# DC Energy Hubs for Integration of Community DERs, EVs, and Subway Systems

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Electrified Transportation

#### 2.1. Subway

#### 2.2. Electric Vehicles

## 3. DC Energy Hub

#### 3.1. Motivation

#### 3.2. Third Rail Integration

#### 3.3. Topology

## 4. Control Framework

## 5. Results and Discussion

_{RMS}, with a peak of about 170-V.

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Thirugnanam, K.; Moursi, M.S.E.; Khadkikar, V.; Zeineldin, H.H.; Hosani, M.A. Energy Management of Grid Interconnected Multi-Microgrids Based on P2P Energy Exchange: A Data Driven Approach. IEEE Trans. Power Syst.
**2020**, 36, 1546–1562. [Google Scholar] [CrossRef] - Vision 2030. Available online: https://www.vision2030.gov.sa/ (accessed on 22 May 2021).
- Jafari, M.; Malekjamshidi, Z.; Zhu, J.; Khooban, M. A Novel Predictive Fuzzy Logic-Based Energy Management System for Grid-Connected and Off-Grid Operation of Residential Smart Microgrids. IEEE J. Emerg. Sel. Top. Power Electron.
**2018**, 8, 1391–1404. [Google Scholar] [CrossRef] - Habeeb, S.A.; Tostado-Véliz, M.; Hasanien, H.M.; Turky, R.A.; Meteab, W.K.; Jurado, F. DC Nanogrids for Integration of Demand Response and Electric Vehicle Charging Infrastructures: Appraisal, Optimal Scheduling and Analysis. Electronics
**2021**, 10, 2484. [Google Scholar] [CrossRef] - Neto, P.J.d.S.; Barros, T.A.d.S.; Silveira, J.P.C.; Filho, E.R.; Vasquez, J.C.; Guerrero, J.M. Power Management Strategy Based on Virtual Inertia for DC Microgrids. IEEE Trans. Power Electron.
**2020**, 35, 12472–12485. [Google Scholar] [CrossRef] - Khodaparastan, M.; Brandauer, W.; Mohamed, A. Recuperation of Regenerative Braking Energy in Electric Rail Transit Systems. IEEE Trans. Intell. Transp. Syst.
**2019**, 20, 2831–2847. [Google Scholar] [CrossRef] [Green Version] - Mohamed, B.; Arboleya, P.; González-Morán, C. Modified Current Injection Method for Power Flow Analysis in Heavy-Meshed DC Railway Networks with Non-Reversible Substations. IEEE Trans. Veh. Technol.
**2017**, 66, 7688–7696. [Google Scholar] [CrossRef] - Mohamed, A.; Reid, A.; Lamb, T. White Paper on Wayside Energy Storage for Regenerative Braking Energy Recuperation in the Electric Rail System; Consolidated Edison, Inc.: New York, NY, USA, 2018; Available online: https://www.coned.com/-/media/files/coned/documents/our-energy-future/our-energy-projects/regenerative-braking-energy-recuperation.pdf (accessed on 22 May 2021).
- Brenna, M.; Foiadelli, F.; Kaleybar, H.J. The Evolution of Railway Power Supply Systems toward Smart Microgrids. IEEE Electrif. Mag.
**2020**, 8, 12–23. [Google Scholar] [CrossRef] - Wu, N.; Wang, H.; Yin, L.; Yuan, X.; Leng, X. Application Conditions of Bounded Rationality and a Microgrid Energy Management Control Strategy Combining Real-Time Power Price and Demand-Side Response. IEEE Access
**2020**, 8, 227327–227339. [Google Scholar] [CrossRef] - Zeinal-Kheiri, S.; Shotorbani, A.M.; Mohammadi-Ivatloo, B. Real-time Energy Management of Grid-connected Microgrid with Flexible and Delay-tolerant Loads. J. Mod. Power Syst. Clean Energy
**2020**, 8, 1196–1207. [Google Scholar] [CrossRef] - Nejabatkhah, F.; Li, Y.W.; Tian, H. Power Quality Control of Smart Hybrid AC/DC Microgrids: An Overview. IEEE Access
**2019**, 7, 52295–52318. [Google Scholar] [CrossRef] - Starke, M.; Tolbert, L.M.; Ozpineci, B. AC vs DC Distribution: A Loss Comparison. In Proceedings of the 2008 IEEE/PES Transmission and Distribution Conference and Exposition, Chicago, IL, USA, 21–24 April 2008; pp. 1–7. [Google Scholar] [CrossRef]
- Du, F.; He, J.H.; Yu, L.; Li, M.X.; Bo, Z.Q.; Klimek, A. Modeling and Simulation of Metro DC Traction System with Different Motor Driven Trains. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Patil, M.; Deshpande, A. Design and Simulation of Perturb and Observe Maximum Power Point Tracking Using MATLAB/Simulink. In Proceedings of the 2015 International Conference on Industrial Instrumentation and Control (ICIC), Pune, India, 28–30 May 2015; pp. 1345–1349. [Google Scholar] [CrossRef]

**Figure 24.**An X-axis magnified view of the voltage profiles of the AC grid side of the inverter after sizing up.

**Figure 26.**An X-axis magnified view of the current profiles of the AC grid side of the inverter after sizing up.

Symbol | Quantity | Value |
---|---|---|

C_{F} | Capacitive Filter’s Capacitance | 1 mF |

R_{Rec} | Traction Rectifier’s Internal Resistance | 1.08 mΩ |

R_{3rd} | Third Rail’s Resistance | 25 mΩ |

R_{Run} | Running Rail’s Resistance | 12 mΩ |

R_{Aux} | AC Auxiliary Load’s Resistance | 40 Ω |

L_{F} | RL Filter’s Inductance | 3 mH |

R_{F} | RL Filter’s Resistance | 1 Ω |

C_{DC} | DC Bus Capacitor’s Capacitance | 12 mF |

R_{DC} | DC Bus Resistor’s Resistance | 60 Ω |

C_{PV1} | Boost Converter Capacitor 1′s Capacitance | 0.27 mF |

C_{PV2} | Boost Converter Capacitor 2′s Capacitance | 0.27 mF |

L_{PV} | Boost Converter Inductor’s Inductance | 8.5 mH |

R_{Batt} | Battery’s Internal Resistance | 5 mΩ |

L_{L} | Buck-Boost Converter Inductor’s Inductance | 0.8 mH |

C_{L} | Buck-Boost Converter Capacitor’s Capacitance | 1.2 mF |

R_{L} | EV Load’s Equivalent Resistance | 20 Ω |

K_{p} | Buck-Boost PI Controller’s Proportional Gain Value | 0.001 |

K_{i} | Buck-Boost PI Controller’s Integral Gain Value | 0.1 |

Kp_{PIdc} | PI_{DC} Controller’s Proportional Gain Value | 0.1 |

Ki_{PIdc} | PI_{DC} Controller’s Integral Gain Value | 1 |

Kp_{PIIq} | PI_{Iq} Controller’s Proportional Gain Value | 30 |

Ki_{PIIq} | PI_{Iq} Controller’s Integral Gain Value | 240 |

Kp_{PIId} | PI_{Id} Controller’s Proportional Gain Value | 30 |

Ki_{PIId} | PI_{Id} Controller’s Integral Gain Value | 240 |

Seq | Repeating Sequence 1′s Frequency | 10 kHz |

Seq | Repeating Sequence 1′s Range | [0, 1] |

Seq_{2} | Repeating Sequence 2′s Frequency | 10 kHz |

Seq_{2} | Repeating Sequence 2′s Range | [−1, 1] |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ahmad, R.; Mohamed, A.A.A.; Rezk, H.; Al-Dhaifallah, M.
DC Energy Hubs for Integration of Community DERs, EVs, and Subway Systems. *Sustainability* **2022**, *14*, 1558.
https://doi.org/10.3390/su14031558

**AMA Style**

Ahmad R, Mohamed AAA, Rezk H, Al-Dhaifallah M.
DC Energy Hubs for Integration of Community DERs, EVs, and Subway Systems. *Sustainability*. 2022; 14(3):1558.
https://doi.org/10.3390/su14031558

**Chicago/Turabian Style**

Ahmad, Rohama, Ahmed Ali A. Mohamed, Hegazy Rezk, and Mujahed Al-Dhaifallah.
2022. "DC Energy Hubs for Integration of Community DERs, EVs, and Subway Systems" *Sustainability* 14, no. 3: 1558.
https://doi.org/10.3390/su14031558