Changes in the Potential Distribution of Vanilla planifolia Andrews under Different Climate Change Projections in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Occurrence Data
2.2. Potential Distribution
2.3. Climate Change Projections
3. Results
3.1. Potential Distribution
3.2. Species Projections with Climate Change Scenarios
4. Discussion
4.1. Potential Distribution
4.2. Distribution Patterns of Vanilla planifolia as a Function of Climate Change Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altieri, M.A.; Nicholls, C.I. Agroecología y resiliencia al cambio climático: Principios y consideraciones metodológicas. Agroecología 2013, 8, 7–20. [Google Scholar]
- Zimmerer, K.S.; Haan, S. Agrobiodiversity and a sustainable food future. Nat. Plants 2017, 3, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Battisti, D.S.; Naylor, R.L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Taboada, M.A.; Busto, M.; Costantini, A.O.; Maggio, A.; Perin, A.; Pimentel, M.S.; Alfaro, M.A.; Pons-Ganddini, D.; Monterroso-Rivas, A.I.; Loboguerrero, A.M. Sector Agropecuario. In Adaptación Frente a los Riesgos del Cambio Climático en los Países Iberoamericanos—Informe RIOCCADAPT, 1st ed.; Moreno, J.M., Laguna-Defior, C., Barros, V., Calvo Buendía, E., Marengo, J.A., Oswald Spring, U., Eds.; McGraw-Hill: Madrid, España, 2020; pp. 237–290. [Google Scholar]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 485–533. [Google Scholar]
- Van Oort, P.A.; Zwart, S.J. Impacts of climate change on rice production in Africa and causes of simulated yield changes. Glob. Chang. Biol. 2018, 24, 1029–1045. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Liu, D.L.; O’Leary, G.J.; Asseng, S.; Macadam, I.; Lines-Kelly, R.; Yang, X.; Clark, A.; Crean, J.; Sides, T.; et al. Australian wheat production expected to decrease by the late 21st century. Glob. Chang. Biol. 2017, 24, 2403–2415. [Google Scholar] [CrossRef] [PubMed]
- Vincent, H.; Amri, A.; Castañeda-Álvarez, N.P.; Dempewolf, H.; Dulloo, E.; Guarino, L.; Hole, D.; Mba, C.; Toledo, A.; Maxted, N. Modeling of crop wild relative species identifies areas globally for in situ conservation. Commun. Biol. 2019, 2, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto-Arenas, M.A.; Dressler, R.L. A revision of the Mexican and Central American species of Vanilla Plumier ex Miller with a characterization of their ITS region of the nuclear ribosomal DNA. Lankesteriana 2010, 9, 285–354. [Google Scholar] [CrossRef]
- Pérez-Silva, A.; Günata, Z.; Lepoutre, J.P.; Odoux, E. New insight on the genesis and fate of odor- active compounds in vanilla beans (Vanilla planifolia G. Jackson) during traditional curing. Food Res. Int. 2011, 44, 2930–2937. [Google Scholar] [CrossRef]
- Lubinsky, P.; Bory, S.; Hernández-Hernández, J.; Kim, S.-C.; Gómez-Pompa, A. Origins and Dispersal of Cultivated Vanilla (Vanilla planifolia Jacks. [Orchidaceae]). Econ. Bot. 2008, 62, 127–138. [Google Scholar] [CrossRef]
- Soto-Arenas, M.A. Filogeografía y recursos genéticos de las vainillas de México; Instituto Chinoin AC, Comisión nacional para el conocimiento y uso de la biodiversidad: Mexico City, México, 1999. [Google Scholar]
- Flores-Jiménez, A.; Reyes López, D.; Jiménez García, D.; Romero Arenas, O.; Rivera Tapia, J.A.; Huerta Lara, M.; Pérez Silva, A. Diversidad de Vanilla spp. (Orchidaceae) y sus perfiles bioclimáticos en México. Rev. Biol. Trop. 2017, 65, 975–987. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Ruíz, J.; Herrera-Cabrera, B.E.; Delgado-Alvarado, A.; Salazar-Rojas, V.M.; Bustamante-González, Á.; Campos-Contreras, J.E.; Ramírez-Juárez, J. Distribución potencial y características geográficas de poblaciones silvestres de Vanilla planifolia (Orchidaceae) en Oaxaca, México. Rev. Biol. Trop. 2016, 64, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Convención Sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora (CITES). Apéndices I, II y III. Available online: https://cites.org/sites/default/files/esp/app/2015/S-Appendices-2015-02-15.pdf (accessed on 30 December 2021).
- Vega, M.; Hernández, M.; Herrera-Cabrera, B.E.; Wegier, A. Vanilla Planifolia (Amended Version of 2017 Assessment). The IUCN Red List of Threatened Species 2020: E.T103090930A172970359. Available online: https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T103090930A172970359.en (accessed on 7 February 2022).
- Food and Agriculture Organization of the United Nations (FAOSTAT). Food and Agriculture Data. Available online: http://faostat.fao.org/ (accessed on 30 September 2021).
- Villarreal-Manzo, L.A.; Herrera-Cabrera, B.E. Requerimiento hídrico en el sistema de producción vainilla (Vanilla planifolia Jacks. ex Andrews)-NARANJO (Citrus sinensis L.) en la región del totonacapan, Veracruz, México. Agroproductividad 2018, 11, 29–36. [Google Scholar]
- Pérez-Silva, A.; Nicolás-García, M.; Petit, T.; Dijoux, J.B.; Vivar-Vera, M.A.; Besse, P.; Grisoni, M. Quantification of the aromatic potential of ripe fruit of Vanilla planifolia (Orchidaceae) and several of its closely and distantly related species and hybrids. Eur. Food Res. Technol. 2021, 247, 1489–1499. [Google Scholar] [CrossRef]
- Salazar-Rojas, V.M.; Herrera-Cabrera, B.E.; Delgado-Alvarado, A.; Soto-Hernández, M.; Castillo-González, F.; Cobos-Peralta, M. Chemotypical variation in Vanilla planifolia Jack. (Orchidaceae) from the Puebla-Veracruz Totonacapan region. Genet. Resour. Crop Evol. 2012, 59, 875–887. [Google Scholar] [CrossRef]
- Villanueva-Viramontes, S.; Hernández-Apolinar, M.; Fernández-Concha, G.C.; Dorantes-Euán, A.; Dzib, G.R.; Castillo, J.M. Wild Vanilla planifolia and its relatives in the Mexican Yucatan Peninsula: Systematic analyses with ISSR and ITS. Bot. Sci. 2017, 95, 169–187. [Google Scholar] [CrossRef] [Green Version]
- Watteyn, C.; Fremout, T.; Karremans, A.P.; Huarcaya, R.P.; Bolaños, J.B.A.; Reubens, B.; Muys, B. Vanilla distribution modeling for conservation and sustainable cultivation in a joint land sparing/sharing concept. Ecosphere 2020, 11, 1–18. [Google Scholar] [CrossRef]
- Azofeifa-Bolaños, J.B.; Paniagua-Vásquez, A.; García-García, J.A. Importancia y desafíos de la conservación de Vanilla spp.(Orquidaceae) en Costa Rica. Agron. Mesoam. 2014, 25, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Menchaca, R.; Lozano Rodríguez, M. Vainilla, la orquídea que aromatiza al mundo. In Las Orquídeas de Veracruz, 1st ed.; Viccon Esquivel, J., Castañeda Zarate, M., Castro Cortes, R., Cetzal Ix, W., Eds.; Universidad Veracruzana: Xalapa, México; Veracruz, México, 2021; pp. 123–1333. [Google Scholar]
- Velázquez-Rosas, N.; Silva-Rivera, E.; Ruiz-Guerra, B.; Armenta-Montero, S.; González, J.T. Traditional Ecological Knowledge as a tool for biocultural landscape restoration in northern Veracruz, Mexico. Ecol. Soc. 2018, 23, 6. [Google Scholar] [CrossRef]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A.; NCEAS Predicting Species Distributions Working Group. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Austin, M.P.; Van Niel, K.P. Improving species distribution models for climate change studies: Variable selection and scale. J. Biogeogr. 2011, 28, 1–8. [Google Scholar] [CrossRef]
- Bede-Fazekas, Á.; Somodi, I. The way bioclimatic variables are calculated has impact on potential distribution models. Methods Ecol. Evol. 2020, 11, 1559–1570. [Google Scholar] [CrossRef]
- Feilhauer, H.; He, K.S.; Rocchini, D. Modeling species distribution using niche-based proxies derived from composite bioclimatic variables and MODIS NDVI. Remote Sens. 2012, 4, 2057–2075. [Google Scholar] [CrossRef] [Green Version]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, P.; Kessler, M. Climatologies at high resolution for the Earth land surface areas. Sci. Data 2017, 4, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Booth, T.H. Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral Ecol. 2018, 43, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Chun, J.H.; Lee, C.B.; Yoo, S.M. Shifts of geographic distribution of Pinus koraiensis based on climate change scenarios and GARP model. Korean J. Agric. For. Meteorol. 2015, 17, 348–357. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Instituto Nacional de Estadística y Geografía (INEGI). Catálogo Único de Claves de Áreas Geoestadísticas Estatales, Municipales y Localidades. 2021. Available online: https://www.inegi.org.mx/app/ageeml/ (accessed on 20 February 2021).
- Soberón, J.; Peterson, A.T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv. Inf. 2005, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the world: A new map of life on Earth. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Instituto Nacional de Estadística y Geografía (INEGI). Carta de Uso del Suelo y Vegetación. Serie V, 1:250 000; INEGI: Aguascalientes, México, 2016.
- Instituto Nacional de Estadística y Geografía (INEGI). Conjunto de Datos Vectoriales Edafológico, Serie II, 1:250000; INEGI: Aguascalientes, México, 2014.
- Comisión Nacional de Biodiversidad (CONABIO). Regímenes de Humedad del suelo, 1:4000000; CONABIO: Mexico City, México, 2002. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; García-Marquéz, J.R.; Gruber, B.; Lafourcade, B.; Leitäo, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Baldwin, R.A. Use of maximum entropy modeling in wildlife research. Entropy 2009, 11, 854–866. [Google Scholar] [CrossRef]
- Fernández, I.C.; Morales, N.S. One-class land-cover classification using MaxEnt: The effect of modelling parameterization on classification accuracy. PeerJ 2019, 7, e7016. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Narayani, B. Tool for Partial-ROC; Biodiversity Institute: Kansas, KS, USA, 2008. [Google Scholar]
- Thuiller, W.; Lavorel, S.; Araújo, M.B.; Sykes, M.T.; Prentice, I.C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 8245–8250. [Google Scholar] [CrossRef] [Green Version]
- Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Kattsov, V.; Pitman, A.; Shukla, J.; Srinivasan, J.; et al. Climate models and their evaluation. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 589–662. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Zimmerer, K.S. Biological diversity in agriculture and global change. Annu. Rev. Environ. Resour. 2010, 35, 137–166. [Google Scholar] [CrossRef] [Green Version]
- Sultan, B.; Gaetani, M. Agriculture in West Africa in the twenty-first century: Climate change and impacts scenarios, and potential for adaptation. Front. Plant Sci. 2016, 7, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Santillán-Fernández, A.; Trejo Cabrera, M.; Martínez Sánchez, A.; Martínez Ángel, L.; Vásquez Bautista, N.; Mejía, S.L. Potencial productivo de Vanilla planifolia Jacks en el Totonacapan, México, mediante técnicas geográficas. Rev. Mex. Cienc. Agríc. 2019, 10, 789–802. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Hernández, H.; Trinidad-García, K.L.; Herrera-Cabrera, B.E. Caracterización del ambiente de los vainillales y área potencial para su cultivo en la Huasteca Potosina. Biotecnia 2018, 20, 49–57. [Google Scholar] [CrossRef]
- Castelan-Culebro, F. Efecto de la temperatura sobre la germinación in vitro y crecimiento del tubo polínico en polen de Vanilla planifolia Jacks. ex Andrews (Orchidaceae). Bachelor’s Thesis, Universidad Veracruzana, Xalapa, Veracruz, México, 2015. [Google Scholar]
- Trinidad García, K.L.; Reyes Hernández, H.; Martínez Salazar, R.I.; Galarza Rincón, E. Distribución de Vanilla planifolia Jacks. ex Andrews y acciones para su conservación en la Huasteca Potosina. Rev. Mex. Cienc. For. 2019, 10, 108–134. [Google Scholar] [CrossRef] [Green Version]
- Barrera-Rodríguez, A.I.; Herrera-Cabrera, B.E.; Jaramillo-Villanueva, J.L.; Escobedo-Garrido, J.S.; Bustamante-González, Á. Caracterización de los sistemas de producción de vainilla (Vanilla planifolia A.) bajo naranjo y en malla sombra en el Totonacapan. Trop. Subtrop. Agroecosyst. 2009, 10, 199–212. [Google Scholar]
- Hernández-Hernández, J. Mexican vanilla production. In Handbook of Vanilla Science and Technology, 2nd ed.; Havkin-Frenkel, D., Belanger, F.C., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 3–25. [Google Scholar]
- Schlüter, P.M.; Arenas, M.A.; Harris, S.A. Genetic variation in Vanilla planifolia (Orchidaceae). Econ. Bot. 2007, 61, 328. [Google Scholar] [CrossRef]
- Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). In Planeación Agrícola Nacional 2017–2030. Vainilla Mexicana; SAGARPA: Ciudad de México, México, 2017; pp. 1–11.
- Borbolla-Pérez, V.; Iglesias-Andreu, L.G.; Luna-Rodríguez, M.; Octavio-Aguilar, P. Perceptions regarding the challenges and constraints faced by smallholder farmers of vanilla in Mexico. Environ. Dev. Sustain. 2017, 19, 2421–2441. [Google Scholar] [CrossRef]
- De Guzman, C.C.; Zara, R.R. Vanilla. In Handbook of Herbs and Spices, 2nd ed.; Peter, K.V., Ed.; Woodhead Publishing: Cambridge, UK, 2012; Volume 1, pp. 547–590. [Google Scholar]
- Montagnini, F. Función de los sistemas agroforestales en la adaptación y mitigación del cambio climático. In Sistemas Agroforestales: Funciones Productivas, Socioeconómicas y Ambientales, 1st ed.; Montagnini, F., Somarriba, E., Murgueitio, E., Fassola, H., Eibl, B., Eds.; CATIE-CIPAV: Cali, Colombia, 2015; pp. 269–298. [Google Scholar]
- Rapidel, B.; Allinne, C.; Cerdán, C.; Meylan, L.; De Melo, E.; Filho, V.; Avelino, J. Efectos ecológicos y productivos del asocio de árboles de sombra con café en sistemas agroforestales. In Sistemas Agroforestales: Funciones Productivas, Socioeconómicas y Ambientales, 1st ed.; Montagnini, F., Somarriba, E., Murgueitio, E., Fassola, H., Eibl, B., Eds.; CATIE-CIPAV: Cali, Colombia, 2015; pp. 5–20. [Google Scholar]
- Bory, S.; Grisoni, M.; Duval, M.F.; Besse, P. Biodiversity and preservation of vanilla: Present state of knowledge. Genet. Resour. Crop Evol. 2008, 55, 551–571. [Google Scholar] [CrossRef]
- Herrera-Cabrera, B.E.; Salazar-Rojas, V.M.; Delgado-Alvarado, A.; Contreras, J.; Contreras, C.; Cervantes-Vargas, J. Use and conservation of Vanilla planifolia J. in the Totonacapan Region, México. Eur. J. Environ. Sci. 2012, 2, 43–50. [Google Scholar] [CrossRef] [Green Version]
- López Paniagua, J.E.; Bolaños Méndez, M.; González Ríos, A. Conservación Comunitaria en la Chinantla. In Pasado Presente y Futuro de Áreas Voluntarias Para la Coservación; Grupo Mesófilo, Asociación Civil: Oaxaca, México, 2017. [Google Scholar]
- Bray, D.B.; Duran, E.; Anta, S.; Martin, G.J.; Mondragon, F. A new conservation and development frontier community protected areas in Oaxaca Mexico. Curr. Conserv. 2008, 22, 7–8. [Google Scholar]
- Secretaria del Bienestar. Programa Sembrando Vida. Available online: https://www.gob.mx/bienestar/acciones-y-programas/programa-sembrando-vida (accessed on 17 November 2021).
- Nicholls, C.I.; Henao, A.; Altieri, M.A. Agroecología y el diseño de sistemas agrícolas resilientes al cambio climático. Agroecología 2015, 10, 7–31. [Google Scholar]
Bioclimatic and Environmental Variables | Acronym | Contribution % | Permutation Importance |
---|---|---|---|
Isothermality | bio3 | 9.4 | 0.7 |
Temperature Seasonality (sd×100) | bio4 | 0.0 | 0.0 |
Max Temperature of Warmest Month | bio5 | 0.0 | 0.0 |
Temperature Annual Range (bio5-bio6) | bio7 | 5.8 | 4.1 |
Mean Temperature of Driest Quarter | bio9 | 34 | 47.2 |
Mean Temperature of Warmest Quarter | bio10 | 6.8 | 24 |
Annual Precipitation | bio12 | 0.0 | 0.0 |
Precipitation of Wettest Month | bio13 | 0.5 | 0.0 |
Precipitation of Driest Month | bio14 | 24.6 | 4.0 |
Precipitation Seasonality | bio15 | 0.8 | 7.9 |
Precipitation Wettest Quarter | bio16 | 0.0 | 0.0 |
Precipitation Warmest Quarter | bio18 | 0.5 | 0.1 |
Altitude | Alt | 2.3 | 2.8 |
Soil Type | Soil | 9.4 | 7.2 |
Soil Moisture | Humsoil | 0.8 | 0.4 |
Land use and Vegetation | Land Use | 0.0 | 0.0 |
Forest Cover | Treecover | 5.1 | 1.7 |
Variables | Current area | RCP4.5 2050 | RCP4.5 2070 | RCP8.5 2050 | RCP8.5 2070 |
---|---|---|---|---|---|
AUC | 0.96 | 0.95 | 0.95 | 0.96 | 0.95 |
Potential area (>60%, km2) | 9308.30 | 8594.71 (−7.7%) | 8380.63 (−10.0%) | 8411.24 (−9.6%) | 7698.31 (−17.3%) |
Potential area (>80%, km2) | 5059.82 | 4979.78 (−1.6%) | 4834.73 (−4.4%) | 4544.16 (−10.2%) | 4497.32 (−11.4%) |
Important variables (contribution >10%) | Mean temperature of driest quarter, precipitation of driest month | Mean temperature of driest quarter, precipitation of driest month, soil type, isothermality | Mean temperature of driest quarter, precipitation of driest month, soil type, isothermality, Max temperature of warmest month | Mean temperature of driest quarter, precipitation of driest month, soil type, isotermality | Mean temperature of driest quarter, precipitation of driest month, soil type |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armenta-Montero, S.; Menchaca-García, R.; Pérez-Silva, A.; Velázquez-Rosas, N. Changes in the Potential Distribution of Vanilla planifolia Andrews under Different Climate Change Projections in Mexico. Sustainability 2022, 14, 2881. https://doi.org/10.3390/su14052881
Armenta-Montero S, Menchaca-García R, Pérez-Silva A, Velázquez-Rosas N. Changes in the Potential Distribution of Vanilla planifolia Andrews under Different Climate Change Projections in Mexico. Sustainability. 2022; 14(5):2881. https://doi.org/10.3390/su14052881
Chicago/Turabian StyleArmenta-Montero, Samaria, Rebeca Menchaca-García, Araceli Pérez-Silva, and Noé Velázquez-Rosas. 2022. "Changes in the Potential Distribution of Vanilla planifolia Andrews under Different Climate Change Projections in Mexico" Sustainability 14, no. 5: 2881. https://doi.org/10.3390/su14052881