N- and S-Doped Carbons Derived from Polyacrylonitrile for Gases Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of Activated Carbons
2.2.2. Characterisation of Activated Carbons
2.2.3. Carbon Dioxide and Nitrogen Adsorption Isotherms
3. Results
3.1. Materials Characterisation
3.1.1. Specific Surface Area and Pore Volume
3.1.2. SEM Characterisation
3.1.3. XPS Analysis
3.1.4. Raman and FTIR Spectroscopy
3.1.5. Determination of the Zero-Charge Point
3.2. Adsorption Experiments: Influence of Pressure and Temperature
3.3. Adsorption Experiments: Isotherm’s Modelling
3.4. CO2/N2 Selectivity
3.5. Heat of Adsorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuksel-Orhan, O.; Tankal, H.; Kayi, H.; Alper, E. Innovative carbon dioxide-capturing organic solvent: Reaction mechanism and kinetics. Chem. Eng. Technol. 2017, 40, 737–744. [Google Scholar] [CrossRef]
- Heldebrant, D.J.; Koech, P.K.; Glezakou, V.-A.; Rousseau, R.; Malhotra, D.; Cantu, D.C. Water-lean solvents for post-combustion CO2 capture: Fundamentals, uncertainties, opportunities, and outlook. Chem. Rev. 2017, 117, 9594–9624. [Google Scholar] [CrossRef] [PubMed]
- Ackley, M.W.; Rege, S.U.; Saxena, H. Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater. 2003, 61, 25–42. [Google Scholar] [CrossRef]
- Emam, H.E.; Abdelhameed, R.M.; Ahmed, H.B. Adsorptive performance of MOFs and MOF containing composites for clean energy and safe environment. J. Environ. Chem. Eng. 2020, 8, 104386. [Google Scholar] [CrossRef]
- Shou, L.; Bai, S. Adsorption of nitrogen on silica gel over a large range of temperatures. Adsorption 2002, 8, 79–87. [Google Scholar]
- Ding, M.; Cai, X.; Jiang, H.-L. Improving MOF stability: Approaches and applications. Chem. Sci. 2019, 10, 10209–10230. [Google Scholar] [CrossRef] [Green Version]
- Wickramaratne, N.P.; Jaroniec, M. Activated carbon spheres for CO2 adsorption. ACS Appl Mater. Interfaces 2013, 5, 1849–1855. [Google Scholar] [CrossRef]
- Abd, A.A.; Naji, S.Z.; Hashim, A.S.; Othman, M.R. Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review. J. Environ. Chem. Eng. 2020, 8, 104142. [Google Scholar] [CrossRef]
- Dilokekunakul, W.; Klomkliang, N.; Phadungbut, P.; Chaemchuen, S.; Supasitmongkol, S. Effects of functional group concentration, type, and configuration on their saturation of methanol adsorption on functionalized graphite. Appl. Surf. Sci. 2020, 501, 144121. [Google Scholar] [CrossRef]
- Dilokekunakul, W.; Teerachawanwong, P.; Klomkliang, N.; Supasitmongkol, S.; Chaemchuend, S. Effects of nitrogen and oxygen functional groups and pore width of activated carbon on carbon dioxide capture: Temperature dependence. Chem. Eng. J. 2020, 389, 124413. [Google Scholar] [CrossRef]
- Abdulhamid, M.A.; Ma, X.; Miao, X.; Pinnau, I. Synthesis and characterization of a microporous 6FDA-polyimide made from a novel carbocyclic pseudo Troger’s base diamine: Effect of bicyclic bridge on gas transport properties. Polymer 2017, 130, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Li, W.B.; Shi, J.S.; Xin, F.W. Influence of doping nitrogen, sulphur, and phosphorus on activated carbons for gas adsorption of H2, CH4 and CO2. RSC Adv. 2016, 6, 50138–50143. [Google Scholar] [CrossRef]
- Saha, D.; Orkoulas, G.; Chen, J.; Hensley, D.K. Adsorptive separation of CO2 in sulphur-doped nanoporous carbons: Selectivity and breakthrough simulation. Microporous Mesoporous Mater. 2017, 241, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Seema, H.; Kemp, K.C.; Le, N.H.; Park, S.-W.; Chandra, V.; Lee, J.W.; Kim, K.S. Highly selective CO2 capture by S-doped microporous carbon materials. Carbon 2014, 66, 320–326. [Google Scholar] [CrossRef]
- Shi, J.; Cui, H.; Xu, J.; Yan, N.; Zhang, C.; You, S. Synthesis of nitrogen and sulfur co-doped carbons with chemical blowing method for CO2 adsorption. Fuel 2021, 305, 121505. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Bautista-Toledo, I.; Ferro-García, M.A.; Moreno-Castilla, C. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J. Chem. Technol. Biotechnol. 2001, 76, 1209–1215. [Google Scholar] [CrossRef] [Green Version]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouquerol, J.; Sing, K.S.W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids: Principles, Methodology and Application; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Shi, J.; Yan, N.; Cui, H.; Liu, Y.; Weng, Y. Sulphur doped microporous carbons for CO2 adsorption. J. Environ. Chem. Eng. 2017, 5, 4605–4611. [Google Scholar] [CrossRef]
- Sethia, G.; Sayari, A. A comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture. Carbon 2015, 93, 68–80. [Google Scholar] [CrossRef]
- Kim, K.C.; Yoon, T.-U.; Bae, Y.-S. Applicability of using CO2 adsorption isotherms to determine BET surface areas of microporous materials. Microporous Mesoporous Mater. 2016, 224, 294–301. [Google Scholar] [CrossRef]
- Adeniran, B.; Mokaya, R. Is N-doping in porous carbons beneficial for CO2 storage? Experimental demonstration of the relative effects of pore size and N-doping. Chem. Mater. 2016, 28, 994–1001. [Google Scholar] [CrossRef]
- Zeng, Y.; Do, D.D.; Nicholson, D. Existence of ultrafine crevices and functional groups along the edge surfaces of graphitized thermal carbon black. Langmuir 2015, 31, 4196–4204. [Google Scholar] [CrossRef] [PubMed]
- Manyà, J.J.; González, B.; Azuara, M.; Arner, G. Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity. Chem. Eng. J. 2018, 345, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Ma, T.; Zhang, R.; Tian, Y.; Qiao, Y. Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char. Fuel 2015, 139, 68–70. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Li, Y.; Wang, Y.; Zhang, J.; Guan, G.; Pan, Z.; Zheng, G.; Peng, H. Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor. Adv. Energy Mater. 2017, 7, 1601814. [Google Scholar] [CrossRef]
- Peredo-Mancilla, D.; Matel Ghimbeu, C.; Ho, B.N.; Jeguirim, M.; Hort, C.; Bessieres, D. Comparative study of the CH4/CO2 adsorption selectivity of activated carbons for biogas upgrading. J. Environ. Chem. Eng. 2019, 7, 103368. [Google Scholar] [CrossRef]
- Sevilla, M.; Parra, J.B.; Fuertes, A.B. Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons. ACS Appl. Mater. Interfaces 2013, 5, 6360–6368. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Sánchez, A.; Suárez-García, F.; Martínez-Alonso, A.; Tascón, J.M.D. Influence of porous texture and surface chemistry on the CO2 adsorption capacity of porous carbons: Acidic and basic site interactions. ACS Appl. Mater. Interfaces 2014, 6, 21237–21247. [Google Scholar] [CrossRef]
- Chowdhury, S.; Balasubramanian, R. Three-dimensional graphene-based porous adsorbents for postcombustion CO2 capture. Ind. Eng. Chem. Res. 2016, 55, 7906–7916. [Google Scholar] [CrossRef]
- Myers, A.L.; Prausnitz, J.M. Thermodynamics of mixed-gas adsorption. AIChE J. 1965, 11, 121–127. [Google Scholar] [CrossRef]
- González, A.S.; Plaza, M.G.; Rubiera, F.; Pevida, C. Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture. Chem. Eng. J. 2013, 230, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Chiang, Y.-C.; Yeh, C.-Y.; Weng, C.-H. Carbon dioxide adsorption on porous and functionalized activated carbon fibers. Appl. Sci. 2019, 9, 1977. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Guo, L.; Hu, G.; Hu, X.; Chen, J.; Shen, S.; Dai, W.; Fan, M. Adsorption of CO2 by petroleum coke nitrogen-doped porous carbons synthesized by combining ammoxidation with KOH activation. Ind. Eng. Chem. Res. 2016, 55, 757–765. [Google Scholar] [CrossRef]
- Hao, W.; Björkman, E.; Lilliestråle, M.; Hedin, N. Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl. Energy 2013, 112, 526–532. [Google Scholar] [CrossRef]
Sample | Composition a (wt.%) | SBET b | SBET c | Total Pore Volume b | Micropore Volume b | CO2 Uptake d | |||
---|---|---|---|---|---|---|---|---|---|
C | O | N | S | (m2 g−1) | (m2 g−1) | (cm3 g−1) | (cm3 g−1) | (mmol g−1) | |
PAN-C | 85.0 | 4.5 | 10.5 | - | 36.3 | 148.7 | 0.0178 | 0.0153 | 0.87 |
PAN-S-C | 78.5 | 3.2 | 15.6 | 2.7 | 150.5 | 209.9 | 0.1886 | 0.0606 | 1.34 |
PAN-C-Act | 65.2 | 34.05 | 0.4 | - | 3154.9 | 599.7 | 2.1142 | 0.5402 | 0.91 |
PAN-S-C-Act | 92.0 | 4.1 | 2.1 | 1.8 | 2764.4 | 481.7 | 2.2759 | 0.1119 | 0.75 |
CAC | 96.0 | 4.0 | - | - | 1059.9 | 350.9 | 0.9527 | 0.2329 | 1.28 |
Pyridonic N (%) | Pyrrolic N (%) | Pyridinic Oxide (%) | C-S (%) | C=S (%) | C-SO2-C (%) | |
---|---|---|---|---|---|---|
PAN-C | 32.2 | 67.8 | - | - | - | - |
PAN-C-Act | - | 100 | - | - | - | - |
PAN-S-C | 50.8 | 44.8 | 4.4 | 70.4 | 21.3 | 8.3 |
PAN-S-C-Act | - | 100 | - | 54.8 | 29.6 | 15.6 |
Carbon Material | pHPZC |
---|---|
PAN-C | 8.25 |
PAN-S-C | 8.15 |
PAN-C-Act | 7.43 |
PAN-S-C-Act | 7.45 |
CAC | 7.38 |
Langmuir | (1) | |
Freundlich | (2) | |
Toth | (3) |
Langmuir | Freundlich | Toth | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
T | nm,L | KL | σL | nF | KF | σF | nm,T | KT | t | σT |
PAN-C | ||||||||||
273 | 1.34 | 0.026 | 0.100 | 3.15 | 0.180 | 0.038 | 3.08 | 0.082 | 0.32 | 0.002 |
298 | 1.21 | 0.011 | 0.068 | 2.51 | 0.091 | 0.024 | 3.64 | 0.020 | 0.32 | 0.002 |
323 | 1.00 | 0.006 | 0.047 | 1.91 | 0.030 | 0.023 | 2.77 | 0.004 | 0.43 | 0.002 |
348 | 0.85 | 0.003 | 0.031 | 1.49 | 0.082 | 0.016 | 2.68 | 0.001 | 0.51 | 0.001 |
PAN-C-Act | ||||||||||
273 | 4.86 | 0.002 | 0.480 | 1.22 | 0.018 | 0.012 | 17.70 | 4.43·10−4 | 0.87 | 0.035 |
298 | 4.27 | 0.001 | 0.140 | 1.17 | 0.009 | 0.008 | 11.76 | 3.68·10−4 | 0.87 | 0.016 |
323 | 3.06 | 8.49·10−4 | 0.066 | 1.13 | 0.004 | 0.005 | 5.48 | 4.03·10−4 | 1.11 | 0.008 |
348 | 2.15 | 8.17·10−4 | 0.029 | 1.14 | 0.003 | 0.009 | 3.49 | 4.53·10−4 | 0.99 | 0.004 |
PAN-S-C | ||||||||||
273 | 2.00 | 0.028 | 0.140 | 3.31 | 0.300 | 0.061 | 4.06 | 0.088 | 0.34 | 1.3·10−5 |
298 | 1.71 | 0.012 | 0.092 | 2.59 | 0.140 | 0.040 | 3.99 | 0.020 | 0.37 | 2.29·10−6 |
323 | 1.34 | 0.007 | 0.064 | 1.99 | 0.048 | 0.032 | 3.43 | 0.005 | 0.44 | 3.05·10−5 |
348 | 1.08 | 0.004 | 0.037 | 1.59 | 0.014 | 0.024 | 2.84 | 0.002 | 0.52 | 1.88·10−5 |
PAN-S-C-Act | ||||||||||
273 | 3.66 | 0.003 | 0.45 | 1.23 | 0.015 | 0.001 | 19.76 | 3.37·10−4 | 0.75 | 0.028 |
298 | 3.02 | 0.001 | 0.130 | 1.19 | 0.007 | 0.003 | 12.57 | 2.84·10−4 | 0.74 | 0.012 |
323 | 2.41 | 9.33·10−4 | 0.069 | 1.12 | 0.003 | 0.002 | 4.88 | 3.83·10−4 | 1.11 | 0.007 |
348 | 1.94 | 6.45·10−4 | 0.033 | 1.09 | 0.002 | 0.002 | 2.36 | 4.56·10−4 | 1.44 | 0.004 |
CAC | ||||||||||
273 | 3.30 | 0.007 | 0.350 | 1.70 | 0.017 | 0.017 | 26.86 | 0.002 | 0.31 | 0.005 |
298 | 2.73 | 0.003 | 0.140 | 1.50 | 0.029 | 0.039 | 22.35 | 7.41·10−4 | 0.35 | 6.71·10−4 |
323 | 2.19 | 0.002 | 0.064 | 1.33 | 0.011 | 0.026 | 12.05 | 4.46·10−4 | 0.46 | 0.002 |
348 | 2.28 | 7.71·10−4 | 0.025 | 1.14 | 0.003 | 0.010 | 14.11 | 1.31·10−4 | 0.56 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Ramos, L.; Prieto-Estalrich, A.; Malucelli, G.; Gómez-Díaz, D.; Freire, M.S.; Lazzari, M.; González-Álvarez, J. N- and S-Doped Carbons Derived from Polyacrylonitrile for Gases Separation. Sustainability 2022, 14, 3760. https://doi.org/10.3390/su14073760
Domínguez-Ramos L, Prieto-Estalrich A, Malucelli G, Gómez-Díaz D, Freire MS, Lazzari M, González-Álvarez J. N- and S-Doped Carbons Derived from Polyacrylonitrile for Gases Separation. Sustainability. 2022; 14(7):3760. https://doi.org/10.3390/su14073760
Chicago/Turabian StyleDomínguez-Ramos, Lidia, Ainoha Prieto-Estalrich, Giulio Malucelli, Diego Gómez-Díaz, María Sonia Freire, Massimo Lazzari, and Julia González-Álvarez. 2022. "N- and S-Doped Carbons Derived from Polyacrylonitrile for Gases Separation" Sustainability 14, no. 7: 3760. https://doi.org/10.3390/su14073760