Sustainable Food Production from a Labor Supply Perspective: Policies and Implications
Abstract
:1. Introduction
2. The Grain Subsidy Overview
3. Theoretical Analysis, Data and Methodology
3.1. Theoretical Analysis
3.2. Model
3.3. Data Description
4. Results and Discussion
4.1. Impact of the Availability of Subsidies on Labor Supply
4.2. Impact of Subsidy Rates on Labor Supply
4.3. Analysis of the Impact Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrett, C.B. Overcoming global food security challenges through science and solidarity. Am. J. Agric. Econ. 2021, 103, 422–447. [Google Scholar] [CrossRef]
- Liu, Y.S.; Wang, J.Y.; Long, H.L. Analysis of arable land loss and its impact on rural sustainability in southern Jiangsu Province of China. J. Environ. Manag. 2010, 91, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Long, H.L.; Li, Y.R.; Liu, Y.S.; Woods, M.; Zou, J. Accelerated restructuring in rural China fueled by ‘increasing vs. decreasing balance’ land-use policy for dealing with hollowed villages. Land Use Policy 2012, 29, 11–22. [Google Scholar] [CrossRef]
- Knight, J.; Deng, Q.H.; Li, S. The puzzle of migrant labour shortage and rural labour surplus in China. China Econ. Rev. 2012, 22, 585–600. [Google Scholar] [CrossRef] [Green Version]
- Cai, F. The Great Exodus How agricultural surplus laborers have been transferred and reallocated in China’s reform period? China Agric. Econ. Rev. 2018, 10, 3–15. [Google Scholar] [CrossRef]
- Jiang, X.; Zhong, S.H.; Huang, C.C.; Guo, X.X.; Zhao, J.J. Blessing or curse? The impacts of non-agricultural part-time work of the large farmer households on agricultural labor productivity. Technol. Econ. Dev. Econ. 2022, 28, 26–48. [Google Scholar] [CrossRef]
- Zhang, L.X.; Dong, Y.Q.; Liu, C.F.; Bai, Y.L. Off-farm employment over the past four decades in rural China. China Agricu. Econ. 2018, 10, 90–214. [Google Scholar] [CrossRef]
- Hu, X.Y. Effects and Appraisal of Grain Subsidy Policy Based on Statistical Analysis. Math. Probl. Eng. 2022, 2022, 2893486. [Google Scholar] [CrossRef]
- Zhao, Y.H. Leaving the countryside: Rural-to-urban migration decisions in China. Am. Econ. Rev. 1999, 89, 281–286. [Google Scholar] [CrossRef]
- Giles, J.; Mu, R. Village political economy, land tenure insecurity, and the rural to urban migration decision: Evidence from China. Am. J. Agric. Econ. 2018, 100, 521–544. [Google Scholar] [CrossRef]
- Lu, Y.F.; Chen, M.Q.; Weng, Z.L. Drivers of the peasant households’ part-time farming behavior in China. J. Rural Stud. 2022, 93, 112–121. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, S.K.; Liu, C.W.; Wang, S.L. Influence of labor transfer on farmland sustainable development: A regional comparison of plain and hilly areas. Qual. Quant. 2018, 52, 431–443. [Google Scholar] [CrossRef]
- He, Q.S.; Tan, S.K.; Yin, C.H.; Zhou, M. Collaborative optimization of rural residential land consolidation and urban construction land expansion: A case study of huangpi in wuhan, China. Computers, Comput. Environ. Urban Syst. 2019, 74, 218–228. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.M.; Wu, S.; Cai, R. The effect of labor migration on farmers’ cultivated land quality protection. Sustainability. 2020, 12, 2953. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.R.; Ito, S.; Mu, Y.Y.; Zhao, Z.J.; Wang, X.J. The role of subsidy policies in achieving grain self-sufficiency in China: A partial equilibrium approach. Agric. Econ. 2018, 64, 23–35. [Google Scholar]
- Yi, F.J.; Sun, D.Q.; Zhou, Y.H. Grain subsidy, liquidity constraints and food security—Impact of the grain subsidy program on the grain-sown areas in China. Food Policy. 2015, 50, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, B.K.; Mishra, A.K. Another look at decoupling: Additional evidence on the production effects of direct payments. Am. J. Agric. Econ. 2005, 87, 1200–1210. [Google Scholar] [CrossRef]
- Kirwan, B.E.; Roberts, M.J. Who really benefits from agricultural subsidies? Evidence from field-level data. Am. J. Agric. Econ. 2016, 98, 1095–1113. [Google Scholar] [CrossRef]
- Daidone, S.; Davis, B.; Handa, S.; Winters, P. The household and individual -level productive impacts of cash transfer program in Sub-Saharan Africa. Am. J. Agric. Econ. 2019, 101, 1401–1431. [Google Scholar] [CrossRef] [Green Version]
- Ciaian, P.; Swinnen, J.F.M. Land market imperfections and agricultural policy impacts in the New EU Member States: A partial equilibrium analysis. Am. J. Agric. Econ. 2006, 88, 799–815. [Google Scholar] [CrossRef] [Green Version]
- Guastella, G.; Moro, D.; Sckokai, P.; Veneziani, M. The capitalisation of CAP payments into land rental prices: A panel sample selection approach. J. Agric. Econ. 2018, 69, 688–704. [Google Scholar] [CrossRef]
- Lin, W.S.; Huang, J.K. Impacts of agricultural incentive policies on land rental prices: New evidence from China. Food Policy. 2021, 104, 102125. [Google Scholar] [CrossRef]
- Salhofer, K.; Feichtinger, P. Regional differences in the capitalisation of first and second pillar payments of the CAP into land rental prices. Eur. Rev. Agric. Econ. 2021, 48, 8–41. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Lou, S. Research on grain production efficiency in China’s main grain-producing areas from the perspective of grain subsidy. Environ. Technol. Innov. 2021, 22, 101530. [Google Scholar] [CrossRef]
- Chandio, A.A.; Akram, W.; Sargani, G.R.; Twumasi, M.A.; Ahmad, F. Assessing the impacts of meteorological factors on soybean production in China: What role can agricultural subsidy play? Ecol. Inform. 2022, 71, 101778. [Google Scholar] [CrossRef]
- Garrone, M.; Emmers, D.; Lee, H.; Olper, A.; Swinnen, J. Subsidies and agricultural productivity in the EU. Agric. Econ. 2019, 50, 803–817. [Google Scholar] [CrossRef]
- Yi, F.J.; Lu, W.Y.; Zhou, Y.H. Cash transfers and multiplier effect: Lessons from the grain subsidy program in China. China Agric. Econ. Rev. 2016, 8, 81–99. [Google Scholar] [CrossRef]
- Li, C.Y.; Sha, Z.H.; Sun, X.Q.; Jiao, Y. The Effectiveness Assessment of Agricultural Subsidy Policies on Food Security: Evidence from China’s Poverty-Stricken Villages. Int. J. Environ. Res. Public Health 2022, 19, 13797. [Google Scholar] [CrossRef]
- Wang, C.; Deng, M.Z.; Deng, J.F. Factor reallocation and structural transformation implications of grain subsidies in China. J. Asian Econ. 2020, 71, 101248. [Google Scholar] [CrossRef]
- Huang, J.K.; Wang, X.B.; Zhi, H.Y.; Huang, Z.R.; Rozelle, S. Subsidies and distortions in China’s agriculture: Evidence from producer-level data. Aust. J. Agric. Resour. Econ. 2011, 55, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Xue, P.; Zhang, N. Impact of Grain Subsidy Reform on the Land Use of Smallholder Farms: Evidence from Huang-Huai-Hai Plain in China. Land 2021, 10, 929. [Google Scholar] [CrossRef]
- Jayne, T.S.; Mason, N.M.; Burke, W.J.; Ariga, J. Taking stock of Africa’s second-generation agricultural input subsidy programs. Food Policy. 2018, 75, 1–14. [Google Scholar] [CrossRef]
- Anríquez, G.; Foster, W.; Ortega, J. Rural and agricultural subsidies in Latin America: Development costs of misal-located public resources. Dev. Policy Rev. 2020, 38, 140–158. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Goodwin, B.K. Farm Income Variability and the Supply of Off-Farm Labor. Am. J. Agric. Econ. 1997, 79, 880–887. [Google Scholar] [CrossRef]
- Olagunju, K.O.; Patton, M.; Feng, S. Estimating the impact of decoupled payments on farm production in Northern Ireland: An instrumental variable fixed effect approach. Sustainability 2020, 12, 3222. [Google Scholar] [CrossRef] [Green Version]
- Garrone, M.; Emmers, D.; Olper, A.; Swinnen, J. Jobs and agricultural policy: Impact of the common agricultural policy on EU agricultural employment. Food Policy 2019, 87, 101744. [Google Scholar] [CrossRef] [Green Version]
- Asfaw, S.; Davis, B.; Dewbre, J.; Handa, S.; Winters, P. Cash Transfer Programme, Productive Activities and Labour Supply: Evidence from a Randomised Experiment in Kenya. J. Dev. Stud. 2014, 50, 1172–1196. [Google Scholar] [CrossRef]
- Covarrubias, K.; Davis, B.; Winters, P. From protection to production: Productive impacts of the Malawi social cash transfer scheme. J. Dev. Eff. 2012, 4, 50–77. [Google Scholar] [CrossRef]
- Ahearn, M.C.; El-Osta, H.S.; Dewbre, J. The impact of coupled and decoupled government subsidies on off-farm labor participation of U.S. farm operators. Am. J. Agric. Econ. 2006, 88, 393–408. [Google Scholar] [CrossRef]
- Bojnec, S.; Ferto, I. Do different types of Common Agricultural Policy subsidies promote farm employment? Land Use Pol. 2022, 112, 105823. [Google Scholar] [CrossRef]
- Hennessy, T.C.; Rehman, T. Assessing the impact of the “decoupling” reform of the common agricultural policy on Irish farmers’ off-farm labor market participation decisions. J. Agric. Econ. 2008, 59, 41–56. [Google Scholar] [CrossRef]
- Pandit, M.; Paudel, K.P.; Mishra, A.K. Do agricultural subsidies affect the labor allocation decision? comparing parametric and semiparametric methods. J. Agric. Resour. Econ. 2013, 38, 1–18. [Google Scholar]
- Huang, J.K.; Wang, X.B.; Rozelle, S. The subsidization of farming households in China’s agriculture. Food Policy 2013, 41, 124–132. [Google Scholar] [CrossRef]
- Gilligan, D.O.; Hoddinott, J.; Taffesse, A.S. The Impact of Ethiopia’s Productive Safety Net Programme and its Linkages. J. Dev. Stud. 2009, 45, 1684–1706. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.V.; Hanna, R.; Kreindler, G.E.; Olken, B.A. Debunking the Stereotype of the Lazy Welfare Recipient: Evidence from Cash Transfer Programs. World Bank Res. Observ. 2017, 32, 155–184. [Google Scholar] [CrossRef] [Green Version]
- Salehi-Isfahani, D.; Mostafavi-Dehzooei, M.H. Cash transfers and labor supply: Evidence from a large-scale program in Iran. J. Dev. Econ. 2018, 135, 349–367. [Google Scholar] [CrossRef]
- Puntsagdorj, B.; Orosoo, D.; Huo, X.X.; Xia, X.L. Farmer’s Perception, Agricultural Subsidies, and Adoption of Sustainable Agricultural Practices: A Case from Mongolia. Sustainability 2021, 13, 1524. [Google Scholar] [CrossRef]
- Staniszewski, J.; Borychowski, M. The impact of the subsidies on efficiency of different sized farms. Case study of the Common Agricultural Policy of the European Union. Agric. Econ. 2020, 66, 373–380. [Google Scholar] [CrossRef]
- Long, H.L.; Tu, S.S.; Ge, D.Z.; Li, T.T.; Liu, Y.S. The allocation and management of critical resources in rural China under restructuring: Problems and prospects. J. Rural Stud. 2016, 47, 392–412. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.Q.; Liu, S.Y.; Zhang, W. New trends in internal migration in China: Profiles of the new-generation migrants. China World Econ. 2018, 26, 18–41. [Google Scholar] [CrossRef]
- Bi, Q.S.; Chen, W.Q.; Li, L.; Wang, X.L.; Cai, E.X. Agricultural population supported in rural areas under traditional planting mode based on opportunity cost analysis. Land 2022, 11, 1340. [Google Scholar] [CrossRef]
- Sun, X.S.; Zhang, Z.S.; Zhang, Y.Y. Factors influencing farmer’s decision-making behavior on rural construction land transformation. Sustainability 2018, 10, 4288. [Google Scholar] [CrossRef]
- Tong, Y.; Niu, H.P.; Fan, L.X. Willingness of farmers to transform vacant rural residential land into cultivated land in a major grain-producing area of central China. Sustainability 2016, 8, 1192. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Ho, H.C.; Chi, G.Q.; Wang, Z.Q. Abandoned rural residential land: Using machine learning techniques to identify rural residential land vulnerable to be abandoned in mountainous areas. Habitat Int. 2019, 84, 43–56. [Google Scholar] [CrossRef]
- Zhang, X.L.; Han, L. Which factors affect farmers’ willingness for rural community remediation? A tale of three rural villages in China. Land Use Pol. 2018, 74, 195–203. [Google Scholar] [CrossRef]
- Peng, L.Y.; Zhou, X.H.; Tan, W.X.; Liu, J.J.; Wang, Y.S. Analysis of dispersed farmers’ willingness to grow grain and main influential factors based on the structural equation model. J. Rural Stud. 2022, 93, 375–385. [Google Scholar] [CrossRef]
- Xu, H.Z.; Tong, C.T. Impact of farmers’ differentiation on farmland-use efficiency: Evidence from household survey data in rural China. Agric. Econ. 2013, 59, 227–234. [Google Scholar]
- Wang, C.; Wang, L.P.; Jiang, F.X.; Lu, Z.W. Differentiation of rural households’consciousness in land use activities: A case from bailin village, shapingba district of Chongqing municipality, China. Chin. Geogr. Sci. 2015, 251, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Liu, L.M. Characterizing rural household differentiation from the perspective of farmland transfer in eastern China using an agent based model. Hum. Ecol. 2018, 46, 875–886. [Google Scholar] [CrossRef]
- Huang, J.K.; Yang, G.L. Understanding recent challenges and new food policy in China. Glob. Food Secur. Agric. Policy 2017, 12, 119–126. [Google Scholar]
- Zou, B.L.; Mishra, A.K.; Luo, B.L. Grain subsidy, off-farm labor supply and farmland leasing: Evidence from China. China Econ. Rev. 2020, 62, 101293. [Google Scholar] [CrossRef]
- Huang, J.K.; Ding, J.P. Institutional innovation and policy support to facilitate small-scale farming transformation in China. Agric. Econ. 2017, 47, 227–237. [Google Scholar] [CrossRef]
- Chang, Y.M.; Huang, B.W.; Chen, Y.J. Labor supply, income, and welfare of the farm household. Labour Econ. 2012, 19, 427–437. [Google Scholar] [CrossRef]
- Mishra, A.K.; Sandretto, C.L. Stability of farm income and the role of nonfarm income in U.S. agriculture. Rev. Agric. Econ. 2002, 24, 208–221. [Google Scholar] [CrossRef]
- Antonakis, J.; Bendahan, S.; Jacquart, P.; Lalive, R. On making causal claims: A review and recommendations. Leadersh. Q. 2010, 21, 1086–1120. [Google Scholar] [CrossRef] [Green Version]
- Heckman, J. Sample Selection Bias as a Specification Error. Econometrica 1979, 47, 153–161. [Google Scholar] [CrossRef]
- Imbens, G.W.; Wooldridge, J.M. Recent Developments in the Econometrics of Program Evaluation. J. Econ. Lit. 2009, 47, 5–86. [Google Scholar] [CrossRef] [Green Version]
- Bascle, G. Controlling for endogeneity with instrumental variables in strategic management research. Strateg. Organ. 2008, 6, 285–327. [Google Scholar] [CrossRef] [Green Version]
- Surroca, J.; Tribo, J.A.; Waddock, S. Corporate responsibility and financial performance: The role of intangible resources. Strateg. Manag. J. 2010, 31, 463–490. [Google Scholar] [CrossRef]
- Larcker, D.F.; Rusticus, T.O. On the use of instrumental variables in accounting research. J. Account. Econ. 2010, 49, 186–205. [Google Scholar] [CrossRef]
Year | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Direct-grain subsidy | 11.6 | 13.2 | 14.2 | 15.1 | 15.1 | 15.1 | 15.1 | 15.1 | 15.1 | 15.1 | 15.1 | 14.05 |
High-quality seed subsidy | 2.85 | 3.87 | 4.15 | 6.66 | 12.34 | 19.85 | 20.4 | 22.0 | 22.4 | 22.6 | 21.5 | 20.35 |
Comprehensive subsidy | 12.0 | 27.6 | 71.6 | 79.5 | 71.6 | 86.0 | 107.8 | 107.8 | 107.1 | 107.1 | ||
Total | 14.45 | 17.07 | 30.35 | 49.36 | 99.04 | 114.45 | 107.1 | 123.1 | 145.3 | 145.5 | 143.7 | 141.5 |
Categories | Variable | Description | Mean | Std. Dev |
---|---|---|---|---|
Dependent variable | Off-farm labor time | Total time spent on nonfarm employment(days) | 493.24 | 329.66 |
farm labor time | Total time spent on agriculture(days) | 169.42 | 167.11 | |
Food labor time | Total time spent on food cultivation(days) | 108.54 | 118.50 | |
Independent variable | Receive subsidies | =1 if farmers receive subsidies;0 otherwise | 0.68 | 0.46 |
Subsidy rates | Amount of subsidy per unit area (yuan/mu) | 75.31 | 44.94 | |
Control variable | Gender | =1 if head household is female; 0 otherwise | 0.07 | 0.26 |
Age | Age of head of household(years) | 52.69 | 12.06 | |
Edu | Education level of the head household(years) | 6.63 | 2.62 | |
Labor-force size | Number of adults aged 16–65 in the labor force | 2.80 | 1.35 | |
Burdened population | Number of young children and elderly people | 0.27 | 0.53 | |
Percentage of female | Share of female labor to total family labor | 0.49 | 0.17 | |
Agricultural acreage | Acreage of farmland operated | 4.98 | 9.22 | |
Household income | Household income for the whole year(yuan) | 17,671.28 | 30,882.30 | |
Village officials | =1 if village officials in the family; 0 otherwise | 0.05 | 0.21 | |
Village income | Net income per capita at village level | 6052.07 | 4462.68 | |
Village distance | Distance of the village from the nearest road | 3.32 | 19.32 | |
Village topography | Plain = 1, hill = 2, mountain = 3 | 1.93 | 0.78 |
Full-Time Farmers | Fully Divided Part-Time Farmers | Incompletely Divided Part-Time Farmers | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Off-Farm Labor Time | Farm Labor Time | Food Labor Time | Off-Farm Labor Time | Farm Labor Time | Food Labor Time | Off-Farm Labor Time | Farm Labor Time | Food Labor Time |
Receive subsidies | −2.538 | 45.498 | −49.566 | −133.820 | −12.199 | 11.061 | 3.779 | 29.248 *** | 24.286 *** |
(2.709) | (41.352) | (43.232) | (95.68) | (19.854) | (14.877) | (7.990) | (6.891) | (3.916) | |
Labor force size | 3.955 *** | 17.526 * | −25.327 | 161.027 *** | 11.755 ** | 1.781 | 135.233 *** | 7.632 *** | 4.015 *** |
(1.428) | (9.673) | (15.790) | (19.545) | (5.634) | (4.112) | (5.743) | (2.175) | (1.218) | |
Burdened population | 4.609 ** | 23.025 | −37.877 ** | 18.390 | −13.569 | 0.144 | −5.749 | −3.145 | 1.525 |
(1.935) | (15.956) | (17.991) | (23.030) | (9.667) | (7.150) | (5.303) | (2.895) | (1.649) | |
Percentage of female | 2.569 | 9.253 | 63.278 | 90.603 | −13.231 | −8.160 | −135.886 *** | 23.120 * | 5.274 |
(5.278) | (38.620) | (115.611) | (103.658) | (23.217) | (17.438) | (28.789) | (12.640) | (7.187) | |
Agricultural acreage | −0.244 | 7.836 *** | 5.693 *** | −11.497 *** | 2.482 *** | 2.659 *** | −10.455 *** | 9.105 *** | 7.707 *** |
(0.181) | (0.622) | (1.690) | (3.397) | (0.386) | (0.272) | (1.075) | (0.490) | (0.281) | |
Household income (log) | 0.790 | 68.546 *** | 104.051 *** | 69.843 *** | 36.628 *** | 10.036 | 160.338 *** | 8.490 * | 12.987 *** |
(1.746) | (18.877) | (23.137) | (24.296) | (10.136) | (7.836) | (8.399) | (4.348) | (2.551) | |
Village income (log) | −3.151 | 15.894 | −48.245 | −88.911 ** | −17.167 | −13.239 | −8.082 | −0.767 | −9.915 *** |
(2.083) | (21.237) | (38.194) | (36.638) | (14.321) | (11.929) | (6.235) | (4.058) | (2.338) | |
Village distance | 0.054 | 2.814 | −0.196 | −8.993 ** | −2.898 | −0.532 | 1.813 | 2.108 * | 1.246 * |
(0.159) | (2.170) | (1.266) | (4.513) | (1.797) | (1.317) | (2.180) | (1.129) | (0.636) | |
Village topography | 1.203 | 48.619 *** | −156.101 ** | −50.294 ** | 3.515 | 9.441 | −9.754 | −7.617 | −5.302 * |
(1.165) | (14.457) | (72.491) | (22.115) | (14.175) | (10.663) | (10.267) | (5.628) | (3.147) | |
lambda | 3.810 | −239.014 | −697.432 *** | 562.314 ** | −70.141 | 41.856 | 473.367 *** | 36.615 | 70.976 *** |
(10.575) | (163.075) | (202.894) | (251.200) | (103.813) | (60.394) | (70.848) | (36.610) | (16.093) | |
Constant | −1674.749 * | 4492.094 *** | −1478.017 | 1568.823 | −329.696 | 6032.840 * | 1170.914 *** | 1991.904 *** | 9290.697 *** |
(891.556) | (1132.977) | (1760.297) | (1723.293) | (4296.368) | (3276.630) | (302.078) | (169.266) | (1005.277) | |
year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 202 | 472 | 454 | 3371 | 2915 | 2688 | 11,514 | 10,131 | 9586 |
Small-Scale Farmers | Medium-Scale Farmers | Large-Scale Farmers | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Off-Farm Labor Time | Farm Labor Time | Food Labor Time | Off-Farm Labor Time | Farm Labor Time | Food Labor Time | Off-Farm Labor Time | Farm Labor Time | Food Labor Time |
Receive subsidies | −46.264 * | 26.678 *** | 13.898 *** | 2.569 | 22.039 *** | 14.236 *** | 8.284 | 52.095 *** | 49.349 *** |
(26.400) | (5.473) | (4.719) | (8.951) | (6.212) | (5.097) | (15.928) | (14.474) | (12.702) | |
Labor force size | 127.015 *** | 8.230 *** | 1.157 | 112.862 *** | 4.433 | 1.289 | 109.788 *** | 6.956 ** | 8.758 *** |
(7.210) | (2.413) | (1.302) | (8.100) | (2.965) | (2.435) | (11.110) | (3.370) | (3.188) | |
Burdened population | 37.778*** | −2.383 | 1.565 | −22.091 *** | −2.519 | −0.125 | 5.791 | 3.308 | 3.716 |
(9.607) | (3.686) | (1.796) | (7.172) | (4.378) | (3.607) | (9.980) | (5.302) | (4.378) | |
Percentage of female | −43.388 | −4.809 | −0.559 | −27.251 | 1.812 | 1.489 | −118.452 ** | 29.588 | 12.365 |
(36.018) | (13.525) | (6.542) | (38.869) | (17.197) | (14.150) | (58.162) | (20.241) | (19.735) | |
Agricultural acreage | −55.116 *** | 21.650 *** | 13.049 *** | −7.569 * | 14.323 *** | 9.333 *** | −8.612 *** | 3.722 *** | 3.666 *** |
(6.326) | (3.953) | (2.396) | (4.140) | (2.452) | (2.046) | (1.917) | (0.222) | (0.296) | |
Household income (log) | 75.142 *** | 15.205 *** | −4.847* | 108.429 *** | 2.545 | −10.084 ** | 170.125 *** | 29.114 *** | −21.903 *** |
(8.640) | (4.028) | (2.866) | (10.680) | (5.340) | (4.415) | (16.984) | (7.182) | (7.191) | |
Village income (log) | −3.160 | −16.988 *** | −15.265 *** | −7.215 | 2.578 | −0.625 | −0.767 | 17.992 *** | −18.993 *** |
(11.959) | (5.021) | (5.099) | (6.986) | (4.491) | (3.652) | (10.151) | (6.478) | (5.437) | |
Village distance | −1.516 *** | 2.194 * | 0.960 * | 2.093 | −1.118 | −0.145 | −0.024 | 0.969 *** | −0.342 |
(0.524) | (1.135) | (0.516) | (2.605) | (1.386) | (1.149) | (4.563) | (0.159) | (1.524) | |
Village topography | −10.627 | −20.750 | −23.455 *** | 17.297 | −12.841 | −14.715 ** | −8.157 | 18.973 *** | −6.875 |
(7.736) | (14.974) | (7.448) | (13.850) | (7.939) | (6.507) | (20.225) | (5.334) | (9.502) | |
lambda | −32.404 | 133.26 *** | 34.387 | 128.916 | −116.21 ** | −10.18 | 369.821 *** | −174.548 *** | 186.818 *** |
(93.378) | (49.70) | (21.775) | (100.463) | (55.92) | (35.48) | (116.064) | (59.581) | (45.371) | |
Constant | −1051.468 | 3827.621 * | 1630.444 * | −923.388 *** | 1495.998 *** | 9100.777 *** | 1983.150 *** | 1426.562 *** | 1294.867 *** |
(727.526) | (1997.586) | (977.578) | (108.340) | (219.183) | (1806.065) | (599.914) | (309.014) | (303.835) | |
year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 5762 | 4050 | 3326 | 7310 | 8265 | 8025 | 3325 | 4098 | 4026 |
Operation Type | Operation Scale | |||||
---|---|---|---|---|---|---|
Full-Time | Fully Divided | Incompletely Divided | Small-Scale | Medium-Scale | Large-Scale | |
Subsidy rates | 109.87 | 90.01 | 93.64 | 104.27 | 90.55 | 88.93 |
Total subsidies received by farmers | 513.48 | 555.63 | 555.24 | 304.50 | 432.20 | 1022.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Zhang, L.; Leng, X. Sustainable Food Production from a Labor Supply Perspective: Policies and Implications. Sustainability 2022, 14, 15935. https://doi.org/10.3390/su142315935
Xu N, Zhang L, Leng X. Sustainable Food Production from a Labor Supply Perspective: Policies and Implications. Sustainability. 2022; 14(23):15935. https://doi.org/10.3390/su142315935
Chicago/Turabian StyleXu, Na, Liqin Zhang, and Xiyuan Leng. 2022. "Sustainable Food Production from a Labor Supply Perspective: Policies and Implications" Sustainability 14, no. 23: 15935. https://doi.org/10.3390/su142315935
APA StyleXu, N., Zhang, L., & Leng, X. (2022). Sustainable Food Production from a Labor Supply Perspective: Policies and Implications. Sustainability, 14(23), 15935. https://doi.org/10.3390/su142315935