Assessment of Climate Change Impact on Snowmelt Runoff in Himalayan Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Snowmelt Runoff Model (SRM)
2.3. Input Data and Parameter
2.4. Snow-Cover Estimation
2.5. Calibration and Validation of Model
2.6. Model Accuracy
2.7. Climate Change Impact Detection
- Scenario A: 20% increase in precipitation
- Scenario B: 2 °C rise in temperature
- Scenario C: 2 °C rises in temperature and 20% increase in snow cover
3. Results and Discussion
3.1. Meteorological Data Trends
3.1.1. Monthly, Seasonal and Annual Minimum Trends
3.1.2. Monthly, Seasonal and Annual Maximum Trends for Temperature
3.1.3. Monthly, Seasonal and Annual Trends for Precipitation
3.2. Snow Cover
3.3. Model Calibration
3.4. Model Validation
3.5. Climate Change Impact on Streamflow
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeelani, G.; Bhat, N.A.; Shivanna, K. Use of δ18O tracer to identify stream and spring origins of a mountainous catchment: A case study from Liddar watershed, Western Himalaya, India. J. Hydrol. 2010, 393, 257–264. [Google Scholar] [CrossRef]
- Jeelani, G.; Feddema, J.J.; van der Veen, C.J.; Stearns, L. Role of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climate. Water Resour. Res. 2012, 48, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.P.; Thakur, P.K.; Nikam, B.R.; Garg, V. Integrated approach for snowmelt runoff estimation using temperature index model, remote sensing and GIS. Curr. Sci. 2014, 106, 397–407. [Google Scholar] [CrossRef]
- Kushwaha, N.L.; Bhardwaj, A. Hydrologic response of Takarla-Ballowal watershed in Shivalik foot-hills based on morphometric analysis using Remote Sensing and GIS. Indian Water Resour. Soc. 2016, 36, 17–25. [Google Scholar]
- Jain, S.K.; Goswami, A.; Saraf, A.K. Snowmelt runoff modelling in a Himalayan basin with the aid of satellite data. Int. J. Remote Sens. 2010, 31, 6603–6618. [Google Scholar] [CrossRef]
- Naser, S. Modelling and isotopic studies for assessment of contribution of snow/glacier melt in Parvati Basin, Himachal Pradesh. Am. J. Geol. Ecol 2013, 3, 2568–5449. [Google Scholar]
- Mote, P.W.; Hamlet, A.F.; Clark, M.P.; Lettenmaier, D.P. Declining Mountain Snowpack in Western North America. Bull. Am. Meteorol. Soc. 2005, 86, 39–50. [Google Scholar] [CrossRef]
- Stewart, I.T. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process. 2009, 23, 78–94. [Google Scholar] [CrossRef]
- Knowles, N.; Dettinger, M.D.; Cayan, D.R. Trends in Snowfall versus Rainfall in the Western United States. J. Clim. 2006, 19, 4545–4559. [Google Scholar] [CrossRef] [Green Version]
- Ahluwalia, R.S.; Rai, S.P.; Jain, S.K.; Kumar, B.; Dobhal, D.P. Assessment of snowmelt runoff modelling and isotope analysis: A case study from the western Himalaya, India. Ann. Glaciol. 2013, 54, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Rood, S.B.; Pan, J.; Gill, K.M.; Franks, C.G.; Samuelson, G.M.; Shepherd, A. Declining summer flows of Rocky Mountain rivers: Changing seasonal hydrology and probable impacts on floodplain forests. J. Hydrol. 2008, 349, 397–410. [Google Scholar] [CrossRef]
- Maurer, E.P.; Rhoads, J.D.; Dubayah, R.O.; Lettenmaier, D.P. Evaluation of the snow-covered area data product from MODIS. Hydrol. Process. 2003, 17, 59–71. [Google Scholar] [CrossRef]
- Shekhar, M.S.; Chand, H.; Kumar, S.; Srinivasan, K.; Ganju, A. Climate-change studies in the western Himalaya. Ann. Glaciol. 2010, 51, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Bhutiyani, M.R.; Kale, V.S.; Pawar, N.J. Changing streamflow patterns in the rivers of northwestern Himalaya: Implications of global warming in the 20th century. Curr. Sci. 2008, 95, 618–626. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., Dasgupta, P., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 9291691437. [Google Scholar]
- Wang, S.; Zhang, T. Glacial lakes change and current status in the central Chinese Himalayas from 1990 to 2010. J. Appl. Remote Sens. 2013, 7, 073459. [Google Scholar] [CrossRef]
- Tekeli, A.E.; Akyürek, Z.; Arda Şorman, A.; Şensoy, A.; Ünal Şorman, A. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens. Environ. 2005, 97, 216–230. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Rafiq, M.; Rashid, I. Spatio-temporal variation of land surface temperature and temperature lapse rate over mountainous Kashmir Himalaya. J. Mt. Sci. 2018, 15, 563–576. [Google Scholar] [CrossRef]
- Bales, R.C.; Molotch, N.P.; Painter, T.H.; Dettinger, M.D.; Rice, R.; Dozier, J. Mountain hydrology of the western United States. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Wagener, T.; Wheater, H.; Gupta, H.V. Rainfall-Runoff Modelling in Gauged and Ungauged Catchments; World Scientific: London, UK, 2004; ISBN 1860944663. [Google Scholar]
- Tanmoyee, B.; V, R.P.; Abdul, H. Climate Change Impact on Snowmelt Runoff Modelling for Alaknanda River Basin. J. Environ. Earth Sci. 2015, 5, 139–150. [Google Scholar]
- Singh, V.P.; Woolhiser, D.A. Mathematical Modeling of Watershed Hydrology. J. Hydrol. Eng. 2002, 7, 270–292. [Google Scholar] [CrossRef] [Green Version]
- Wheater, H.S. Modelling hydrological processes in arid and semi-arid areas: An introduction to the workshop. Hydrol. Model. Arid. Semi-Arid Areas 2008, 1–20. [Google Scholar] [CrossRef]
- Martinec, J.; Rango, A.; Roberts, R. Snowmelt Runoff Model (SRM) User’s Manual: Updated Edition for Windows (WinSRM Version 1.11); New Mexico State University: Las Cruces, Mexico, 2007. [Google Scholar]
- Javadinejad, S.; Dara, R.; Jafary, F. Climate change scenarios and effects on snowmelt runoff. Civ. Eng. J. 2020, 6, 1715–1725. [Google Scholar] [CrossRef]
- Fuladipanah, M.; Jorabloo, M. The estimation of snowmelt runoff using SRM case study (Gharasoo Basin, Iran). World Appl. Sci. J. 2012, 17, 433–438. [Google Scholar]
- Kaul, M.N. Glacial and Fluvial Geomorphology of Western Himalaya: Liddar Valley; Concept Publishing Company: New Delhi, India, 1990; ISBN 8170222443. [Google Scholar]
- Malik, M.I.; Bhat, M.S. Integrated Approach for Prioritizing Watersheds for Management: A Study of Lidder Catchment of Kashmir Himalayas. Environ. Manage. 2014, 54, 1267–1287. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Cheng, G. A test of Snowmelt Runoff Model (SRM) for the Gongnaisi River basin in the western Tianshan Mountains, China. Chin. Sci. Bull. 2003, 48, 2253–2259. [Google Scholar] [CrossRef]
- Yu, M.; Chen, X.; Li, L.; Bao, A.; de la Paix, M.J. Incorporating accumulated temperature and algorithm of snow cover calculation into the snowmelt runoff model. Hydrol. Process. 2013, 27, 3589–3595. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P.; de Jong, S.M.; Bierkens, M.F.P. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Neppel, L.; Ahmad, B. Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. J. Hydrol. 2011, 409, 104–117. [Google Scholar] [CrossRef]
- Georgievsky, M. V Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images. Environ. Res. Lett. 2009, 4, 45017. [Google Scholar] [CrossRef] [Green Version]
- Harshburger, B.J.; Walden, V.P.; Humes, K.S.; Moore, B.C.; Blandford, T.R.; Rango, A. Generation of Ensemble Streamflow Forecasts Using an Enhanced Version of the Snowmelt Runoff Model1. JAWRA J. Am. Water Resour. Assoc. 2012, 48, 643–655. [Google Scholar] [CrossRef]
- Rasouli, H.; Kayastha, R.B.; Bhattarai, B.C.; Shrestha, A.; Arian, H.; Armstrong, R. Estimation of Discharge From Upper Kabul River Basin, Afghanistan Using the Snowmelt Runoff Model. J. Hydrol. Meteorol. 2016, 9, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Vafakhah, M.; Nouri, A.; Alavipanah, S.K. Snowmelt-runoff estimation using radiation SRM model in Taleghan watershed. Environ. Earth Sci. 2015, 73, 993–1003. [Google Scholar] [CrossRef]
- Senzeba, K.T.; Bhadra, A.; Bandyopadhyay, A. Snowmelt runoff modelling in data scarce Nuranang catchment of eastern Himalayan region. Remote Sens. Appl. Soc. Environ. 2015, 1, 20–35. [Google Scholar] [CrossRef]
- Gurung, A.; Kayastha, R.B.; Shrestha, A. Estimation of Discharge of Langtang River, Nepal using Snowmelt Runoff Model. In Participatory Community Assessment for Priority Problem Diagnosis in Bajura District, Nepal: What Matters Most–Poverty or Climate Change? Utah State University: Logan, UT, USA, 2015; pp. 199–204. Available online: https://www.researchgate.net/profile/Lam-Ya-Mostaque/publication/328575672_Climate_Change_Induced_Migration_Impact_on_'Slumaisation'/links/5d7a0bf74585151ee4af7794/Climate-Change-Induced-Migration-Impact-on-Slumaisation.pdf#page=213 (accessed on 12 September 2021).
- Xie, S.; Du, J.; Zhou, X.; Zhang, X.; Feng, X.; Zheng, W.; Li, Z.; Xu, C.-Y. A progressive segmented optimization algorithm for calibrating time-variant parameters of the snowmelt runoff model (SRM). J. Hydrol. 2018, 566, 470–483. [Google Scholar] [CrossRef]
- Hayat, H.; Akbar, T.A.; Tahir, A.A.; Hassan, Q.K.; Dewan, A.; Irshad, M. Simulating Current and Future River-Flows in the Karakoram and Himalayan Regions of Pakistan Using Snowmelt-Runoff Model and RCP Scenarios. Water 2019, 11, 761. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Li, L.; Chen, J.; Xu, C.-Y.; Xia, J.; Chen, H.; Liu, J. Parameter Uncertainty of a Snowmelt Runoff Model and Its Impact on Future Projections of Snowmelt Runoff in a Data-Scarce Deglaciating River Basin. Water 2019, 11, 2417. [Google Scholar] [CrossRef] [Green Version]
- Karimi, H.; Zeinivand, H.; Tahmasebipour, N.; Haghizadeh, A.; Miryaghoubzadeh, M. Comparison of SRM and WetSpa models efficiency for snowmelt runoff simulation. Environ. Earth Sci. 2016, 75, 1–16. [Google Scholar] [CrossRef]
- Nourani, V.; Afkhaminia, A.; Andaryani, S.; Zhang, Y. Multi-station calibration strategy for evaluation and sensitivity analysis of the snowmelt runoff model using MODIS satellite images. Hydrol. Res. 2021, 52, 1389–1404. [Google Scholar] [CrossRef]
- Siemens, K.; Dibike, Y.; Shrestha, R.R.; Prowse, T. Runoff Projection from an Alpine Watershed in Western Canada: Application of a Snowmelt Runoff Model. Water 2021, 13, 1199. [Google Scholar] [CrossRef]
- Yi, Y.; Liu, S.; Zhu, Y.; Wu, K.; Xie, F.; Saifullah, M. Spatiotemporal heterogeneity of snow cover in the central and western Karakoram Mountains based on a refined MODIS product during 2002–2018. Atmos. Res. 2021, 250, 105402. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Martinec, J. Snowmelt-runoff model for stream flow forecasts. Hydrol. Res. 1975, 6, 145–154. [Google Scholar] [CrossRef]
- Butt, M.J.; Bilal, M. Application of snowmelt runoff model for water resource management. Hydrol. Process. 2011, 25, 3735–3747. [Google Scholar] [CrossRef]
- Li, X.; Williams, M.W. Snowmelt runoff modelling in an arid mountain watershed, Tarim Basin, China. Hydrol. Process. 2008, 22, 3931–3940. [Google Scholar] [CrossRef]
- Kushwaha, N.L.; Rajput, J.; Elbeltagi, A.; Elnaggar, A.Y.; Sena, D.R.; Vishwakarma, D.K.; Mani, I.; Hussein, E.E. Data Intelligence Model and Meta-Heuristic Algorithms-Based Pan Evaporation Modelling in Two Different Agro-Climatic Zones: A Case Study from Northern India. Atmosphere 2021, 12, 1654. [Google Scholar] [CrossRef]
- Vishwakarma, D.K.; Pandey, K.; Kaur, A.; Kushwaha, N.L.; Kumar, R.; Ali, R.; Elbeltagi, A.; Kuriqi, A. Methods to estimate evapotranspiration in humid and subtropical climate conditions. Agric. Water Manag. 2022, 261, 107378. [Google Scholar] [CrossRef]
- Modeling of Stage-Discharge Using Back Propagation ANN-, ANFIS-, and WANN-based Computing Techniques. Available online: https://assets.researchsquare.com/files/rs-696059/v1_covered.pdf?c=1637668418 (accessed on 12 September 2021).
- Singh, P.; Kumar, N. Effect of orography on precipitation in the western Himalayan region. J. Hydrol. 1997, 199, 183–206. [Google Scholar] [CrossRef]
- Prasad, V.H.; Roy, P.S. Estimation of Snowmelt Runoff in Beas Basin, India. Geocarto Int. 2005, 20, 41–47. [Google Scholar] [CrossRef]
- Cannone, N.; Wagner, D.; Hubberten, H.W.; Guglielmin, M. Biotic and abiotic factors influencing soil properties across a latitudinal gradient in Victoria Land, Antarctica. Geoderma 2008, 144, 50–65. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Huang, Y.; Chen, X.; Li, Y.; Bao, A. Modelling Snowmelt Runoff under Climate Change Scenarios in an Ungauged Mountainous Watershed, Northwest China. Math. Probl. Eng. 2013, 2013, 808565. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Gan, T.Y.; Xie, J.; Wang, N.; Kuo, C.C. Historical and potential changes of precipitation and temperature of Alberta subjected to climate change impact: 1900–2100. Theor. Appl. Climatol. 2017, 127, 725–739. [Google Scholar] [CrossRef]
- Singh, D.; Jain, S.K.; Gupta, R.D. Statistical downscaling and projection of future temperature and precipitation change in middle catchment of Sutlej River Basin, India. J. Earth Syst. Sci. 2015, 124, 843–860. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Degree-day factor | 0.5 |
Runoff coefficient (rain) | 0.1–0.4 |
Runoff coefficient (snow) | 0.1–0.4 (October–February) |
0.5–0.7 (March–September) | |
Temperature lapse rate (°C/100 m) | 0.44 |
Critical Temperature (°C) | 0.8 |
Lag Time (hours) | |
Recession Coefficient | 18 |
X-Coefficient | 1.03 and 1.04 |
Y-Coefficient | 0.01 and 0.03 |
Time Series | Mann–Kendall Trend Statistics | ||
---|---|---|---|
Test Z | Significance Level | Sen’s Slope Estimate | |
January | −0.568 | −0.018 | |
February | −0.511 | −0.010 | |
March | −1.051 | −0.019 | |
April | −0.682 | −0.008 | |
May | −1.818 | + | −0.035 |
June | −1.463 | −0.037 | |
July | −1.647 | + | −0.033 |
August | −1.221 | −0.023 | |
September | −2.414 | * | −0.039 |
October | −1.108 | −0.031 | |
November | −0.795 | −0.015 | |
December | −2.429 | * | −0.068 |
Annual | −3.210 | ** | −0.028 |
Spring | −0.852 | −0.010 | |
Summer | −2.159 | * | −0.030 |
Autumn | −2.159 | * | −0.030 |
Winter | −1.619 | −0.022 |
Time Series | Mann–Kendall Trend Statistics | ||
---|---|---|---|
Test Z | Significance Level | Sen’s Slope Estimate | |
January | 1.392 | 0.085 | |
February | 0.483 | 0.013 | |
March | 2.386 | * | 0.089 |
April | 0.966 | 0.027 | |
May | 1.023 | 0.041 | |
June | −0.341 | −0.008 | |
July | 1.591 | 0.035 | |
August | 1.846 | + | 0.034 |
September | 0.312 | 0.011 | |
October | 1.974 | * | 0.066 |
November | −0.852 | −0.028 | |
December | 1.818 | + | 0.042 |
Annual | 1.960 | + | 0.033 |
Spring | 2.215 | * | 0.058 |
Summer | 1.562 | 0.024 | |
Autumn | 0.738 | 0.015 | |
Winter | 1.591 | 0.055 |
Time Series | Mann–Kendall Trend Statistics | ||
---|---|---|---|
Test Z | Significance Level | Sen’s Slope Estimate | |
January | 1.591 | 1.504 | |
February | 1.179 | 0.748 | |
March | −0.880 | −0.900 | |
April | 0.852 | 0.894 | |
May | −0.852 | −0.509 | |
June | 1.179 | 0.630 | |
July | 0.937 | 0.648 | |
August | 1.221 | 1.272 | |
September | 1.363 | 0.642 | |
October | −1.536 | −0.633 | |
November | 0.944 | 0.415 | |
December | −0.939 | −0.691 | |
Annual | 0.596 | 0.258 | |
Spring | −0.256 | −0.200 | |
Summer | 0.568 | 0.238 | |
Autumn | 0.284 | 0.113 | |
Winter | 0.738 | 0.515 |
Climate Change Run | Simulated Discharge of 2011–2012 (m3/s) | Simulated Discharge (m3/s) | ||
---|---|---|---|---|
With 20% Increase in Precipitation | With Temperature +2 °C | With Temperature +2 °C and 20% Snow Cover | ||
October | 132.52 | 199.34 | 197.72 | 263.52 |
November | 61.33 | 62.82 | 156.03 | 164.27 |
December | 14.48 | 34.82 | 50.86 | 53.08 |
January | 26.09 | 26.62 | 29.44 | 29.44 |
February | 19.16 | 19.55 | 21.71 | 21.71 |
March | 139.25 | 79.27 | 239.42 | 245.61 |
April | 439.55 | 1107.84 | 1581.14 | 1635.27 |
May | 562.03 | 1580.13 | 2067.09 | 2138.59 |
June | 1674.45 | 2460.11 | 2853.29 | 2944.30 |
July | 2013.44 | 1363.84 | 1110.06 | 1479.76 |
August | 1216.13 | 1396.28 | 1351.77 | 1531.65 |
September | 647.41 | 1086.18 | 1065.63 | 1205.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Manzoor, S.; Vishwakarma, D.K.; Al-Ansari, N.; Kushwaha, N.L.; Elbeltagi, A.; Sushanth, K.; Prasad, V.; Kuriqi, A. Assessment of Climate Change Impact on Snowmelt Runoff in Himalayan Region. Sustainability 2022, 14, 1150. https://doi.org/10.3390/su14031150
Kumar R, Manzoor S, Vishwakarma DK, Al-Ansari N, Kushwaha NL, Elbeltagi A, Sushanth K, Prasad V, Kuriqi A. Assessment of Climate Change Impact on Snowmelt Runoff in Himalayan Region. Sustainability. 2022; 14(3):1150. https://doi.org/10.3390/su14031150
Chicago/Turabian StyleKumar, Rohitashw, Saika Manzoor, Dinesh Kumar Vishwakarma, Nadhir Al-Ansari, Nand Lal Kushwaha, Ahmed Elbeltagi, Kallem Sushanth, Vishnu Prasad, and Alban Kuriqi. 2022. "Assessment of Climate Change Impact on Snowmelt Runoff in Himalayan Region" Sustainability 14, no. 3: 1150. https://doi.org/10.3390/su14031150