Parametrization Study for Optimal Pre-Combustion Integration of Membrane Processes in BIGCC
Abstract
1. Introduction
2. Gasification of Biomass Power Plant
2.1. Gasification of Biomass without CCS
2.2. Integration of Membrane CO2 Capture Process
3. Technical and Economical Assessments
- -
- Real air introduced in the gasifier shows the amount of equivalent ratio times the stoichiometric air introduced in the gasifier, and it is computed respecting the form [55]:
- -
- Cold gas efficiency (CGE) represents the total gasification operation efficiency, which can be calculated as follows [55]:
- -
- Required power for the membrane process can be computed through the total electric energy consumed by the auxiliary membrane components.
- -
- Levelized cost of electricity (LCOE), in EUR/kWh, can be determined by Equation (4) below:
- -
- , utilized for the membrane process, in MJ/kg, can be calculated regarding the next formula [56]:
- -
- Carbon dioxide capture cost () can be defined as the ratio of the plant electricity price difference with and without membrane usage per amount of CO2 captured, in EUR/t, regarding the next formula:
- -
- On the other hand, carbon dioxide avoided cost () is determined basically through the electricity price difference divided by CO2 emissions variations with and without CO2 capture use, in EUR/t, and the following formula presents that ratio:
- -
- Net present value (), in EUR, was computed regarding the formula:
- the amount of money required for maintenance for one year;
- the value of a payback loan (if exists) for one year;
- the actual investment for one year;
- the rate of deduction.
- -
- Internal rate of return () was computed by respecting the next equation:
- -
- Equation (10) represents the formula to calculate the Discount payback period (), in years:
- -
- For a decision on considering whether the project is financially well-planned, the profitability index () is determined as the ratio of summation and deduction of investment () per deduct investment as follows:
4. Results and Discussion
- The gasification process
- 2.
- The membrane CO2 capture process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
BIGCC | Biomass Integrated Gasification Combined Cycle |
HRSG | Heat Recovery Steam Generator |
WGS | Water Gas Shift Reactor |
CCS | Carbon Capture and Storage |
ER | Equivalent Ratio |
CGE | Cold Gas Efficiency |
LHV | Lowest heating value |
CP1 | 1st Compressor Pressure |
CP2 | 2nd Compressor Pressure |
CP3 | 3rd Compressor Pressure |
Pax | Energy required for auxiliaries |
MSA1 | First membrane Surface Area |
LCOE | Levelized Cost of Electricity |
Wnet | Net electric energy generation |
ENo capture | CO2 emissions without CCS |
Ewith capture | CO2 emissions with CCS |
SPECCA | Specific primary energy consumption for CO2 avoided |
CO2,CC | CO2 Capture Cost |
CO2,AC | CO2 Avoided Cost |
NPV | Net Present Value |
INi | Actual bonus of the year i |
Ci | Amount of money required for maintenance for a year |
Ai | Value of a payback for a year |
Ii | Actual investment for a year |
r | Rate of deduction |
IRR | Internal Rate of Return |
DPP | Discount Payback Period |
PI | Profitability Index |
References
- Gaye, A. Human development report, fighting climate change: Human solidarity in a divided world. In Access to Energy and Human Development 2007/2008; Springer: New York, NY, USA, 2008. [Google Scholar]
- IEA. World Energy Outlook; International Energy Agency: Paris, France, 2020.
- Slavu, N.; Badea, A.; Dinca, C. Technical and Economical Assessment of CO2 Capture-Based Ammonia Aqueous. Processes 2022, 10, 859. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, C.P.; Ríos, L.A.; González, C.S.D.; Montaña, A.; García-Marroquín, C. Harnessing Residual Biomass as a Renewable Energy Source in Colombia: A Potential Gasification Scenario. Sustainability 2022, 14, 12537. [Google Scholar] [CrossRef]
- IEA. IEA Statistics 2011 Edition: CO2 Emissions from Fuel Combustion Highlights; International Energy Agency: Paris, France, 2011.
- Sima, S.; Racoviţă, R.C.; Dincă, C.; Feroiu, V.; Secuianu, C. Phase equilibria calculations for carbon dioxide+ 2-propanol system. UPB Sci. Bull. Ser. B 2017, 79, 11–24. [Google Scholar]
- Alabid, M.; Cormos, C.-C.; Dinca, C. Critical Assessment of Membrane Technology Integration in a Coal-Fired Power Plant. Membranes 2022, 12, 904. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhao, B.; Li, L. Advance in post-combustion CO2 capture with alkaline solution: A brief review. Energy Procedia 2012, 14, 1515–1522. [Google Scholar] [CrossRef]
- Kheirinik, M.; Ahmed, S.; Rahmanian, N. Comparative techno-economic analysis of carbon capture processes: Pre-combustion, post-combustion, and oxy-fuel combustion operations. Sustainability 2021, 13, 13567. [Google Scholar] [CrossRef]
- Scheffknecht, G.; Al-Makhadmeh, L.; Schnell, U.; Maier, J. Oxy-fuel coal combustion—A review of the current state-of-the-art. Int. J. Greenh. Gas Control. 2011, 5, S16–S35. [Google Scholar] [CrossRef]
- Pérez-Fortes, M.; Bocin-Dumitriu, A.; Tzimas, E. CO2 utilization pathways: Techno-economic assessment and market opportunities. Energy Procedia 2014, 63, 7968–7975. [Google Scholar] [CrossRef]
- Cormos, C.-C.; Dinca, C. Techno-economic and environmental implications of decarbonization process applied for Romanian fossil-based power generation sector. Energy 2021, 220, 119734. [Google Scholar] [CrossRef]
- Cormos, C.-C.; Petrescu, L.; Cormos, A.-M.; Dinca, C. Assessment of Hybrid Solvent—Membrane Configurations for Post-Combustion CO2 Capture for Super-Critical Power Plants. Energies 2021, 14, 5017. [Google Scholar] [CrossRef]
- Tramošljika, B.; Blecich, P.; Bonefačić, I.; Glažar, V. Advanced ultra-supercritical coal-fired power plant with post-combustion carbon capture: Analysis of electricity penalty and CO2 emission reduction. Sustainability 2021, 13, 801. [Google Scholar] [CrossRef]
- Pascu, A.; Stoica, L.; Dinca, C.; Badea, A. The package type influence on the performance of the CO2 capture process by chemical absorption. UPB Sci. Bull. Ser. C 2016, 78, 259–270. [Google Scholar]
- Chang, P.T.; Ng, Q.H.; Ahmad, A.L.; Low, S.C. A critical review on the techno-economic analysis of membrane gas absorption for CO2 capture. Chem. Eng. Commun. 2022, 209, 1553–1569. [Google Scholar] [CrossRef]
- Jang, M.-G.; Yun, S.; Kim, J.-K. Process design and economic analysis of membrane-integrated absorption processes for CO2 capture. J. Clean. Prod. 2022, 368, 133180. [Google Scholar] [CrossRef]
- He, X.; Hägg, M.-B. Energy efficient process for CO2 capture from flue gas with novel fixed-site-carrier membranes. Energy Procedia 2014, 63, 174–185. [Google Scholar] [CrossRef]
- Badea, A.A.; Vodă, I.; Dincă, C.F. Comparative analysis of coal, natural gas and nuclear fuel life cycles by chains of electrical energy production. Nat. Gas 2010, 9, 9–95. [Google Scholar]
- Yang, D.; Wang, Z.; Wang, J.; Wang, S. Potential of two-stage membrane system with recycle stream for CO2 capture from postcombustion gas. Energy Fuels 2009, 23, 4755–4762. [Google Scholar] [CrossRef]
- Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. Membrane technologies for CO2 separation. J. Membr. Sci. 2010, 359, 115–125. [Google Scholar] [CrossRef]
- Zhang, X.; He, X.; Gundersen, T. Post-combustion carbon capture with a gas separation membrane: Parametric study, capture cost, and exergy analysis. Energy Fuels 2013, 27, 4137–4149. [Google Scholar] [CrossRef]
- Korberg, A.D.; Mathiesen, B.V.; Clausen, L.R.; Skov, I.R. The role of biomass gasification in low-carbon energy and transport systems. Smart Energy 2021, 1, 100006. [Google Scholar] [CrossRef]
- Oreggioni, G.D.; Friedrich, D.; Brandani, S.; Ahn, H. Techno-economic study of adsorption processes for pre-combustion carbon capture at a biomass CHP plant. Energy Procedia 2014, 63, 6738–6744. [Google Scholar] [CrossRef]
- Tezer, Ö.; Karabağ, N.; Öngen, A.; Çolpan, C.Ö.; Ayol, A. Biomass gasification for sustainable energy production: A review. Int. J. Hydrogen Energy 2022, 47, 15419–15433. [Google Scholar] [CrossRef]
- Cormos, A.-M.; Dinca, C.; Petrescu, L.; Chisalita, D.A.; Szima, S.; Cormos, C.-C. Carbon capture and utilisation technologies applied to energy conversion systems and other energy-intensive industrial applications. Fuel 2018, 211, 883–890. [Google Scholar] [CrossRef]
- Rhodes, J.S.; Keith, D.W. Engineering economic analysis of biomass IGCC with carbon capture and storage. Biomass Bioenergy 2005, 29, 440–450. [Google Scholar] [CrossRef]
- PaláSingh, A. Sorption isotherms of methane, ethane, ethene and carbon dioxide on NaX, NaY and Na-mordenite zeolites. J. Chem. Soc. Faraday Trans. 1995, 91, 2935–2944. [Google Scholar]
- Olabi, A.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sustain. Energy Rev. 2022, 153, 111710. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Padurean, A.; Cormos, C.-C.; Agachi, P.-S. Pre-combustion carbon dioxide capture by gas–liquid absorption for Integrated Gasification Combined Cycle power plants. Int. J. Greenh. Gas Control. 2012, 7, 1–11. [Google Scholar] [CrossRef]
- del Pozo, C.A.; Cloete, S.; Álvaro, Á.J. Carbon-negative hydrogen: Exploring the techno-economic potential of biomass co-gasification with CO2 capture. Energy Convers. Manag. 2021, 247, 114712. [Google Scholar] [CrossRef]
- U.S. Department of Energy National Energy Technology Laboratory. Current World Wide Synthesis Gas Production. Available online: http://www.netl.doe.gov/research/coal/energy-systems/gasification/gasification-plant-databases/current-world (accessed on 8 October 2022).
- Abdoulmoumine, N.; Adhikari, S.; Kulkarni, A.; Chattanathan, S. A review on biomass gasification syngas cleanup. Appl. Energy 2015, 155, 294–307. [Google Scholar] [CrossRef]
- Molino, A.; Chianese, S.; Musmarra, D. Biomass gasification technology: The state of the art overview. J. Energy Chem. 2016, 25, 10–25. [Google Scholar] [CrossRef]
- De Filippis, P.; Scarsella, M.; De Caprariis, B.; Uccellari, R. Biomass gasification plant and syngas clean-up system. Energy Procedia 2015, 75, 240–245. [Google Scholar] [CrossRef]
- Peres, A.P.; Lunelli, B.H.; Maciel FIlho, R. Application of biomass to hydrogen and syngas production. Chem. Eng. Trans. 2013, 32, 589–594. [Google Scholar]
- Miles, T.R.; Miles, T.R., Jr.; Baxter, L.L.; Bryers, R.W.; Jenkins, B.M.; Oden, L.L. Alkali deposits found in biomass power plants: A preliminary investigation of their extent and nature. Volume 1. National Renewable Energy Lab.(NREL), Golden, CO (United States); Miles (Thomas R.), Portland, OR (United States); Sandia National Lab.(SNL-CA), Livermore, CA (United States); Foster Wheeler Development Corp., Livingston, NJ (United States); California Univ., Davis, CA (United States); Bureau of Mines, Albany, OR (United States). Albany Research Center; April 15. 1995. Available online: https://www.osti.gov/biblio/251288 (accessed on 1 December 2022).
- Qian, K.; Kumar, A.; Patil, K.N.; Bellmer, D.D.; Wang, D.; Yuan, W.; Huhnke, R.L. Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies 2013, 6, 3972–3986. [Google Scholar] [CrossRef]
- Abdolahi-Mansoorkhani, H.; Seddighi, S. CO2 capture by modified hollow fiber membrane contactor: Numerical study on membrane structure and membrane wettability. Fuel Process. Technol. 2020, 209, 106530. [Google Scholar] [CrossRef]
- Dindore, V.; Brilman, D.; Versteeg, G. Modelling of cross-flow membrane contactors: Mass transfer with chemical reactions. J. Membr. Sci. 2005, 255, 275–289. [Google Scholar] [CrossRef]
- Wijmans, J.G.; Baker, R.W. The solution-diffusion model: A review. J. Membr. Sci. 1995, 107, 1–21. [Google Scholar] [CrossRef]
- Nakhjiri, A.T.; Heydarinasab, A.; Bakhtiari, O.; Mohammadi, T. Experimental investigation and mathematical modeling of CO2 sequestration from CO2/CH4 gaseous mixture using MEA and TEA aqueous absorbents through polypropylene hollow fiber membrane contactor. J. Membr. Sci. 2018, 565, 1–3. [Google Scholar] [CrossRef]
- Sandru, M.; Haukebø, S.H.; Hägg, M.-B. Composite hollow fiber membranes for CO2 capture. J. Membr. Sci. 2010, 346, 172–186. [Google Scholar] [CrossRef]
- Freeman, B.; Hao, P.; Baker, R.; Kniep, J.; Chen, E.; Ding, J.; Zhang, Y.; Rochelle, G.T. Hybrid membrane-absorption CO2 capture process. Energy Procedia 2014, 63, 605–613. [Google Scholar] [CrossRef]
- Ji, G.; Zhao, M. Membrane separation technology in carbon capture. In Recent Advances in Carbon Capture and Storage; InTech Janeza Trdine 9: Rijeca, Croatia, 2017; pp. 59–90. [Google Scholar]
- Vega, F.; Baena-Moreno, F.; Fernández, L.M.G.; Portillo, E.; Navarrete, B.; Zhang, Z. Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale. Appl. Energy 2020, 260, 114313. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, B.; Zhao, L.; Dutta, P.; Ho, W.W. New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas. J. Membr. Sci. 2015, 495, 415–423. [Google Scholar] [CrossRef]
- Khojasteh-Salkuyeh, Y.; Ashrafi, O.; Mostafavi, E.; Navarri, P. CO2 utilization for methanol production; Part I: Process design and life cycle GHG assessment of different pathways. J. CO2 Util. 2021, 50, 101608. [Google Scholar] [CrossRef]
- Zhang, M.; Deng, L.; Xiang, D.; Cao, B.; Hosseini, S.S.; Li, P. Approaches to suppress CO2-induced plasticization of polyimide membranes in gas separation applications. Processes 2019, 7, 51. [Google Scholar] [CrossRef]
- Mohd Pauzi, M.M.; Azmi, N.; Lau, K.K. Emerging Solvent Regeneration Technologies for CO2 Capture through Offshore Natural Gas Purification Processes. Sustainability 2022, 14, 4350. [Google Scholar] [CrossRef]
- Han, Y.; Yang, Y.; Ho, W.S. Recent progress in the engineering of polymeric membranes for CO2 capture from flue gas. Membranes 2020, 10, 365. [Google Scholar] [CrossRef]
- Sandru, M.; Sandru, E.M.; Ingram, W.F.; Deng, J.; Stenstad, P.M.; Deng, L.; Spontak, R.J. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes. Science 2022, 376, 90–94. [Google Scholar] [CrossRef]
- Wu, F.; Dellenback, P.A.; Fan, M. Highly efficient and stable calcium looping based pre-combustion CO2 capture for high-purity H2 production. Mater. Today Energy 2019, 13, 233–238. [Google Scholar] [CrossRef]
- Dinca, C.; Badea, A.-A.; Apostol, T.; Lazaroiu, G. GHG emissions evaluation from fossil fuel with CCS. Environ. Eng. Manag. J. 2009, 8, 81–89. [Google Scholar] [CrossRef]
- Astolfi, M.; De Lena, E.; Romano, M.C. Improved flexibility and economics of Calcium Looping power plants by thermochemical energy storage. Int. J. Greenh. Gas Control 2019, 83, 140–155. [Google Scholar] [CrossRef]
- Chemengonline. 2022. Available online: https://www.chemengonline.com/pci-home (accessed on 1 June 2022).
- Anantharaman, R.; Bolland, O.; Booth, N.; van Dorst, E.; Fernandez, E.S.; Franco, F.; Macchi, E.; Manzolini, G.; Nikolic, D.; Pfeffer, A. Cesar Deliverable D2. 4.3. European Best Practice Guidelines for Assessment of CO2 Capture Technologies. Energy 2018. [CrossRef]
- Trading Economics. Available online: https://tradingeconomics.com/commodity/carbon (accessed on 12 October 2022).
- Van Der Sluijs, J.P.; Hendriks, C.A.; Blok, K. Feasibility of polymer membranes for carbon dioxide recovery from flue gases. Energy Convers. Manag. 1992, 33, 429–436. [Google Scholar] [CrossRef]
- He, X.; Hägg, M.-B. Hollow fiber carbon membranes: From material to application. Chem. Eng. J. 2013, 215, 440–448. [Google Scholar] [CrossRef]
Biomass Waste Component | Value (%) |
---|---|
Carbon | 49.21 |
Oxygen | 41.81 |
Hydrogen | 6.61 |
Ash | 1.4 |
Nitrogen | 0.89 |
Sulfur | 0.08 |
LHV | 18,939.1 kJ/kg |
Component | Unit | Value |
---|---|---|
N2 | %mole | 43.66 |
H2 | %mole | 30.73 |
CO2 | %mole | 23.03 |
CO | %mole | 2.58 |
Syngas flow | kmol/h | 3109 (ER = 25%) |
LHV | kJ/kg | 3441 |
Temperature | °C | 40 |
Pressure | bar | 1.013 |
Parameter | Unit | Value |
---|---|---|
Membrane type | - | Spiral wound |
Flow pattern | - | Counter-current |
CO2 permeability | GPU | 1000 |
N2 permeability | GPU | 20 |
CO2/N2 selectivity | - | 50 |
Efficiency of compressors | % | 90 |
Efficiency of pumps | % | 90 |
Water pumps pressure | bar | 3 |
Heat exchanger temperature out (All) | °C | 50 |
First compressor pressure (CP1) | bar | 2–6 |
First membrane surface area (MSA1) | m2 | 400,000–1,200,000 |
Second compressor pressure (CP2) | bar | 2–6 |
Second membrane surface area | m2 | 80,000 |
Third compressor pressure (CP3) | bar | 2–6 |
Third membrane surface area | m2 | 23,000 |
Power plant main parameters The temperature of super-critical vapor The pressure of super-critical vapor LHV of the steam The net efficiency of the power plant (LHV biomass) | °C bar kJ/kg % | 585 290 17,139 29.8 |
Item | Unit | Value |
---|---|---|
Project lifetime | years | 25 |
Price of electric energy | EUR/MWh | 160 [57] |
The price of gas turbine | MEUR | 93 [57] |
The price of steam turbine | MEUR | 52 [58] |
The price of Condenser | MEUR | 39 [58] |
The price of HRSG | MEUR | 34 [58] |
The price of Gasification unit | MEUR | 162 [58] |
The reactor of water–gas shift | MEUR | 21.12 [58] |
The price of separator | MEUR | 58 [58] |
The price of ash treatment | MEUR | 16 [58] |
CO2 emissions fees | EUR /t | 66 [59] |
Period of working | hour/year | 75% of 8760 |
Indicator of Availability | % | 85 [58] |
Rate of deduct | % | 8 [12] |
Membrane process | ||
Membrane unit particular price | EUR/m2 | 50 [58] |
The lifetime of membrane modules | years | 5 [52] |
The price of pumps | EUR/kW | 1350 [58] |
The price of compressors | EUR/kW | 1800 [58] |
The price of a membrane alteration | EUR/m2 | 10 [7] |
Employments payment | EUR/hour | 15 [58] |
Carbon dioxide compression stage | ||
The price of CO2 compressor unit | MEUR | 11.7 [58] |
The price of cooling compressors | MEUR | 0.87 [58] |
First Membrane Area | m2 | 400,000 | 800,000 | 1,200,000 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
First compressor pressure | bar | 2 | 4 | 6 | 2 | 4 | 6 | 2 | 4 | 6 |
CO2 capture rate | % | 12.1 | 88.7 | 89.7 | 21.3 | 90.3 | 90.15 | 28.4 | 90.3 | 90.6 |
CO2 purity | % | 68.7 | 95.7 | 95.7 | 79.9 | 95.8 | 95.7 | 84.5 | 95.8 | 95.7 |
Electrical energy needed | MW | 2.9 | 12.9 | 22.9 | 3.5 | 19.7 | 40.66 | 4.1 | 27.6 | 60 |
CO2 recovered/ membrane surface | kg/m2·h | 0.009 | 0.07 | 0.07 | 0.008 | 0.035 | 0.035 | 0.007 | 0.022 | 0.023 |
Parameter | Unit | BIGCC Single | BIGCC with Membrane |
---|---|---|---|
Introduced biomass | t/h | 31.86 | 31.86 |
Global efficiency (LHV syngas) | % | 62.20 | 37.60 |
Global efficiency (LHV biomass) | % | 29.80 | 18.04 |
Net power produced | kW | 50,000 | 30,245 |
CO2 recovery factor | kg/MWh | 0.00 | −822.63 |
CO2 recovered | kg/MWh | n.a. | 939.11 |
Electricity needed for membrane process | kWe | n.a. | 19,700 |
Membrane power consumption | kWh/tCO2 | n.a. | 694 |
LCOE_rate | EUR/kWh | 0.0974 | 0.1410 |
SPECCA | MJth/kg | n.a. | 4.60 |
SEPCCA | MJel/kg | n.a. | 2.86 |
CO2 avoided price | EUR/t | n.a. | 52.94 |
CO2 captured price | EUR/t | n.a. | 46.37 |
Indicator | Unit | Value |
---|---|---|
NPV | MEUR | 98.32 |
IRR | % | 11.6 |
DPP | year | 14.7 |
PI | - | 1.32 |
Parameters | Optimum Results for the Current Study | Research from Literatures | ||
---|---|---|---|---|
[22] | [60] | [61] | ||
Number of stages | 3 | 2 | 2 | 2 |
CO2 capture efficiency, [%] | 90.3 | 90.0 | 79.0 | 84.2 |
CO2 purity, [%] | 95.8 | 95.0 | 68.0 | 93.6 |
Total membrane surface, [m2] | 9 × 105 | n.a. | 6.1 × 105 | 71 × 105 |
CO2 permeance, [GPU] | 1000 | 2000 | 100 | 270 |
CO2/N2 selectivity | 50 | 70 | 43 | 41 |
Flue gas, [kmol/h] | n.a. | 118,694.3 | 52,929 | 65,486 |
Syngas flow, [kmol/h] | 3109 | n.a. | n.a. | n.a. |
CO2 content in the stream before membrane, [kmol/h] | 716.29 | 16,296.73 | 6880.77 | 9823 |
Power consumption of membrane plant, [kWe] | 19,700 | 261,100 | n.a. | n.a. |
LCOE_tax, [EUR /kWh] | 0.1410 | n.a. | n.a. | n.a. |
SPECCA, [MJth/kg] | 4.60 | n.a. | n.a. | n.a. |
SEPCCA, [MJel/kg] | 2.86 | 1.66 (calculated) | n.a. | n.a. |
CO2 avoided cost [EUR/t] | 52.94 | n.a. | n.a. | 46.0 |
CO2 captured cost [EUR/t] | 46.37 | 45.10 | 48.01 | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabid, M.; Dinca, C. Parametrization Study for Optimal Pre-Combustion Integration of Membrane Processes in BIGCC. Sustainability 2022, 14, 16604. https://doi.org/10.3390/su142416604
Alabid M, Dinca C. Parametrization Study for Optimal Pre-Combustion Integration of Membrane Processes in BIGCC. Sustainability. 2022; 14(24):16604. https://doi.org/10.3390/su142416604
Chicago/Turabian StyleAlabid, Maytham, and Cristian Dinca. 2022. "Parametrization Study for Optimal Pre-Combustion Integration of Membrane Processes in BIGCC" Sustainability 14, no. 24: 16604. https://doi.org/10.3390/su142416604
APA StyleAlabid, M., & Dinca, C. (2022). Parametrization Study for Optimal Pre-Combustion Integration of Membrane Processes in BIGCC. Sustainability, 14(24), 16604. https://doi.org/10.3390/su142416604