014 r. w Sprawie Katalogu Odpadów. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20140001923 (accessed on 17 August 2021).
- PIB—Public Information Bulletin of Silesian Voivodeship. Voivodship Reports on Waste Management. 2019. Available online: https://bip.slaskie.pl/dzialalnosc_urzedu/srodowisko/raporty-wojewodztwa-dotyczace-gospodarki-odpadami.html (accessed on 10 July 2021).
- Krajowy Plan Gospodarki Odpadami 2022. Załącznik do Uchwały nr 88 Rady Ministrów z Dnia 1 Lipca 2016 r. M.P. 2016 Item. 784. Available online: https://bip.mos.gov.pl/fileadmin/user_upload/bip/strategie_plany_programy/DGO/Krajowy_plan_gospodarki_odpadami_2022_____M.P._poz._784_.pdf (accessed on 10 July 2021).
- Geissdoerfer, M.; Morioka, S.N.; Monteiro de Carvalho, M.; Evans, S. Business models and supply chains for the circular economy. J. Clean. Prod. 2018, 190, 712–721. [Google Scholar] [CrossRef]
- Ministerstwo Rozwoju. Program dla Śląska; Ministerstwo Rozwoju: Warsaw, Poland, 2017.
- IEP—Voivodship Inspectorate of Environmental Protection in Katowice. Reports on the State of the Environment in the Silesian Voivodeship. 2019. Available online: http://www.katowice.wios.gov.pl/index.php?tekst=monitoring/raporty/i (accessed on 10 July 2021).
- Wowkonowicz, P.; Bojanowicz-Bablok, A.; Gworek, B. Wykorzystanie odpadów z przemysłu wydobywczego i hutnictwa w drogownictwie. Rocz. Ochr. Sr. 2018, 20, 1335–1349. [Google Scholar]
- Kulczycka, J. Ewaluacja Gospodarki o Obiegu Zamkniętym—Wyzwania, Bariery, Korzyści; Wydawnictwo IGSMiE PAN: Krakow, Poland, 2021. [Google Scholar]
- Dz.U. 2013 Poz. 1235; Ustawa z Dnia 3 Października 2008 r. o Udostępnianiu Informacji o Środowisku i Jego Ochronie, Udziale Społeczeństwa w Ochronie Środowiska Oraz o Ocenach Oddziaływania na Środowisko. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20130001235 (accessed on 17 August 2021).
- Stępień, M.; Białecka, B. Inwentaryzacja innowacyjnych technologii odzysku odpadów energetycznych. Syst. Wspomagania Inżynierii Prod. 2017, 6, 108–123. [Google Scholar]
- AGH—University of Science and Technology. Popioły Lotne Jako Prekursory Materiałów Sfunkcjonalizowanych. 2019. Available online: https://www.agh.edu.pl/nauka/info/article/popioly-lotne-jako-prekursory-materialow-funkcjonalizowanych/ (accessed on 15 September 2021).
- Machniak, Ł.; Kozioł, W. Kruszywa alternatywne—Baza Zasobowa i Kierunki Wykorzystania w Budownictwie. Krus. Prod.-Transp.-Zastos. 2013, 201, 28–33. Available online: http://home.agh.edu.pl/~machniak/wp-content/uploads/2013/06/Machniak-Kruszywa-alternatywne.pdf (accessed on 10 September 2021).
- Sybilski, D.; Kraszewski, C. Ocena i Badania Wybranych Odpadów Przemysłowych do Wykorzystania w Konstrukcjach Drogowych. Instytut Badawczy Dróg i Mostów. Warszawa. 2004. Available online: https://www.gddkia.gov.pl/userfiles/articles/p/prace-naukowo-badawcze-zrealizow_3435//documents/tn-233.pdf (accessed on 20 August 2021).
- Nasir, M.H.A.; Genovese, A.; Acquaye, A.A.; Koh, S.C.L.; Yamoah, F. Comparing linear and circular supply chains: A case study from the construction industry. Int. J. Prod. Econ. 2018, 183, 443–457. [Google Scholar] [CrossRef]
- Czop, M.; Żorawik, K.; Grochowska, S.; Kulkińska, L.; Januszewska, W. Badanie fitotoksyczności wybranych odpadów górniczych na danej grupie roślin. Arch. Gospod. Odpadami Ochr. Sr. 2016, 18, 33–44. [Google Scholar]
- Woźniak, J.; Pactwa, K. Overview of polish mining wastes with circular Economy model and its comparison with other wastes. Sustainability 2018, 10, 3994. [Google Scholar] [CrossRef] [Green Version]
- Millward-Hopkins, J.; Busch, J.; Purnell, P.; Zwirner, O.; Velis, C.A.; Brown, A.; Hahladakis, J.; Iacovidou, E. Fully integrated modelling for sustainability assessment of resource recovery from waste. Sci. Total Environ. 2018, 612, 613–624. [Google Scholar] [CrossRef]
- Yiqing, Z.; Zang, L.; Li, Z.; Qin, J. Discussion on the Model of Mining Circular Economy. Energy Proc. 2012, 16, 438–443. [Google Scholar] [CrossRef] [Green Version]
- Strzyszcz, Z.; Łukasik, A. Zasady stosowania różnorodnych odpadów do rekultywacji biologicznej terenów poprzemysłowych na Śląsku. Gosp. Odpad. 2008, 24, 41–49. Available online: http://warsztatygornicze.pl/wp-content/uploads/2014/02/2008-14.pdf (accessed on 24 July 2021).
- Białecka, A.; Avdiushchenko, A.; Kulczycka, J.; Smol, M. Application of the circular economy in the power sector of Małopolska Region—Benefits and challenges. Econ. Environ. Stud. 2018, 18, 75–92. [Google Scholar] [CrossRef]
- Szczygielski, T. Zastosowanie UPS w Drogownictwie. 2009. Available online: https://edroga.pl/drogi-i-mosty/zastosowanie-ups-w-drogownictwie-18121271 (accessed on 24 July 2021).
- Olszak, P. Lekkie kruszywa CERTYD—Unikatowym wyrobem budowlanym. Krus. Prod.-Transp.-Zastos. 2016, 4, 38–42. [Google Scholar]
- The Institute of Ceramics and Building Materials. 2019. Available online: http://icimb.pl/krakow/fasla (accessed on 24 July 2021).
- Liu, H.; Sun, Q.; Wang, B.; Wang, P.; Zou, J. Morphology and Composition of Microspheres in Fly Ash from the Luohuang Power Plant, Chongqing, Southwestern China. Minerals 2016, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Lysenko-Ryba, K. Logistyka zwrotna jako źródło korzyści konkurencyjnych. Studia Ekon. Zesz. Nauk. Uniw. Ekon. Katowicach 2015, 249, 139–203. [Google Scholar]
- Aid, G.; Eklund, M.; Anderberg, S.; Leenard Baas, L. Expanding roles for the Swedish waste management sector in interorganizational resource management. Resour. Conserv. Recycl. 2018, 124, 85–97. [Google Scholar] [CrossRef]
- Deloitte. Zamknięty Obieg-Otwarte Możliwości. Perspektywy Rozwoju Gospodarki o Obiegu Zamkniętym w Polsce; Deloitte: London, UK, 2018. [Google Scholar]
- Kruczek, M.; Bondaruk, J.; Zawartka, P. Koncepcyjne ujęcie modeli biznesowych w gospodarce o obiegu zamkniętym. In W Kierunku Gospodarki o Obiegu Zamkniętym. Perspektywa Przemysłu; Kulczycka, J., Głuc, K., Eds.; IGSMiE PAN: Kraków, Poland, 2017; pp. 1–19. [Google Scholar]
- Ellen MacArthur Foundation. Delivering the Circular Economy. A Toolkit for Policymakers. Selection of Key Exhibits. 2015. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/government/20150924_Key_Exhibits_Policy_toolkit.pdf (accessed on 20 August 2021).
- Iacovidou, E.; Millward-Hopkins, J.; Busch, J.; Purnell, P.; Velis, C.A.; Hahladakis, J.N.; Zwirner, O.; Brown, A. A pathway to circular economy: Developing a conceptual framework for complex value assessment of resources recovered from waste. J. Clean. Prod. 2017, 168, 1279–1288. [Google Scholar] [CrossRef]
- Lebre, E.; Corder, G.; Golev, A. The role of the mining industry in a circular economy: A framework for resource management at the mine site level. J. Ind. Ecol. 2017, 21, 662–672. [Google Scholar] [CrossRef]
- Lieder, M.; Rashi, A. Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Shaharia, P. Circular Economy: The Beauty of Circularity in Value Chain. J. Econ. Bus. 2018, 1, 584–598. [Google Scholar]
- Baldassarre, B.; Schepers, M.; Bocken, N.; Cuppen, E.; Korevaar, G.; Calabretta, G. Industrial Symbiosis: Towards a design process for eco-industrial clusters by integrating Circular Economy and Industrial Ecology perspectives. J. Clean. Prod. 2019, 216, 446–460. [Google Scholar] [CrossRef]
- Zegardło, B.; Ogrodnik, P.; Andrzejuk, W. Trudności ekonomiczne stosowania recyklingowych kruszyw ceramicznych jako nowoczesnej technologii proponowanej do wykorzystania w budownictwie komunikacyjnym. Autobusy Tech. Eksploat. Syst. Transp. 2016, 17, 1620–1624. [Google Scholar]
- Żymła, B. Wykorzystanie Łupków Powęglowych jako Nośnika Energii i Pierwiastka Glinu. Materiały po Konferencji XXI Konferencja Innowacje w Zarządzaniu i Inżynierii Produkcji, Zakopane. 2018, Volume 1. Available online: http://www.ptzp.org.pl/files/konferencje/kzz/artyk_pdf_2018/T1/2018_t1_367.pdf (accessed on 4 October 2021).
- European Commission. Study on the Financing Models for Public Services in the EU and Their Impact on Competition; Final Report; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar] [CrossRef]
- Quariguasi Frota Neto, J.; Walther, G.; Bloemhof, J.; van Nunen, J.A.E.E.; Spengler, T. A methodology for assessing eco-efficiency in logistics networks. Eur. J. Oper. Res. 2009, 193, 670–682. [Google Scholar] [CrossRef] [Green Version]
- IOŚ—Inspekcja Ochrony Środowiska Wojewódzki Inspektorat Ochrony Środowiska w Katowicach. Stan Środowiska w Województwie Śląskim w 2017 Roku. Katowice. 2018. Available online: http://www.katowice.wios.gov.pl/monitoring/raporty/2017/raport2017.pdf (accessed on 10 July 2021).
- Styś, T.; Foks, R.; Moskwik, K. Krajowy Plan Gospodarki Odpadami 2030. Instytut Sobieskiego. Warszawa. 2016. Available online: https://www.sobieski.org.pl/wp-content/uploads/2018/08/Stys-Foks-Moskwik-KPGO-2030-PDF.pdf (accessed on 7 August 2021).
Voivodships | Total | Recovered | Recovered-Composted | Recovered-Other Way | Disposed | Disposed-Thermally | Disposed-Stored in Own Facilities | Disposed-Other Way | Transferred to Other Recipients | Temporarily Stored |
---|---|---|---|---|---|---|---|---|---|---|
in Thousand Mg | ||||||||||
Poland | 109,466.0 | 25,986.7 | 58.4 | 21,730.7 | 21,875.6 | 398.4 | 16,752.3 | 4724.9 | 59,083.7 | 2520.0 |
Lower Silesia | 33,315.1 | 1158.8 | 0.0 | 86.0 | 645.1 | 5.5 | 616.5 | 23.1 | 31,301.0 | 210.2 |
Silesia | 27,616.6 | 14,072.5 | 0.0 | 13,181.2 | 2271.1 | 0.0 | 2264.9 | 6.2 | 11,193.7 | 79.3 |
Lodzkie | 7191.7 | 309.8 | 0.0 | 76.9 | 6030.5 | 65.1 | 5964.9 | 0.5 | 645.6 | 205.8 |
Masovia | 6048.0 | 863.0 | 0.0 | 861.4 | 2825.3 | 191.1 | 164.3 | 2469.9 | 2326.8 | 32.9 |
Lublin | 5757.4 | 60.3 | 0.0 | 46.1 | 2795.9 | 0.0 | 2793.1 | 2.8 | 2886.9 | 14.3 |
Lesser Poland | 5296.7 | 2738.9 | 0.0 | 2274.6 | 213.8 | 59.5 | 153.2 | 1.1 | 2266.7 | 77.3 |
West Pomerania | 4928.0 | 460.2 | 20.4 | 410.8 | 3794.3 | 5.4 | 1945.8 | 1843.1 | 644.2 | 29.3 |
Holy Cross | 4593.2 | 957.2 | 0.0 | 308.9 | 2797.4 | 15.9 | 2508.7 | 272.8 | 698.8 | 139.8 |
Greater Poland | 3299.1 | 674.2 | 14.3 | 659.9 | 356.1 | 0.0 | 297.9 | 58.2 | 2231.9 | 36.9 |
Warmia-Masuria | 2500.4 | 1945.2 | 0.0 | 1945.2 | 50.5 | 9.7 | 0.0 | 40.8 | 492.9 | 11.8 |
Podlasie Province | 2363.1 | 706.6 | 0.0 | 585.8 | 7.3 | 6.8 | 0.0 | 0.5 | 229.0 | 1420.2 |
Pomerania | 1842.6 | 694.0 | 18.1 | 580.2 | 56.4 | 25.6 | 30.8 | 0.0 | 926.9 | 165.3 |
Kuyavia-Pomerania | 1541.7 | 352.6 | 2.1 | 350.5 | 4.7 | 3.1 | 1.5 | 0.1 | 1112.4 | 72.0 |
Opole | 1394.2 | 682.2 | 0.0 | 116.6 | 9.1 | 0.1 | 9.0 | 0.0 | 697.7 | 5.2 |
Subcarpathia | 1088.3 | 124.0 | 3.5 | 120.1 | 13.8 | 10.6 | 0.0 | 3.2 | 935.3 | 15.2 |
Lubusz | 689.9 | 187.2 | 0.0 | 126.5 | 4.3 | 0.0 | 1.7 | 2.6 | 493.9 | 4.5 |
Classification | Grand Total | Recovered | Recovered [%] | Disposed Total | Disposed [%] | Waste Landfilled (Accumulated) so Far |
---|---|---|---|---|---|---|
in Thousand Mg | ||||||
SECTION B—Mining and quarrying | 60,837.90 | 24,398.40 | 40% | 36,141.80 | 59% | 828,301.70 |
Sector 05—Mining of coal and lignite | 27,835.30 | 21,422.20 | 77% | 6315.50 | 23% | 430,149.50 |
Sector 07—Mining of metal ores | 28,008.30 | 56.60 | 0% | 27,950.80 | 100% | 317,129.10 |
Sector 08—Other mining and quarrying | 4975.70 | 2910.10 | 58% | 1875.50 | 38% | 48,060.80 |
Sector 09—Mining support service activities | 18.60 | 9.50 | 51% | – | – | 32,962.30 |
SECTION C—Manufacturing | 23,123.20 | 16,418.20 | 71% | 5908.80 | 26% | 282,500.10 |
Sector 10—Manufacture of food products | 2056.00 | 1659.10 | 81% | 291.40 | 14% | 32.40 |
Sector 16—Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles of straw and plaiting materials | 538.10 | 347.40 | 65% | 25.20 | 5% | 12,903.60 |
Sector 17—Manufacture of paper and paper products | 1234.20 | 1103.90 | 89% | 59.00 | 5% | 3341.50 |
Sector 20—Manufacture of chemicals and chemical products | 5314.30 | 1450.70 | 27% | 3822.90 | 72% | 135,875.10 |
Sector 23—Manufacture of other non-metallic mineral products | 2941.20 | 1755.20 | 60% | 1134.80 | 39% | 43,673.80 |
Sector 24—Manufacture of basic metals | 8238.60 | 7699.90 | 93% | 285.80 | 3% | 83,269.80 |
SECTION D—Electricity, gas, steam, and air conditioning supply | 11,590.90 | 4583.40 | 40% | 6791.20 | 59% | 307,029.90 |
Sector 35—Electricity, gas, steam, and air conditioning supply | 11,590.90 | 4583.40 | 40% | 6791.20 | 59% | 307,029.90 |
SECTION E—Water supply; sewerage, waste management and remediation activities | 5464.80 | 2288.70 | 42% | 3052.60 | 56% | 357,597.60 |
Sector 36—Water collection, treatment, and supply | 3996.10 | 1163.30 | 29% | 2799.90 | 70% | 297.50 |
Sector 37—Sewerage | 1053.00 | 788.90 | 75% | 190.90 | 18% | 9156.00 |
Sector 38—Waste collection, treatment, and disposal activities; materials recovery | 318.90 | 239.70 | 75% | 61.80 | 19% | 335,342.60 |
Sector 39—Remediation activities and other waste management services | 96.80 | 96.80 | 100% | – | – | 12,801.50 |
SECTION F—Construction | 7351.80 | 4685.50 | 64% | 5.10 | 0% | – |
Sector 41—Construction of buildings | 524.30 | 10.80 | 2% | – | – | – |
Sector 42—Civil engineering | 6652.80 | 4520.70 | 68% | 4.90 | 0% | – |
Sector 43—Specialized construction activities | 174.70 | 154.00 | 88% | 0.20 | 0% | – |
OTHER SECTIONS | 1097.30 | 567.90 | 52% | 523.10 | 48% | 12,417.80 |
Waste Category | B—Mining and Quarrying | C—Manufacturing ** | D—Electricity, Gas, Steam, Hot Water and Air Conditioning Manufacturing and Supply | E—Water Supply; Sewerage, Waste Management and Remediation Activities ** | F—Construction | |
---|---|---|---|---|---|---|
Total | 70,667,483 | 27,208,541 | 20,512,487 | 21,927,572 | 18,890,577 | |
Chemical wastes | N * | 835 | 154,988 | 285 | 133,588 | 10,797 |
I | 266 | 1,731,274 | 21,045 | 8915 | 1099 | |
Wood wastes | N | 0 | 4015 | 0 | 487 | 1 |
I | 4827 | 1,588,136 | 1016 | 69,863 | 71,205 | |
Mixed and undifferentiated materials | N | 41 | 6652 | 345 | 5227 | 153 |
I | 188,831 | 2,633,085 | 44,419 | 2,956,983 | 5342 | |
Sorting residues | N | 0 | 737 | 109 | 82,532 | - |
I | 11,171 | 100,761 | 21,171 | 12,155,243 | 68,020 | |
Common sludges | I | 4332 | 93,704 | 9285 | 538,171 | 166 |
Mineral waste from construction and demolition | N | 327 | 1797 | 540 | 4243 | 36,145 |
I | 88,839 | 255,844 | 57,968 | 308,141 | 2,435,829 | |
Oher mineral waste | N | 14 | 43,717 | 633 | 86,298 | 11,901 |
I | 69,932,505 | 9,043,836 | 66,944 | 1,497,523 | 388,836 | |
Combustion waste | N | 0 | 217,986 | 90 | 13,942 | 1 |
I | 43,555 | 6,573,859 | 20,093,732 | 541,030 | 70,312 | |
Soils | N | 12 | 567 | 565 | 173,988 | 27,072 |
I | 204,463 | 72,398 | 29,258 | 304,758 | 14,866,458 | |
Other waste | N/I | 187,465 | 4,685,185 | 165,082 | 3,046,640 | 897,240 |
Waste Category | Total | Energy Recovery | Incineration | Recovery Other than Energy Recovery-Recycling | Recovery Other than Energy Recovery-BACKFILLING | Landfilling | Other Forms of Disposal |
---|---|---|---|---|---|---|---|
Total | 163,002,317 | 5,412,060 | 572,271 | 75,229,503 | 36,154,389 | 45,619,668 | 14,426 |
Chemical wastes | 191,976 | 3710 | 34,753 | 115,027 | - | 36,872 | 1614 |
Wood wastes | 3,607,312 | 1,426,406 | 236 | 2,180,638 | - | 32 | - |
Animal and mixed food waste | 574,946 | 22,624 | 52,755 | 498,692 | - | 208 | 667 |
Vegetal waste | 1,676,665 | 9877 | 83 | 1,664,852 | - | 1846 | 7 |
Household and similar wastes | 11,642,542 | 2,114,409 | 151,772 | 4,045,615 | - | 5,330,746 | - |
Mixed and undifferentiated materials | 4,856,202 | 113,994 | 8398 | 2,832,238 | 24,306 | 1,876,142 | 1124 |
Sorting residues | 5,802,170 | 1,462,203 | 172,633 | 2,171,957 | - | 1,995,377 | - |
Common sludges | 547,868 | 13,334 | 85,414 | 440,867 | - | 3806 | 4447 |
Mineral waste from construction and demolition | 3,730,719 | 4612 | 610 | 2,592,887 | 796,862 | 335,748 | - |
Other mineral waste * | 80,492,766 | 220 | 199 | 30,786,287 | 24,146,249 | 25,553,306 | 6505 |
Combustion wastes | 25,027,040 | 49,409 | - | 11,113,479 | 3,773,223 | 10,090,929 | - |
Soils | 11,937,413 | 8 | 501 | 4,689,327 | 7,229,753 | 17,824 | - |
Waste Codes | Waste Generated during the Year (2017) | ||||||
---|---|---|---|---|---|---|---|
Grand Total | Recovered On Its Own | Disposed On Its Own | Transferred to Other Recipients | Waste Landfilled (Accumulated) so Far (as of the End of the Year) | |||
Total | of Which | ||||||
Landfilled in Own Facilities | in Another Way | ||||||
[in Thousand Mg] | |||||||
Total | 31,648.2 | 12,163.8 | 2654.4 | 2649.2 | 5.2 | 16,628.3 | 476,284.6 |
01 | Wastes resulting from exploration, mining, quarrying, and physical and chemical treatment of minerals | ||||||
22,094.9 | 9522.2 | 2629.7 | 2629.7 | - | 9819.3 | 432,519.9 | |
02 | Wastes from agriculture, horticulture, aquaculture, forestry, hunting and fishing, food preparation and processing | ||||||
93.9 | - | 1.7 | - | 1.7 | 92.2 | - | |
03 | Wastes from wood processing and the production of panels and furniture, pulp, paper and cardboard | ||||||
37.0 | 5.1 | - | - | - | 31.9 | - | |
04 | Wastes from the leather, fur and textile industries | ||||||
7.7 | - | - | - | - | 7.7 | - | |
05 | Wastes from petroleum refining, natural gas purification and pyrolytic treatment of coal | ||||||
2.3 | - | - | - | - | 2.3 | - | |
06 | Wastes from inorganic chemical processes | ||||||
4.5 | - | - | - | - | 4.5 | 761.6 | |
07 | Wastes from organic chemical processes | ||||||
90.0 | 31.3 | - | - | - | 57.5 | - | |
08 | Wastes from the manufacture, formulation, supply and use (mfsu) of coatings (paints, varnishes and vitreous enamels), adhesives, sealants and printing inks | ||||||
9.6 | - | - | - | - | 9.6 | - | |
10 | Wastes from thermal processes | ||||||
6957.2 | 2177.1 | 13.2 | 13.1 | 0.1 | 4714.0 | 40,382.2 | |
11 | Wastes from chemical surface treatment and coating of metals and other materials; non-ferrous hydro metallurgy | ||||||
21.8 | 0.7 | - | - | - | 21.0 | 3.9 | |
12 | Wastes from shaping and physical and mechanical surface treatment of metals and plastics | ||||||
503.7 | 92.4 | - | - | - | 411.3 | - | |
13 | Oil wastes and wastes of liquid fuels | ||||||
1.8 | - | - | - | - | 1.8 | - | |
14 | Waste organic solvents, refrigerants, and propellants | ||||||
0.1 | - | - | - | - | 0.1 | - | |
15 | Waste packaging, absorbents, wiping cloths, filter materials and protective clothing not otherwise specified | ||||||
65.0 | 0.1 | - | - | - | 64.6 | - | |
16 | Wastes not otherwise specified in the list | ||||||
116.4 | 35.4 | 2.5 | - | 2.5 | 78.4 | 1063.3 | |
18 | Wastes from human or animal health care and/or related research | ||||||
1013.8 | 180.9 | - | - | - | 829.7 | 1017.0 | |
19 | Wastes from waste management facilities, off-site wastewater treatment plants and the preparation of water intended for human consumption and water for industrial use | ||||||
628.5 | 118.6 | 7.3 | 6.4 | 0.9 | 482.4 | 536.7 |
Strengths (S) | Weaknesses (W) |
---|---|
|
|
Opportunities (O) | Threats (T) |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jąderko-Skubis, K.; Kruczek, M.; Pichlak, M. Potential of Using Selected Industrial Waste Streams in Loop-Closing of Material Flows—The Example of the Silesian Voivodeship in Poland. Sustainability 2022, 14, 4801. https://doi.org/10.3390/su14084801
Jąderko-Skubis K, Kruczek M, Pichlak M. Potential of Using Selected Industrial Waste Streams in Loop-Closing of Material Flows—The Example of the Silesian Voivodeship in Poland. Sustainability. 2022; 14(8):4801. https://doi.org/10.3390/su14084801
Chicago/Turabian StyleJąderko-Skubis, Karolina, Mariusz Kruczek, and Magdalena Pichlak. 2022. "Potential of Using Selected Industrial Waste Streams in Loop-Closing of Material Flows—The Example of the Silesian Voivodeship in Poland" Sustainability 14, no. 8: 4801. https://doi.org/10.3390/su14084801
APA StyleJąderko-Skubis, K., Kruczek, M., & Pichlak, M. (2022). Potential of Using Selected Industrial Waste Streams in Loop-Closing of Material Flows—The Example of the Silesian Voivodeship in Poland. Sustainability, 14(8), 4801. https://doi.org/10.3390/su14084801