Application of Ecology-Geomorphology Cognition Approach in Land Type Classification: A Case Study in the Altay Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Ecology-Geomorphology Cognition (Eco-geoC) Approach for Land Type Classification
2.4. Determining Land Units
2.4.1. Classification of Geomorphic Types
2.4.2. Classification of Soil Types
2.4.3. Classification of Vegetation Types
2.4.4. Classification of Land Use
3. Results
4. Discussion
4.1. Distribution Characteristics of Land Types
4.1.1. Land Types Were Distributed along the Elevation Gradient
4.1.2. Characteristics of the Spatial Combination form of Land Type
4.2. Land Type and Landscape
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Natural Belts | Land Systems | Land Units |
---|---|---|
I-Temperate desert steppe | I-1 Alpine tundra | I-1-1 Alpine glaciers and permanent snow land |
I-1-2 Alpine bare rock land | ||
I-1-3 Alpine moss lichen ice marsh land | ||
I-1-4 Alpine garden Betula platyphylla shrub ice marsh alpine gleyic podzol soil land | ||
I-2 Alpine meadow | I-2-1 Alpine Artemisia barren meadow litosoils land | |
I-2-2 Alpine miscellaneous grass_Carex and miscellaneous meadow alpine podzol soil land | ||
I-3 Subalpine meadow and meadow steppe | I-3-1 Subalpine_Miscellaneous grass_Dogstail meadow alpine podzol soil land | |
I-3-2 Subalpine Dogstail Meadow steppe land | ||
I-4 Middle-mountains forest and forest steppe | I-4-1 Middle mountains_Pinus sibirica Abies sibirica_Brown coniferous forestland | |
I-4-2 Middle mountains_Siberian larch_podzol soil land | ||
I-4-3 Middle mountains_Shrub Meadow steppe_Leached Chernozem land | ||
I-4-4 Middle mountains_Miscellaneous grass-Dogstail_Meadow steppe Chernozem land | ||
I-5 Low-mountain Bushveld | I-5-1 Low mountains_Shrub Dogstail steppe_Chernozem land | |
I-5-2 Low mountains_Spiraea salicifolia Solitary thatch steppe_thin layer Dark Chestnut soil land | ||
I-5-3 Low mountains_Spiraea salicifolia Solitary thatch steppe_Dark Chestnut soil land | ||
I-5-4 Low mountains_Solitary thatch steppe_thin layer Dark Chestnut soil land | ||
I-5-5 Low mountains_Spiraea salicifolia Stipa capillata steppe_thin layer light Chestnut soil | ||
I-5-6 Low mountains_Spiraea salicifolia Stipa capillata steppe_light Chestnut soil land | ||
I-5-7 Low mountains_Stipa capillata steppe_thin layer light Chestnut soil land | ||
I-6 Low mountains and hills-desert steppe | I-6-1 Low mountains and hills_Artemisia Solitary thatch and Stipa capillata Desert steppe_thin layer brown calcic soil land | |
I-6-2 Low mountains and hills_Artemisia Salt firewood Stipa capillata Desert steppe_thin layer Brown calcic soil land | ||
I-6-3 Low mountains and hills_Artemisia Salt firewood Stipa capillata Desert steppe_Brown calcic soil land | ||
I-6-4 Low mountains and hills_Artemisia_Salt firewood Steppe desert_light Brown calcic soil land | ||
I-7 Intermountain valley basin steppe_desert steppe | I-7-1 Intermountain valley basin_Solitary thatch steppe_Dark Chestnut soil land | |
I-7-2 Intermountain valley basin_Artemisia Dogstail_Brown calcic soil land | ||
I-8 Mountain swamp | I-8-1 Alpine valley tower head_carex species_Swamp low wetland | |
I-9 Steppe-Chestnut soil-flat ground | I-9-1 Stipa capillata steppe_light Chestnut soil_Sloping flat ground | |
I-10 Desert steppe-Brown calcic soil-flat ground | I-10-1 Artemisia_Salt firewood_Stipa capillata Desert steppe_Brown calcic soil_Sloping flat ground | |
I-10-2 Ephemeral plant_Artemisia_Brown calcic soil_Sloping flat ground | ||
I-10-3 Artemisia_Salt firewood_Stipa capillata Desert steppe_Brown calcic soil_Flat ground | ||
I-10-4 Artemisia_Salt firewood_Stipa capillata Stipa glareosa desert steppe_Brown calcic soil_High flat ground | ||
I-10-5 Artemisia_Salt firewood_Stipa capillata Desert steppe_thin layer Brown calcic soil_Denuded flat ground | ||
I-10-6 Artemisia_Salt firewood_Stipa capillata Desert steppe_Brown calcic soil_Denuded flat ground | ||
I-11 Steppe desert-light Brown calcic soil-flat ground | I-11-1 Salt firewood_Artemisia Steppe desert_light Brown calcic soil_Sloping flat ground | |
I-11-2 Salt firewood_Artemisia Steppe desert_light Brown calcic soil_flat ground | ||
I-11-3 Salt firewood_Artemisia Steppe desert_Basification light Brown calcic soil_flat ground | ||
I-11-4 Salt firewood_Artemisia Steppe desert_thin layer light Brown calcic soil_High flat ground | ||
I-11-5 Salt firewood_Artemisia Steppe desert_light Brown calcic soil_High flat ground | ||
I-11-6 Salt firewood_Artemisia_Steppe desert_thin layer light Brown calcic soil_Denuded flat ground | ||
I-12 Meadow_low flat ground | I-12-1 River valley poplar forest_Shrub meadow soil_Low flat ground | |
I-12-2 Miscellaneous grass_Gleyic Chernozems_Low flat ground | ||
I-12-3 Achnatherum splendens_Phragmites australis-Salinization meadow soil_Low flat ground | ||
I-13 Swamp_low wetland | I-13-1 Phragmites australis_Typha orientalis Presl_Fernwort_Peat boggy soil land | |
I-13-2 Miscellaneous grass_Carex species_Dogstail Meadow_Boggy soil land | ||
I-13-3 Everglade | ||
I-14 Saline-alkali soil | I-14-1 Dogstail_Miscellaneous grass_Saline meadow_Solonchak land | |
I-14-2 Succulent salt firewood_Typical Solonchak land | ||
I-14-3 Residual Solonchak land | ||
I-14-4 Mineral Solonchak land | ||
I-15 Adobe soil | I-15-1 Bare adobe soil | |
I-16 Agricultural land | I-16-1 Irrigated Chestnut soil Agricultural land | |
I-16-2 Irrigated Brown calcic soil Agricultural land | ||
I-16-3 Irrigated Meadow soil Agricultural land | ||
I-16-4 Salinization Paludification Agricultural land | ||
I-16-5 Dry Cultivated land | ||
I-17 Desert | I-17-1 Calligonum mongolicum_Fixed and semi fixed dunes | |
I-17-2 Haloxylon ammodendron_Fixed and semi fixed dunes | ||
I-17-3 Fluid dune | ||
II-Temperate desert | II-1 Upland meadow | II-1-1 Low mountains-shrub_Stipa capillata steppe_thin layer light Chestnut soil land |
II-2 Low mountains and hills_desert steppe | II-2-1 Low mountains and hills_Artemisia_Salt firewood_Stipa capillata Desert steppe_thin layer Brown calcic soil land | |
II-3 Low mountains and hills_desert | II-3-1 Low mountains and hills-Salt firewood desert gypsum grey–brown desert soil land | |
II-4 Salt firewood desert_brown desert calcic soil_flat ground | II-4-1 Anabasis salsa desert_thin layer brown desert calcic soil_high flat ground | |
II-4-2 Anabasis salsa desert_Basification thin layer brown desert calcic soil_high flat ground | ||
II-4-3 Anabasis salsa desert_Basification brown desert calcic soil_high flat ground | ||
II-4-4 Anabasis salsa desert_sandy brown desert calcic soil_Denuded flat ground | ||
II-4-5 Anabasis salsa desert_thin layer brown calcic soil_Denuded flat ground | ||
II-4-6 Salt firewood desert_thin layer brown calcic soil_Erosion Pits and valleys land | ||
II-4-7 Anabasis salsa desert_thin layer brown desert calcic soil Undulating hilly land | ||
II-5 Haloxylon ammodendron_Salt firewood desert_gypsum grey brown desert soil_flat ground | II-5-1 Haloxylon ammodendron-desert gypsum grey brown desert soil_high flat ground | |
II-5-2 Anabasis brevifolia gypsum grey brown desert soil_high flat ground | ||
II-5-3 Anabasis brevifolia-gypsum grey brown desert soil_Denuded flat ground | ||
II-6 Populus euphratica_Haloxylon ammodendron_Desert forestland | II-6-1 Haloxylon ammodendron_shrubbery land | |
II-7 Saline-alkali soil | II-7-1 Residual Solonchak land | |
II-7-2 Mineral Solonchak land | ||
II-8 Residual marshland | II-8-1 Residual Peat marshland | |
II-9 Adobe soil land | II-9-1 Bare adobe soil land | |
II-10 Desert | II-10-1 Haloxylon ammodendron_Fixed and semi fixed dunes | |
II-10-2 Fluid dune |
Appendix B
Vegetation Category | Vegetation Subclass | Vegetation Name |
---|---|---|
Coniferous Forest | Cold-temperate and temperate mountains coniferous forest | Larix sibirica forest |
Larix sibirica, Picea obovata forest | ||
Pinus sibirica forest | ||
Broadleaf Forest | Temperate microphyllous deciduous woodland | Ulmus pumila woodland |
Temperate broadleaf deciduous forest | Populus nigra forest | |
Populus tremula forest | ||
Salix matsudana forest | ||
Betula platyphylla, Populus davidiana forest | ||
Scrub | Subalpine broadleaf deciduous scrub | Rosa sericea, Cotoneaster adpressus scrub |
Dasiphora fruticosa scrub | ||
Desert | Temperate dwarf semi-arboreous desert | Haloxylon persicum desert |
Haloxylon ammodendron gravelly desert | ||
Haloxylon ammodendron sandy desert | ||
Haloxylon ammodendron loamy desert | ||
Temperate shrubby desert | Calligonum rubicundum desert | |
Tamarix ramosissima desert | ||
Calligonum leucocladum desert | ||
Ephedra przewalskii desert | ||
Temperate semi-shrubby and dwarf semi-shrubby desert | Artemisia arenaria desert | |
Seriphidium terrae-albae desert | ||
Seriphidium santolinum desert | ||
Seriphidium gracilescens desert | ||
Anabasis brevifolia desert | ||
Ceratoides latens gravelly desert | ||
Ceratoides latens desert | ||
Ceratoides latens sandy desert | ||
Reaumuria soongorica sandy desert | ||
Anabasis salsa desert | ||
Nanophyton erinaceum desert | ||
Salsola arbuscula desert | ||
Temperate succulent holophytic dwarf semi-shrubby desert | Kalidium foliatum desert | |
Steppe | Temperate grass-forb meadow steppe | Carex liparocarpos, forb meadow steppe |
Festuca sulcata, forb meadow steppe | ||
Aneurolepidium angustum, forb, shrubby meadow steppe | ||
Stipa kirghisorum, Stipa capillata, forb meadow steppe | ||
Stipa capillata, forb meadow steppe | ||
Poa angustifolia, Festuca sulcata, Helictotrichon schellianum meadow steppe | ||
Festuca ovina steppe | ||
Temperate needlegrass arid steppe | Festuca sulcata steppe | |
Cleistogenes squarrosa steppe | ||
Stipa capillata, Artemisia frigida steppe | ||
Stipa capillata, needlegrass steppe | ||
Artemisia frigida, dwarf needlegrass steppe | ||
Meadow | Temperate grass and forb meadow | Phragmites communis meadow |
Dactylis glomerata meadow | ||
Poa spp. meadow | ||
Bromus inermis meadow | ||
Calamagrostis epigejos tall grass meadow | ||
Carex spp., forb meadow | ||
Poa spp., Alchemilla spp. meadow | ||
Festuca ovina, Deyeuxia arundinacea, forb meadow | ||
Hordeum bogdanii, Aneurolepidium paboanus meadow with Betula pendula | ||
Alpine Kobresia spp., forb meadow | Kobresia spp. alpine meadow | |
Carex oxyleuca alpine meadow | ||
Carex atrofusca alpine meadow | ||
Kobresia myosuroides alpine meadow | ||
Kobresia smirnovii alpine meadow | ||
Carex stenocarpa alpine meadow | ||
Kobresia filifolia alpine meadow | ||
Festuca ovina, forb alpine meadow | ||
Polygonum sphaerostachyum, P. viviparum alpine meadow | ||
Poa alpina, forb alpine meadow | ||
Poa rossbergiana, Littledalea racemosa alpine meadow | ||
Festuca kurtschumica, Anthoxanthum alpinum alpine meadow | ||
Poa spp. alpine meadow | ||
Kobresia stenocarpa alpine meadow | ||
Temperate grass and forb holophytic meadow | Suaeda glauca holophytic meadow | |
Aneurolepidium dasystachys holophytic meadow | ||
Phragmites communis holophytic meadow | ||
Achnatherum splendens holophytic meadow | ||
Calamagrostis epigejos holophytic meadow with Tamarix ramosissima | ||
Phragmites communis holophytic meadow with holophytic semi-shrubby | ||
Phragmites communis, Poacynum hendersonii holophytic meadow with Nitraria spp., Tamarix spp. | ||
Sophora alopecuroides, Poacynum hendersonii, Glycyrrhiza inflata, Alhagi pseudoalhagi, Karelinia caspica holophytic meadow | ||
Temperate grass, Carex and forb swamp meadow | Carex stenocarpa, forb swamp meadow | |
Swamp | Cold-temperate and temperate swamp | Phragmites communis swamp |
Alpine Vegetation | Alpine tundra | Cetraria nivalis tundra |
Alpine sparse vegetation | Saussurea involucrata, Callianthemum alatavicum sparse vegetation | |
Roegneria sp., Polygonum alpinum sparse vegetation | ||
Cultural Vegetation | One crop annually and cold-resistant economic crops | Spring wheat, gruel, potatoes; sugar beet, flux, rapeseed |
Land Without Vegetation | Land without vegetation | Glaciers and snow limit |
Bare sandy desert |
References
- Nuralykyzy, B.; Wang, P.; Deng, X.; An, S.; Huang, Y. Heavy Metal Contents and Assessment of Soil Contamination in Different Land-Use Types in the Qaidam Basin. Sustainability 2021, 13, 12020. [Google Scholar] [CrossRef]
- Chen, Y.Q. Regional land and natural resources development and land use planning. Ind. Technol. Innov. 2019, 1, 7–8. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CYJC201927004&DbName=CJFQTEMP (accessed on 6 February 2022).
- Shen, Y.C. Studies on land types:Academic significance, function and prospect. Geogr. Res. 2010, 29, 575–583. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DLYJ201004001&DbName=CJFQ2010 (accessed on 6 February 2022).
- Wang, J.; Wand, W.; Qi, Y.; He, T.; Wu, R.; Chen, Y. Classification system and spatio-temporal distribution of ecological land in China in the period of 1996–2012. Geogr. Res. 2017, 36, 453–469. [Google Scholar] [CrossRef]
- Klijn, F.; Haes, H.A.U.D. A hierarchical approach to ecosystems and its implications for ecological land classification. Landsc. Ecol. 1994, 9, 89–104. [Google Scholar] [CrossRef]
- Kupfer, J.A.; Franklin, S.B. Evaluation of an ecological land type classification system, Natchez Trace State Forest, western Tennessee, USA. Landsc. Urban Plan. 2000, 49, 179–190. [Google Scholar] [CrossRef]
- Liu, Y.S. Structural pattern of land type and ecological design in mountainous region. J. Mt. Sci. 1999, 17, 104–109. [Google Scholar] [CrossRef]
- Laut, P.; Paine, T.A. A step towards an objective procedure for land classification and mapping. Appl. Geogr. 1982, 2, 109–126. [Google Scholar] [CrossRef]
- Nilson, H.D. Topoedaphic unit analysis: A site classification system for reclaimed mined lands. Catena 1993, 20, 289–301. [Google Scholar] [CrossRef]
- Kok, K.; Verburg, P.H.; Veldkamp, T. Integrated Assessment of the land system: The future of land use. Land Use Policy 2007, 24, 517–520. [Google Scholar] [CrossRef]
- Zhao, W.W.; Wang, Y.P. Literature analysis of landscape ecology research in Mainland China from 1981 to 2015. Acta Ecol. Sin. 2016, 36, 7886–7896. [Google Scholar] [CrossRef]
- Zonneveld, I.S. The land unit—A fundamental concept in landscape ecology, and its applications. Landsc. Ecol. 1989, 3, 67–86. [Google Scholar] [CrossRef]
- Smiraglia, D.; Capotorti, G.; Guida, D.; Mollo, B.; Siervo, V.; Blasi, C. Land units map of Italy. J. Maps 2013, 9, 239–244. [Google Scholar] [CrossRef]
- Zhao, S.Q. Specification for 1:1,000,000 Land Type Map Drawing in China; Surveying and Mapping Press: Beijing, China, 1989. [Google Scholar]
- Rossiter, D.G. A theoretical framework for land evaluation. Geoderma 1996, 72, 165–190. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; He, T.; Lv, C.; Liu, A. Application of geographic image cognition approach in land type classification using Hyperion image: A case study in China. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 212–222. [Google Scholar] [CrossRef]
- Blasi, C.; Frondoni, R. Modern perspectives for plant sociology: The case of ecological land classification and the ecoregions of Italy. Plant Biosyst. 2011, 145, 30–37. [Google Scholar] [CrossRef]
- Oliver, I.; Holmes, A.; Dangerfield, J.M.; Gillings, M.; Pik, A.J.; Britton, D.R.; Holley, M.; Margaret, E.M.; Raison, M.; Logan, V.; et al. Land systems as surrogates for biodiversity in conservation planning. Ecol. Appl. 2004, 14, 485–503. [Google Scholar] [CrossRef] [Green Version]
- Renschler, C.S.; Doyle, M.W.; Thoms, M. Geomorphology and ecosystems: Challenges and keys for success in bridging disciplines. Geomorphology 2007, 89, 1–8. [Google Scholar] [CrossRef]
- THмoфeeв, д.A.; Liu, J.C. The research object, purpose and task of ecological geomorphology. Geol. Sci. Technol. Trends 1992, 39–41. Available online: http://qikan.cqvip.com/Qikan/Article/ReadIndex?id=722359&info=JCJ%2fdcXs6JubwsE420uhUxDRuojOw6sHe%2bf7YeNHbrY%3d (accessed on 21 March 2021).
- Shen, Y.C.; Cheng, W.M. Research system and function promotion of ecological geomorphology. Geogr. Res. 2019, 38, 348–356. [Google Scholar] [CrossRef]
- Malan, G.J. Investigating the Suitability of Land Type Information for Hydrological Modelling in the Mountain Regions of Hessequa, South Africa; Stellenbosch, Stellenbosch University. 2016. Available online: https://scholar.sun.ac.za (accessed on 6 March 2022).
- Smit, C.M.; Bredenkamp, G.J.; van Rooyen, N. Phytosociology of the Ac land type in the foothills of the Low Drakensberg in north-western Natal. S. Afr. J. Bot. 1993, 59, 203–214. [Google Scholar] [CrossRef]
- Asselen, S.V.; Verburg, P.H. A Land System representation for global assessments and land-use modeling. Glob. Change Biol. 2012, 18, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Defries, R.S. Terrestrial Vegetation In The Coupled Human-earth System: Contributions Of Remote Sensing. Annu. Rev. Environ. Resour. 2008, 33, 369–390. [Google Scholar] [CrossRef]
- Chen, S.P.; Zhao, Y.S. Remote Sensing Geo-Analysis; Surveying and mapping Press: Beijing, China, 1990. [Google Scholar]
- Luo, J.C. Remote-Sensing Intelligent Geo-Interpretation Model and its Geo-Cognition Issue. Prog. Geogr. 2000, 19, 289–296. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DLKJ200004000&DbName=CJFQ2000 (accessed on 6 January 2022).
- Luo, J.C.; Zhou, C.H.; Yang, Y. Land-cover and land-use classification based on remote sensing intelligent Geo-interpreting model. J. Nat. Resour. 2001, 16, 179–183. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZRZX200102014&DbName=CJFQ2001 (accessed on 6 January 2022).
- Baatz, M.; Hoffmann, C.; Willhauck, G. Progressing from object-based to object-oriented image analysis. In Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Blaschke, T., Lang, S., Hay, G.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 29–42. [Google Scholar]
- Lang, S. Object-based image analysis for remote sensing applications: Modeling reality—Dealing with complexity. In Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Blaschke, T., Lang, S., Hay, G.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–28. [Google Scholar]
- Hay, G.J.; Castilla, G. Object-based image analysis: Strengths, weaknesses, opportunities and threats (SWOT). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Remote. Sens. Spat. Inf. Sci. 2006, 36, 4–5. [Google Scholar]
- Blaschke, T.; Lang, S.; Hay, G.J. Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline. In Objectbased Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Blaschke, T., Lang, S., Hay, G.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 75–90. [Google Scholar]
- Kruse, R.; Gebhardt, J.; Klawonn, F. Numerical and Logical Approaches to Fuzzy Set Theory by the Context Model. In Fuzzy Logic: State of the Art; Lowen, R., Roubens, M., Eds.; Kluwer Academic: Dordrecht, The Netherland, 1993; pp. 365–376. [Google Scholar]
- Herold, M.; Scepan, J.; Müller, A.; Günther, S. Object-oriented mapping and analysis of urban land use/cover using IKONOS data. In Proceedings of the 22nd EARSEL Symposium on Geoinformation for European-Wide Integration, Prague, Czech Republic, 4–6 June 2002. [Google Scholar]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Laliberte, A.S.; Fredrickson, E.L.; Rango, A. Combining Decision Trees with Hierarchical Object-oriented Image Analysis for Mapping Arid Rangelands. Photogramm. Eng. Remote Sens. 2007, 73, 197–207. [Google Scholar] [CrossRef]
- Kim, M.; Madden, M.; Warner, T. Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery. In Object-Based Image Analysis—Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Blaschke, T., Lang, S., Hay, G.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 459–476. [Google Scholar]
- Zhou, W.; Austin, T.; Morgan, G. Object-based Land Cover Classification and Change Analysis in the Baltimore Metropolitan Area Using Multitemporal High Resolution Remote Sensing Data. Sensors 2008, 8, 1613. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.J.; Cheng, W.M.; Shi, Q.S. Analysis on Internal Mechanisms of the Life Community of Mountain, River, Forest, Field, Lake and Grass at Watershed Scale. J. Xinjiang Univ. (Nat. Sci. Ed. Chin. Engl.) 2021, 38, 313–320. [Google Scholar] [CrossRef]
- Vallina-Rodríguez, A.; Aguilar-Cuesta, Á.I.; García-Juan, L.; Bernabé-Crespo, M.B.; Bringas-Gutiérrez, M.A.; Camarero-Bullón, C. Discovering the Legacy of Hispanic/Spanish and South American Landscapes through Geohistorical Sources: The Geographical and Topographical Relations of Philip II. Sustainability 2022, 14, 1306. [Google Scholar] [CrossRef]
- Cheng, W.M.; Zhou, C.H. Methodology on hierarchical classification of multi-scale digital geomorphology. Prog. Geogr. 2014, 33, 23–33. [Google Scholar] [CrossRef]
- Iwahashi, J.; Pike, R.J. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 2007, 86, 409–440. [Google Scholar] [CrossRef]
- Drăguţ, L.; Eisank, C. Automated object-based classification of topography from SRTM data. Geomorphology 2012, 141–142, 21–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrough, P.A.; Wilson, J.P.; Gaans, P.F.M.; Hansen, A.J. Fuzzy k-means classification of topo-climatic data as an aid to forest mapping in the Greater Yellowstone Area, USA. Landsc. Ecol. 2001, 16, 523–546. [Google Scholar] [CrossRef]
- Niekerk, A.V. A comparison of land unit delineation techniques for land evaluation in the Western Cape, South Africa. Land Use Policy 2010, 27, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Drăgut, L.; Eisank, C. Object representations at multiple scales from digital elevation models. Geomorphology 2011, 129, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lv, X. Analysis of the relief amplitude in Xinjiang based on digital elevation model. Sci. Surv. Mapp. 2009, 34, 113–116. [Google Scholar] [CrossRef]
- Zhou, C.H.; Cheng, W.M.; Qian, J.K. Digital Geomorphological Interpretation and Mapping from Remote Sensing; Science Press: Beijing, China, 2009. [Google Scholar]
- Zhou, C.H.; Cheng, W.M.; Qian, J.K.; Li, B.Y.; Zhang, B.P. Research on the Classification System of Digital Land Geomorphology of 1:1000000 in China. J. Geo-Inf. Sci. 2009, 11, 707–724. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DQXX200906007&DbName=CJFQ2009 (accessed on 15 January 2022).
- Kebebew, S.; Bedadi, B.; Erkossa, T.; Yimer, F.; Wogi, L. Effect of Different Land-Use Types on Soil Properties in Cheha District, South-Central Ethiopia. Sustainability 2022, 14, 1323. [Google Scholar] [CrossRef]
- Ellis, E.A.; Porter-Bolland, L. Is community-based forest management more effective than protected areas? A comparison of land use/land cover change in two neighboring study areas of the Central Yucatan Peninsula, Mexico. For. Ecol. Manag. 2008, 256, 1971–1983. [Google Scholar] [CrossRef]
- Lam, N.; Quattrochi, D.A. On the issues of Scare, Resolution, and Fractal Analysis in the Mapping Sciences. Prof. Geogr. 1992, 44, 88–98. [Google Scholar] [CrossRef]
- Bo, Y.C. Study on Uncertainty and Scale Effect of Remote Sensing Information Extraction; Institute of Geographic Science and Natural Resources Research, CAS: Bejing, China, 2002. [Google Scholar]
- Minasny, B.; McBratney, A.B. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Florinsky, I.V. Digital Terrain Analysis in Soil Science and Geology; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2016; pp. 287–311. [Google Scholar] [CrossRef]
- Zhang, X.S. Vegetation and Its Geographical Pattern in China: Illustration of the Vegetation Map of China (1:1,000,000); Geological Publishing House: Beijing, China, 2007. [Google Scholar]
- Shen, Y.C. Exploration of the content of land science research. Nat. Resour. 1982, 71–76. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZRZY198203008&DbName=CJFQ1982 (accessed on 22 January 2022).
- Zhao, S.Q.; Dai, X.; Shen, Y.C.; Yang, L.L. Natural Zones and Land Types in Heilongjiang Province and Its Adjacent Areas in the West; Science Press: Beijing, China, 1983. [Google Scholar]
- Chaturvedi, S.S.; Sun, K. Soil organic carbon and carbon stock in community forests with varying altitude and slope aspect in Meghalaya, India. Int. Res. J. Environmental Sci. 2018, 7, 1–6. [Google Scholar]
- Nasab, M.S.; Moameri, M.; Ghorbani, A.; Bidar, M.; Molaie, M. The effect of elevation on some edaphic properties in rangelands of Qezel Ozan- AqDagh altitude gradient, Khalkhal County. In Proceedings of the 1st International Conference and the 4th National Conference on Conservation of Natural Resources and Environment, Ardabil, Iran, 27 August 2019. [Google Scholar]
- Zgłobicki, W.; Baran-Zgłobicka, B. Impact of loess relief on land use mosaic in SE Poland. Catena 2012, 96, 76–82. [Google Scholar] [CrossRef]
- Hou, X.Y. Vegetation Geography and Chemical Composition of Dominant Plants in China; Science Press: Beijing, China, 1982. [Google Scholar]
- Zang, R.G. Beijiang Senlin Zhibei Shengtai Tezheng; Modern Education Press: Beijing, China, 2011. [Google Scholar]
- Ji, F. Land Types and Agritural—Physical Regionalization in the Altai Region. Arid. Zone Res. 1989, 6–12. [Google Scholar] [CrossRef]
- Liu, L.C. Xinjiang Land Type Structure and Its Rational Use. J. Xinjiang Univ. Nat. Sci. Ed. Chin. Engl. 1994, 11, 91–96. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=XJDZ401.017&DbName=CJFQ1994 (accessed on 22 January 2022).
- Zonneveld, I.S. Land Evaluation and Land(scape) Science. In ITC Textbook VII.4, 2nd ed.; ITC: Enschede, The Netherlands, 1979; p. 134. [Google Scholar]
- Mücher, C.A.; Klijn, J.A.; Wascher, D.M.; Schaminée, J.H.J. A new European Landscape Classification (LANMAP): A transparent, flexible and user-oriented methodology to distinguish landscapes. Ecol. Indic. 2010, 10, 87–103. [Google Scholar] [CrossRef]
- Mücher, C.A.; Bunce, R.G.H.; Jongman, R.H.G.; Klijn, J.A.; Koomen, A.J.M.; Metzger, M.J.; Wascher, D.M. Identification and Characterisation of Environments and Landscapes in Europe; Alterra rapport 832; Alterra: Wageningen, The Netherland, 2003; p. 199. [Google Scholar]
- Klijn, J.A. Hierarchical Concepts in Landscape Ecology and Its Underlying Disciplines (the Unbearable Lightness of a Theory?); DLO Winand Staring Centre: Wageningen, The Netherland, 1995; p. 144. [Google Scholar]
- Bunce, R.; Barr, C.J.; Clarke, R.T.; Howard, D.C.; Lane, A. Land Classification For Strategic Ecological Survey. J. Environ. Manag. 1996, 47, 37–60. [Google Scholar] [CrossRef]
- Naqinezhad, A.; Hamzeh’ee, B.; Attar, F. Vegetation–environment relationships in the alderwood communities of Caspian lowlands, N. Iran (toward an ecological classification). Flora-Morphol. Distrib. Funct. Ecol. Plants 2008, 203, 567–577. [Google Scholar] [CrossRef]
- Pontius, R.G.; Huffaker, D.; Denman, K. Useful techniques of validation for spatially explicit land-change models. Ecol. Model. 2004, 179, 445–461. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Kienast, F. Analysis of historic landscape patterns with a Geographical Information System—A methodological outline. Landsc. Ecol. 1993, 8, 103–118. [Google Scholar] [CrossRef]
- Cabral, A.I.R.; Costa, F.L. Land cover changes and landscape pattern dynamics in Senegal and Guinea Bissau borderland. Appl. Geogr. 2017, 82, 115–128. [Google Scholar] [CrossRef]
- Sánchez, M.C.; Priego-Santander, Á.G. Biophysical landscapes of a coastal area of Michoacán state in Mexico. J. Maps 2012, 7, 42–50. [Google Scholar] [CrossRef]
- Omernik, J.M.; Bailey, R.G. Distinguishing between watersheds and ecoregions. J. Am. Water Resour. Assoc. 1997, 33, 935–949. [Google Scholar] [CrossRef]
Altitude | Low Altitude (<1000 m) | Medium Altitude (1000–2400 m) | High Altitude (>2400 m) | |
---|---|---|---|---|
Relief Amplitude | ||||
Plain (generally, <30 m) | Low altitude plain | Medium altitude plain | High altitude plain | |
Platform (generally, >30 m) | Low altitude platform | Medium altitude platform | High altitude platform | |
Hill (<200 m) | Low altitude hills | Medium altitude hills | High altitude hills | |
Small undulating mountain (200–400 m) | Small undulating low mountain | Small undulating middle mountain | Small undulating high mountain | |
Medium undulating mountain (400–600 m) | Medium undulating low mountain | Medium undulating middle mountain | Medium undulating high mountain | |
Large undulating mountain (>600 m) | --- | Large undulating middle mountain | Large undulating high mountain |
First Class | Second Class | ||||
---|---|---|---|---|---|
1-Cultivated land | 1-1 Paddy land | 1-2 Dryland | |||
2-Forestland | 2-1Woodland | 2-2 Shrub wood | 2-3 Sparse wood | 2-4 Other woodland | |
3-Grassland | 3-1 Natural grazing land | 3-2 Artificial grazing land | 3-3 other grassland | ||
4-Water area | 4-1 Canal | 4-2 Lake | 4-3 Pit-pond | 4-4 Shoaly land | |
5-Developed land | 5-1 Urban land | 5-2 Rural residential area | 5-3 Industrial and mining land | ||
6-Unused land | 6-1 Sand land | 6-2 Saline-alkaline land | 6-3 Marsh land | 6-4 Bare gravel land | 6-5 Permanent glacier and snowfield |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Cheng, W.; Song, K.; Wang, S.; Zhang, Y.; Li, H.; Deng, J.; Wang, R. Application of Ecology-Geomorphology Cognition Approach in Land Type Classification: A Case Study in the Altay Region. Sustainability 2022, 14, 4023. https://doi.org/10.3390/su14074023
Wang B, Cheng W, Song K, Wang S, Zhang Y, Li H, Deng J, Wang R. Application of Ecology-Geomorphology Cognition Approach in Land Type Classification: A Case Study in the Altay Region. Sustainability. 2022; 14(7):4023. https://doi.org/10.3390/su14074023
Chicago/Turabian StyleWang, Baixue, Weiming Cheng, Keyu Song, Suiji Wang, Yichi Zhang, Hao Li, Jiayin Deng, and Ruibo Wang. 2022. "Application of Ecology-Geomorphology Cognition Approach in Land Type Classification: A Case Study in the Altay Region" Sustainability 14, no. 7: 4023. https://doi.org/10.3390/su14074023
APA StyleWang, B., Cheng, W., Song, K., Wang, S., Zhang, Y., Li, H., Deng, J., & Wang, R. (2022). Application of Ecology-Geomorphology Cognition Approach in Land Type Classification: A Case Study in the Altay Region. Sustainability, 14(7), 4023. https://doi.org/10.3390/su14074023