Impacts of Digital Technologies for the Provision of Energy Market Services on the Safety of Residents and Consumers
Abstract
1. Introduction
2. Literature Review
3. Digitalization and Residential Emission Reduction
4. Impacts of Digital Technologies on Energy Consumption
5. Materials and Methods
6. Empirical Model: Smart Home Technologies and Market Services
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heffron, R.; Körner, M.-F.; Wagner, J.; Weibelzahl, M.; Fridgen, G. Industrial demand-side flexibility: A key element of a just energy transition and industrial development. Appl. Energy 2020, 269, 115026. [Google Scholar] [CrossRef]
- Strielkowski, W.; Dvořák, M.; Rovný, P.; Tarkhanova, E.; Baburina, N. 5G Wireless Networks in the Future Renewable Energy Systems. Front. Energy Res. 2021, 9, 714803. [Google Scholar] [CrossRef]
- Sarker, E.; Halder, P.; Seyedmahmoudian, M.; Jamei, E.; Horan, B.; Mekhilef, S.; Stojcevski, A. Progress on the demand side management in smart grid and optimization approaches. Int. J. Energy Res. 2021, 45, 36–64. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Del Rio, D.D.F. Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies. Renew. Sustain. Energy Rev. 2020, 120, 109663. [Google Scholar] [CrossRef]
- Rausser, G.; Strielkowski, W.; Štreimikienė, D. Smart meters and household electricity consumption: A case study in Ireland. Energy Environ. 2018, 29, 131–146. [Google Scholar] [CrossRef]
- IEA. Energy Efficiency. Available online: https://www.iea.org/reports/energy-efficiency-2018 (accessed on 28 January 2022).
- Bañales, S. The enabling impact of digital technologies on distributed energy resources integration. J. Renew. Sustain. Energy 2020, 12, 045301. [Google Scholar] [CrossRef]
- Siano, P.; De Marco, G.; Rolan, A.; Loia, V. A Survey and Evaluation of the Potentials of Distributed Ledger Technology for Peer-to-Peer Transactive Energy Exchanges in Local Energy Markets. IEEE Syst. J. 2019, 13, 3454–3466. [Google Scholar] [CrossRef]
- Heidarinejad, M.; Dalgo, D.A.; Mattise, N.W.; Srebric, J. Personalized cooling as an energy efficiency technology for city energy footprint reduction. J. Clean. Prod. 2018, 171, 491–505. [Google Scholar] [CrossRef]
- Strielkowski, W.; Veinbender, T.; Tvaronavičienė, M.; Lace, N. Economic efficiency and energy security of smart cities. Econ. Res. Ekon. Istraživanja 2020, 33, 788–803. [Google Scholar] [CrossRef]
- Kohlhepp, P.; Harb, H.; Wolisz, H.; Waczowicz, S.; Müller, D.; Hagenmeyer, V. Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies. Renew. Sustain. Energy Rev. 2019, 101, 527–547. [Google Scholar] [CrossRef]
- Moşteanu, N.R. Challenges for organizational structure and design as a result of digitalization and cybersecurity. J. Bus. Retail Manag. Res. 2020, 11, 278–286. [Google Scholar] [CrossRef]
- IEA. Digitalization and Energy. 2017. Available online: https://www.iea.org/reports/digitalisation-and-energy (accessed on 29 January 2022).
- Foroudi, P.; Gupta, S.; Sivarajah, U.; Broderick, A. Investigating the effects of smart technology on customer dynamics and customer experience. Comput. Hum. Behav. 2018, 80, 271–282. [Google Scholar] [CrossRef]
- Herrero, S.T.; Nicholls, L.; Strengers, Y. Smart home technologies in everyday life: Do they address key energy challenges in households? Curr. Opin. Environ. Sustain. 2018, 31, 65–70. [Google Scholar] [CrossRef]
- Khan, N.; Baloch, M.A.; Saud, S.; Fatima, T. The effect of ICT on CO2 emissions in emerging economies: Does the level of income matters? Environ. Sci. Pollut. Res. 2018, 25, 22850–22860. [Google Scholar] [CrossRef]
- Borowski, P.F.; Patuk, I.; Bandala, E.R. Innovative Industrial Use of Bamboo as Key “Green” Material. Sustainability 2022, 14, 1955. [Google Scholar] [CrossRef]
- Manandhar, R.; Kim, J.-H.; Kim, J.-T. Environmental, social and economic sustainability of bamboo and bamboo-based construction materials in buildings. J. Asian Arch. Build. Eng. 2019, 18, 49–59. [Google Scholar] [CrossRef]
- Chaowana, K.; Wisadsatorn, S.; Chaowana, P. Bamboo as a Sustainable Building Material—Culm Characteristics and Properties. Sustainability 2021, 13, 7376. [Google Scholar] [CrossRef]
- Strielkowski, W. Social and Economic Implications for the Smart Grids of the Future. Econ. Sociol. 2017, 10, 310–318. [Google Scholar] [CrossRef]
- Prieto González, L.; Fensel, A.; Gómez Berbís, J.M.; Popa, A.; de Amescua Seco, A. A Survey on Energy Efficiency in Smart Homes and Smart Grids. Energies 2021, 14, 7273. [Google Scholar] [CrossRef]
- Inderwildi, O.; Zhang, C.; Wang, X.; Kraft, M. The impact of intelligent cyber-physical systems on the decarbonization of energy. Energy Environ. Sci. 2020, 13, 744–771. [Google Scholar] [CrossRef]
- Monteiro, V.; Afonso, J.A.; Ferreira, J.C.; Afonso, J.L. Vehicle Electrification: New Challenges and Opportunities for Smart Grids. Energies 2019, 12, 118. [Google Scholar] [CrossRef]
- Strielkowski, W. Social Impacts of Smart Grids: The Future of Smart Grids and Energy Market Design, 1st ed.; Elsevier: London, UK, 2019. [Google Scholar]
- Kakran, S.; Chanana, S. Smart operations of smart grids integrated with distributed generation: A review. Renew. Sustain. Energy Rev. 2018, 81, 524–535. [Google Scholar] [CrossRef]
- Ghorbanian, M.; Dolatabadi, S.H.; Masjedi, M.; Siano, P. Communication in Smart Grids: A Comprehensive Review on the Existing and Future Communication and Information Infrastructures. IEEE Syst. J. 2019, 13, 4001–4014. [Google Scholar] [CrossRef]
- Kim, S.C.; Ray, P.; Reddy, S.S. Features of Smart Grid Technologies: An Overview. ECTI Trans. Electr. Eng. Electron. Commun. 2019, 17, 169–180. [Google Scholar] [CrossRef]
- Vaka, M.; Walvekar, R.; Rasheed, A.K.; Khalid, M. A review on Malaysia’s solar energy pathway towards carbon-neutral Malaysia beyond COVID’19 pandemic. J. Clean. Prod. 2020, 273, 122834. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhou, D.; Wang, Q.; Su, B. How information and communication technology drives carbon emissions: A sector-level analysis for China. Energy Econ. 2019, 81, 380–392. [Google Scholar] [CrossRef]
- Williams, L.; Sovacool, B.K.; Foxon, T.J. The energy use implications of 5G: Reviewing whole network operational energy, embodied energy, and indirect effects. Renew. Sustain. Energy Rev. 2022, 157, 112033. [Google Scholar] [CrossRef]
- Strielkowski, W.; Streimikiene, D.; Fomina, A.; Semenova, E. Internet of Energy (IoE) and High-Renewables Electricity System Market Design. Energies 2019, 12, 4790. [Google Scholar] [CrossRef]
- Powroźnik, P.; Szcześniak, P.; Piotrowski, K. Elastic Energy Management Algorithm Using IoT Technology for Devices with Smart Appliance Functionality for Applications in Smart-Grid. Energies 2022, 15, 109. [Google Scholar] [CrossRef]
- Li, W.; Logenthiran, T.; Phan, V.-T.; Woo, W.L. A Novel Smart Energy Theft System (SETS) for IoT-Based Smart Home. IEEE Internet Things J. 2019, 6, 5531–5539. [Google Scholar] [CrossRef]
- Park, C.; Heo, W. Review of the changing electricity industry value chain in the ICT convergence era. J. Clean. Prod. 2020, 258, 120743. [Google Scholar] [CrossRef]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Masanet, E.; Shehabi, A.; Lei, N.; Smith, S.; Koomey, J. Recalibrating global data center energy-use estimates. Science 2020, 367, 984–986. [Google Scholar] [CrossRef] [PubMed]
- Malmodin, J.; Lundén, D. The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015. Sustainability 2018, 10, 3027. [Google Scholar] [CrossRef]
- E-redes, Projeto InovGrid. Available online: https://www.e-redes.pt/en/power-grids-future/intelligent-networks/project (accessed on 4 February 2022).
- Abubakr, M.; Abbas, A.T.; Tomaz, I.; Soliman, M.S.; Luqman, M.; Hegab, H. Sustainable and Smart Manufacturing: An Integrated Approach. Sustainability 2020, 12, 2280. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Electricity Industry Primer. Available online: https://www.energy.gov/sites/prod/files/2015/12/f28/united-states-electricity-industry-primer.pdf (accessed on 4 February 2022).
- Millward-Hopkins, J.; Steinberger, J.K.; Rao, N.D.; Oswald, Y. Providing decent living with minimum energy: A global scenario. Glob. Environ. Chang. 2020, 65, 102168. [Google Scholar] [CrossRef]
- Castán Broto, V.; Kirshner, J. Energy access is needed to maintain health during pandemics. Nat. Energy 2020, 5, 419–421. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. Using the internet of things in smart energy systems and networks. Sustain. Cities Soc. 2021, 68, 102783. [Google Scholar] [CrossRef]
- Sabory, N.R.; Senjyu, T.; Danish, M.S.S.; Ahmadi, M.; Zaheb, H.; Halim, M. A Framework for Integration of Smart and Sustainable Energy Systems in Urban Planning Processes of Low-Income Developing Countries: Afghanistan Case. Sustainability 2021, 13, 8428. [Google Scholar] [CrossRef]
- Asaithambi, S.P.R.; Venkatraman, S.; Venkatraman, R. Big Data and Personalisation for Non-Intrusive Smart Home Automation. Big Data Cogn. Comput. 2021, 5, 6. [Google Scholar] [CrossRef]
- Stolojescu-Crisan, C.; Crisan, C.; Butunoi, B.-P. An IoT-Based Smart Home Automation System. Sensors 2021, 21, 3784. [Google Scholar] [CrossRef]
- Aliero, M.S.; Qureshi, K.N.; Pasha, M.F.; Jeon, G. Smart Home Energy Management Systems in Internet of Things networks for green cities demands and services. Environ. Technol. Innov. 2021, 22, 101443. [Google Scholar] [CrossRef]
- Wang, J.; Spicher, N.; Warnecke, J.M.; Haghi, M.; Schwartze, J.; Deserno, T.M. Unobtrusive Health Monitoring in Private Spaces: The Smart Home. Sensors 2021, 21, 864. [Google Scholar] [CrossRef] [PubMed]
- Isnen, M.; Kurniawan, S.; Garcia-Palacios, E. A-SEM: An adaptive smart energy management testbed for shiftable loads optimisation in the smart home. Measurement 2020, 152, 107285. [Google Scholar] [CrossRef]
- Gram-Hanssen, K.; Darby, S.J. “Home is where the smart is?” Evaluating smart home research and approaches against the concept of home. Energy Res. Soc. Sci. 2018, 37, 94–101. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Environmentally data-driven smart sustainable cities: Applied innovative solutions for energy efficiency, pollution reduction, and urban metabolism. Energy Inform. 2020, 3, 1–59. [Google Scholar] [CrossRef]
- Jain, M.; Siva, V.; Hoppe, T.; Bressers, H. Assessing governance of low energy green building innovation in the building sector: Insights from Singapore and Delhi. Energy Policy 2020, 145, 111752. [Google Scholar] [CrossRef]
- Statista. Smart Home. 2022. Available online: https://www.statista.com/outlook/dmo/smart-home/worldwide (accessed on 15 February 2022).
- Lobaccaro, G.; Carlucci, S.; Löfström, E. A Review of Systems and Technologies for Smart Homes and Smart Grids. Energies 2016, 9, 348. [Google Scholar] [CrossRef]
- Blind, K.; Böhm, M.; Grzegorzewska, P.; Katz, A.; Muto, S.; Pätsch, S.; Schubert, T. The Impact of Open Source Software and Hardware on Technological Independence, Competitiveness and Innovation in the EU Economy; Final Study Report; European Union: Brussels, Belgium, 2021; Available online: https://www.ospi.es/export/sites/ospi/documents/documentos/CNECT_OpenSourceStudy_EN_28_6_2021_LMBhSihnCeC7JEDsHXkK1JlZ0_79021_compressed.pdf (accessed on 17 February 2022).
- Reyes-Campos, J.; Alor-Hernández, G.; Machorro-Cano, I.; Olmedo-Aguirre, J.O.; Sánchez-Cervantes, J.L.; Rodríguez-Mazahua, L. Discovery of Resident Behavior Patterns Using Machine Learning Techniques and IoT Paradigm. Mathematics 2021, 9, 219. [Google Scholar] [CrossRef]
- Iacoviello, M.; Pavan, M. Housing and debt over the life cycle and over the business cycle. J. Monet. Econ. 2021, 60, 221–238. [Google Scholar] [CrossRef]
- Goldstein, B.; Gounaridis, D.; Newell, J.P. The carbon footprint of household energy use in the United States. Proc. Natl. Acad. Sci. USA 2020, 117, 19122–19130. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.J.; Zeadally, S.; Cochran, J. A review and an empirical analysis of privacy policy and notices for consumer Internet of things. Secur. Priv. 2018, 1, e15. [Google Scholar] [CrossRef]
- Sun, Q.; Yu, W.; Kochurov, N.; Hao, Q.; Hu, F. A Multi-Agent-Based Intelligent Sensor and Actuator Network Design for Smart House and Home Automation. J. Sens. Actuator Netw. 2013, 2, 557–588. [Google Scholar] [CrossRef]
- Darby, S. The Effectiveness of Feedback on Energy Consumption. A Review for DEFRA of the Literature on Metering, Billing and Direct Displays; Environmental Change Institute; University of Oxford: Oxford, UK, 2006; Available online: https://www.eci.ox.ac.uk/research/energy/downloads/smart-metering-report.pdf (accessed on 17 February 2022).
- Machorro-Cano, I.; Alor-Hernández, G.; Paredes-Valverde, M.A.; Rodríguez-Mazahua, L.; Sánchez-Cervantes, J.L.; Olmedo-Aguirre, J.O. HEMS-IoT: A Big Data and Machine Learning-Based Smart Home System for Energy Saving. Energies 2020, 13, 1097. [Google Scholar] [CrossRef]
- O’brolcháin, F.; Gordijn, B. Privacy challenges in smart homes for people with dementia and people with intellectual disabilities. Ethic Inf. Technol. 2019, 21, 253–265. [Google Scholar] [CrossRef]
- Pal, D.; Funilkul, S.; Charoenkitkarn, N.; Kanthamanon, P. Internet-of-Things and Smart Homes for Elderly Healthcare: An End User Perspective. IEEE Access 2018, 6, 10483–10496. [Google Scholar] [CrossRef]
- Nicholls, L.; Strengers, Y. Robotic vacuum cleaners save energy? Raising cleanliness conventions and energy demand in Australian households with smart home technologies. Energy Res. Soc. Sci. 2019, 50, 73–81. [Google Scholar] [CrossRef]
- Nelson, S.; Allwood, J.M. Technology or behaviour? Balanced disruption in the race to net zero emissions. Energy Res. Soc. Sci. 2021, 78, 102124. [Google Scholar] [CrossRef]
- European Commission. National Energy Efficiency Plan 2020. Available online: https://ec.europa.eu/energy/sites/default/files/si_neeap_2017_en.pdf (accessed on 20 January 2022).
- McIlwaine, N.; Foley, A.M.; Morrow, D.J.; Al Kez, D.; Zhang, C.; Lu, X.; Best, R.J. A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems. Energy 2021, 229, 120461. [Google Scholar] [CrossRef]
- El-Azab, R. Smart homes: Potentials and challenges. Clean Energy 2021, 5, 302–315. [Google Scholar] [CrossRef]
- Kim, H.; Choi, H.; Kang, H.; An, J.; Yeom, S.; Hong, T. A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities. Renew. Sustain. Energy Rev. 2021, 140, 110755. [Google Scholar] [CrossRef]
- Strengers, Y.; Nicholls, L. Convenience and energy consumption in the smart home of the future: Industry visions from Australia and beyond. Energy Res. Soc. Sci. 2017, 32, 86–93. [Google Scholar] [CrossRef]
- Neshenko, N.; Bou-Harb, E.; Crichigno, J.; Kaddoum, G.; Ghani, N. Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations. IEEE Commun. Surv. Tutor. 2019, 21, 2702–2733. [Google Scholar] [CrossRef]
- ACEEE. Energy Impacts of Smart Home Technologies. Available online: https://www.aceee.org/research-report/a1801 (accessed on 21 January 2022).
- Aldossari, M.Q.; Sidorova, A. Consumer Acceptance of Internet of Things (IoT): Smart Home Context. J. Comput. Inf. Syst. 2020, 60, 507–517. [Google Scholar] [CrossRef]
- Marikyan, D.; Papagiannidis, S.; Alamanos, E. A systematic review of the smart home literature: A user perspective. Technol. Forecast. Soc. Chang. 2019, 138, 139–154. [Google Scholar] [CrossRef]
- Cheng, P.; Mugge, R.; De Bont, C. “Smart home system is like a mother”: The potential and risks of product metaphors to influence consumers’ comprehension of really new products (RNPs). Int. J. Des. 2019, 13, 1–19. [Google Scholar] [CrossRef][Green Version]
- Murshed, M. An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ. Sci. Pollut. Res. 2020, 27, 36254–36281. [Google Scholar] [CrossRef]
- Santiago, I.; Moreno-Munoz, A.; Quintero-Jiménez, P.; Garcia-Torres, F.; Gonzalez-Redondo, M.J. Electricity demand during pandemic times: The case of the COVID-19 in Spain. Energy Policy 2021, 148, 111964. [Google Scholar] [CrossRef]
- Strielkowski, W.; Firsova, I.; Lukashenko, I.; Raudeliūnienė, J.; Tvaronavičienė, M. Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions. Energies 2021, 14, 893. [Google Scholar] [CrossRef]
- Chen, C.-F.; Nelson, H.; Xu, X.; Bonilla, G.; Jones, N. Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic. Renew. Sustain. Energy Rev. 2021, 145, 111066. [Google Scholar] [CrossRef]
- Borowski, P.F. Innovative Processes in Managing an Enterprise from the Energy and Food Sector in the Era of Industry 4.0. Processes 2021, 9, 381. [Google Scholar] [CrossRef]
- Honarmand, M.E.; Hosseinnezhad, V.; Hayes, B.; Shafie-Khah, M.; Siano, P. An Overview of Demand Response: From its Origins to the Smart Energy Community. IEEE Access 2021, 9, 96851–96876. [Google Scholar] [CrossRef]
- Rezaei, M.; Dampage, U.; Das, B.K.; Nasif, O.; Borowski, P.F.; Mohamed, M.A. Investigating the Impact of Economic Uncertainty on Optimal Sizing of Grid-Independent Hybrid Renewable Energy Systems. Processes 2021, 9, 1468. [Google Scholar] [CrossRef]
- Pawlak, J.; Imani, A.F.; Sivakumar, A. How do household activities drive electricity demand? Applying activity-based modelling in the context of the United Kingdom. Energy Res. Soc. Sci. 2021, 82, 102318. [Google Scholar] [CrossRef]
- Borowski, P.F. New Technologies and Innovative Solutions in the Development Strategies of Energy Enterprises. HighTech Innov. J. 2020, 1, 39–58. [Google Scholar] [CrossRef]
- Caccavale, M. The Impact of The Digital Revolution on The Smart Home Industry. Available online: https://www.forbes.com/sites/forbesagencycouncil/2018/09/24/the-impact-of-the-digital-revolution-on-the-smart-home-industry/?sh=6625d9f73c76 (accessed on 1 February 2022).
- Zdnet. 80 Million US Households Intend to Purchase a New Type of Smart Home Device. 2020. Available online: https://www.zdnet.com/article/80-million-us-households-intend-to-purchase-a-new-type-of-smart-home-device (accessed on 26 January 2022).
- Korneeva, E.; Olinder, N.; Strielkowski, W. Consumer Attitudes to the Smart Home Technologies and the Internet of Things (IoT). Energies 2021, 14, 7913. [Google Scholar] [CrossRef]
- Shouran, Z.; Ashari, A.; Priyambodo, T. Internet of Things (IoT) of Smart Home: Privacy and Security. Int. J. Comput. Appl. 2019, 182, 3–8. [Google Scholar] [CrossRef]
- Yang, H.; Lee, H.; Zo, H. User acceptance of smart home services: An extension of the theory of planned behavior. Ind. Manag. Data Syst. 2017, 117, 68–89. [Google Scholar] [CrossRef]
Country of Origin | |||||
---|---|---|---|---|---|
Smart Homes Attitudes | Russian Federation | Czech Republic | Germany | Poland | Slovakia |
Positive attitude | 44% | 58% | 75% | 62% | 53% |
Negative attitude | 29% | 12% | 14% | 18% | 14% |
Do not know | 27% | 30% | 11% | 20% | 33% |
Familiarity with the Smart Home Appliances | |||||
Smartphone | 95% | 90% | 96% | 95% | 89% |
Smart TV | 32% | 54% | 58% | 55% | 50% |
Voice assistants (e.g., Alexa) | 25% | 45% | 51% | 48% | 40% |
Smart lights | 13% | 34% | 46% | 41% | 29% |
Motion detectors | 10% | 30% | 38% | 34% | 23% |
Smart cameras | 48% | 21% | 26% | 24% | 17% |
Smart thermostat | 11% | 13% | 24% | 16% | 12% |
Smart window blinds | 4% | 11% | 19% | 17% | 10% |
N | 152 | 86 | 133 | 102 | 50 |
Stage 1 | Stage 2 | Stage 3 | Stage 4 | |||||
---|---|---|---|---|---|---|---|---|
Variable | B(SE) | Beta | B(SE) | B(SE) | B(SE) | Beta | B(SE) | Beta |
Gender | −0.054 (0.095) | −0.034 | 0.041 (0.094) | 0.032 | 0.043 (0.091) | 0.028 | −0.036 (0.085) | 0.013 |
Age | 0.009 (0.006) * | 0.223 * | 0.011 (0.004) ** | 0.237 ** | 0.012 (0.004) ** | 0.247 ** | 0.009 (0.004) ** | 0.121 ** |
Income | 0.063 (0.047) | 0.071 | 0.054 (0.046) | 0.069 | 0.043 (0.044) | 0.054 | 0.063 (0.042) | 0.069 |
Education | −0.007 (0.206) | −0.003 | −0.035 (0.204) | −0.021 | −0.032 (0.101) | −0.011 | 0.079 (0.101) | 0.030 |
Home size | 0.319 (0.098) | 0.229 | 0.322 (0.095) ** | 0.223 * | 0.268 (0.09) * | −0.096 * | 0.208 (0.086) | 0.068 |
Openness to SH | 0.427 (0.089) ** | 0.287 | 0.229 (0.089) | 0.077 | 0.101 (0.086) | 0.066 | ||
SH devices | 0.057 (0.059) | 0.054 | 0.046 (0.056) | 0.043 | 0.031 (0.053) | 0.021 | ||
Trust in SH | 0.076 (0.031) ** | 0.256 ** | 0.049 (0.031) * | 0.096 * | 0.035 (0.029) | 0.065 | ||
Familiarity with SH | −0.102 (0.093) | −0.058 | −0.092 (0.088) | −0.052 | ||||
Personal security | 0.069 (0.043) | 0.085 | 0.040 (0.041) | 0.062 | ||||
Positive attitude to SH | 0.544 (0.071) ** | 0.455 ** | 0.297 (0.075) ** | 0.258 ** | ||||
Negative attitude to SH | 0.024 (0.064) | 0.023 | 0.036 (0.050) | 0.032 | ||||
Tariffs flexibility | 0.520 (0.062) ** | 0.503 ** | ||||||
Utilities proofs | −0.053 (0.043) | −0.064 | ||||||
Sharing personal data | −0.022 (0.054) | −0.025 | ||||||
Constant | 3.979 (0.428) ** | 2.092 (0.556) * | 0.45 (0.656) | 0.327 (0.630) | ||||
R2 = 0.058 ** | R2 = 0.069 *** | R2 = 0.206 *** | R2 = 0.205 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strielkowski, W.; Kovaleva, O.; Efimtseva, T. Impacts of Digital Technologies for the Provision of Energy Market Services on the Safety of Residents and Consumers. Sustainability 2022, 14, 2934. https://doi.org/10.3390/su14052934
Strielkowski W, Kovaleva O, Efimtseva T. Impacts of Digital Technologies for the Provision of Energy Market Services on the Safety of Residents and Consumers. Sustainability. 2022; 14(5):2934. https://doi.org/10.3390/su14052934
Chicago/Turabian StyleStrielkowski, Wadim, Olga Kovaleva, and Tatiana Efimtseva. 2022. "Impacts of Digital Technologies for the Provision of Energy Market Services on the Safety of Residents and Consumers" Sustainability 14, no. 5: 2934. https://doi.org/10.3390/su14052934
APA StyleStrielkowski, W., Kovaleva, O., & Efimtseva, T. (2022). Impacts of Digital Technologies for the Provision of Energy Market Services on the Safety of Residents and Consumers. Sustainability, 14(5), 2934. https://doi.org/10.3390/su14052934